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Diffusion magnetic resonance imaging (dMRI) is a unique technology that allows the noninvasive quantification
of microstructural tissue properties of the human brain in healthy subjects as well as the probing of disease-
induced variations. Population studies of dMRI data have been essential in identifying pathological structural
changes in various conditions, such as Alzheimer's and Huntington's diseases (Salat et al., 2010; Rosas et al.,
2006). The most common form of dMRI involves fitting a tensor to the underlying imaging data (known as dif-
fusion tensor imaging, or DTI), then deriving parametric maps, each quantifying a different aspect of the under-
lying microstructure, e.g. fractional anisotropy and mean diffusivity. To date, the statistical methods utilized in
most DTI population studies either analyzed only one such map or analyzed several of them, each in isolation.
However, it ismost likely that variations in themicrostructure due topathology or normal variabilitywould affect
several parameters simultaneously, with differing variations modulating the various parameters to differing de-
grees. Therefore, joint analysis of the available diffusion maps can be more powerful in characterizing histopa-
thology and distinguishing between conditions than the widely used univariate analysis. In this article, we
propose amultivariate approach for statistical analysis of diffusion parameters that uses partial least squares cor-
relation (PLSC) analysis and permutation testing as building blocks in a voxel-wise fashion. Stemming from the
common formulation, we present three different multivariate procedures for group analysis, regressing-out nui-
sance parameters and comparing effects of different conditions. We used the proposed procedures to study the
effects of non-demented aging, Alzheimer's disease and mild cognitive impairment on the white matter. Here,
we present results demonstrating that the proposed PLSC-based approach can differentiate between effects of
different conditions in the same region as well as uncover spatial variations of effects across the white matter.
The proposed procedures were able to answer questions on structural variations such as: “are there regions in
the white matter where Alzheimer's disease has a different effect than aging or similar effect as aging?” and
“are there regions in the white matter that are affected by both mild cognitive impairment and Alzheimer's
disease but with differing multivariate effects?”
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1. Introduction

Diffusion-weighted magnetic resonance imaging (dMRI) has been
used in a wide range of studies to understand basic tissue properties
in healthy individuals as well as developmental and degenerative
changes that occur across the lifespan (e.g. Pfefferbaum et al., 2000;
Salat et al., 2005). Through modeling water diffusivity in tissue micro-
structure, several different voxel-wise parametermaps can be extracted
from dMRI data, which have been shown to be sensitive measures for
identifying structural variations across individuals and tissue changes
resulting from disease (Salat et al., 2010; Rosas et al., 2006; Bozzali
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et al., 2002; Rose et al., 2000). To date, the great majority of research
studying dMRI-based maps have used the diffusion tensor imaging
(DTI) model and either focused on a single parameter of interest (e.g.
typically the fractional anisotropy (FA) or the mean diffusivity (MD)),
or analyzed multiple parameters using univariate methods (Salat
et al., 2010; Bozzali et al., 2002; Rose et al., 2000; Amlien and Fjell,
2014; Sachdev et al., 2013; Villain et al., 2008; Lu et al., 2014;
Bartzokis et al., 2004; Damoiseaux et al., 2009; Takahashi et al., 2002;
Douaud et al., 2011). Animal and postmortem studies have loosely
linked these different diffusion markers to histological properties and/
or specific pathologies, for example, ischemia, cell death and edema
have been linked to mean diffusivity (Chenevert et al., 2000; Sotak,
2002),myelinatedfiber organization anddispersion to fractional anisot-
ropy (Beaulieu, 2002; Moseley, 2002), and axonal injury (Song et al.,
2003) and demyelination (Song et al., 2005; Song et al., 2002;
Klawiter et al., 2011) to axial and radial diffusivity respectively. These
studies were critical in providing fundamental evidence that the multi-
ple contrasts obtained through diffusion modeling could be used in the
differentiation of dynamic processes in brain tissue such as tissue de-
generation across different conditions.

One detail that has been frequently neglected in previous research is
that different diffusion parameters at the same location quantify differ-
ent aspects of the same underlying tissue structure. Consequently, a
complex phenomenon that alters tissue structure, such as aging or
Alzheimer's disease, often affects all the parameters. The proportions
of the effects across parameters naturally might differ depending on
the type of alteration and the relationships between the parameters ex-
tracted from dMRI data. Therefore, it is plausible that differing histopa-
thology may result in different proportional changes to the various
dMRI-derived parameters. Joint analysis of the diffusion parameters
with a multivariate method may be able to detect such differences,
and disentangle similar appearing effects to better characterize condi-
tions, reveal complex spatial variations and yield higher power to differ-
entiate between conditions.

Coutu et al. in (Coutu et al., 2014) recently focused on the utility of a
multivariate approach across several diffusion parameters for examin-
ing tissue changes associated with aging. In their study, the authors fo-
cused on spatial variations in the effects of aging on the white matter.
They used seven diffusion parameters available through a diffusion
kurtosis-imagingmodel and identified three distinct classes of aging ef-
fects across the white matter. This initial result suggests that joint anal-
ysis of diffusion parameters with a multivariate approach may indeed
provide important information about disease processes not available
through examination of any parameter in isolation. Themultivariate ap-
proach Coutu et al. took was to compute the Pearson's correlation coef-
ficient between each diffusion parameter and subjects' age at each
location in the white matter, and for each point separately define the
set of coefficients as the “diffusion footprint”, a voxel-wise multivariate
representation. In this work, motivated by the results in (Coutu et al.,
2014),we focus on the joint analysis of diffusion parameters and extend
Coutu et al.’s initial method.

We introduce a novel approach for multivariate statistical analysis of
diffusion parameters. Our approach is a new interpretation of the diffu-
sion footprint through partial least squares correlation (PLSC) (Abdi and
Williams, 2013) analysis. This interpretation combined with non-
parametric permutation testing (Good, 2005), yields a powerful method-
ological basis with which a new set of hypotheses regarding changes in
tissue microstructure can be tested. We first present the PLSC-based
group analysis of diffusion parameters and the associated statistical test.
Then we define procedures for regressing out variables and comparing
conditions in themultivariate setting. These procedures allow comparing
conditions based on the type of effect they have on the diffusion parame-
ters, i.e. relative proportions of effects on parameters, in addition to effect-
size and location. The technical novelties introduced in this article are in
the way PLSC is applied on the diffusion data and the two procedures
that are defined using the PLSC interpretation of diffusion footprint.
We apply the proposed procedures to examine group differences
in diffusion parameters in the white matter among non-demented
elderly adults (CN), individuals with mild cognitive impairment
(MCI) and individuals with Alzheimer's disease (AD). We provide
three different experiments to demonstrate the use of the proposed
procedures. In the first set, we use our approach for detecting and vi-
sualizing spatial variations in the effects of aging, AD and MCI. These
maps provide a more refined visualization of the spatial variation of
condition effects compared to thework of Coutu et al. in (Coutu et al.,
2014). In the second experiment, we apply the proposed procedures
to identify areas where AD's effects are structurally different than the
cross-sectional effects of aging in a cognitively healthy population, as
quantified through diffusion parameters. Lastly, we examine wheth-
er MCI and AD have different multivariate diffusion profiles suggest-
ing possible differing histopathology (either in the pathological
process or in the stage of pathology) between these conditions. In
this work, we used the diffusion tensor-imaging model as a proof
of concept to demonstrate the benefits of the proposed multivariate
method given the availability of substantial data provided by the
Alzheimer's Disease Neuroimaging Initiative. However, the approach
is not specific to diffusion tensor imaging and is applicable to any
dMRI model and any set of parameters extracted from such models.
More broadly the method can also be extended to any multi-
parametric spatial dataset.

2. Methods

2.1. Diffusion footprint

Coutu et al. defined their voxel-wise multivariate representation,
diffusion footprint, as the set of Pearson's correlation coefficients be-
tween different diffusion parameters and the condition of interest. The
underlying idea in using correlation coefficients was to “normalize” dif-
ferent parameters whose absolute values might not be comparable, e.g.
mean diffusivity and fractional anisotropy. The set of correlation coeffi-
cients captures both the absolute effect size in each parameter, i.e. the
value of each correlation coefficient, and how much the condition af-
fects each diffusion parameter relative to each other, i.e. the propor-
tions. Based on this representation one can construct multivariate
voxel-wise maps and differentiate between condition effects at differ-
ent voxels in the image, as the authors did for effect of aging (Coutu
et al., 2014).

In the next sectionwe introduce the interpretation that the diffusion
footprint is actually the result of a partial least squares correlation anal-
ysis performed on the set of diffusion parameters and the condition,
which will lead to various extensions in the type of statistical analysis
one can do in the multivariate setting. In this article we construct two
such extensions: regressing out variables and comparing effects of dif-
ferent conditions.

2.2. Multivariate group analysis through partial least squares

The proposed approach uses the principles of partial least squares
correlation analysis (PLSC) (Abdi and Williams, 2013; Tucker, 1958).
PLSC has been previously used in neuroimaging to jointly analyze
all the voxels in the brain simultaneously (McIntosh et al., 1996;
McIntosh and Lobaugh, 2004; Krishnan et al., 2011). Here we apply
the PLSC principles in a voxel-wise fashion to jointly analyze the differ-
ent diffusion parameters at each voxel independent from the others. In a
sense this voxel-wise multivariate work is a straightforward extension
of univariate analysis to multi-parametric data. For the sake of com-
pleteness we present the proposed approach starting from basics with-
out assuming any knowledge of PLSC.

Let us assume we have N subjects and for each subject there are d
diffusion parameter maps and a condition-related variable, which can



575E. Konukoglu et al. / NeuroImage 134 (2016) 573–586
be either binary (e.g. diagnosis) or continuous (e.g. age). We also as-
sume the parameter maps from different subjects are registered to the
same template and measurements at each voxel can therefore be
compared across the sample. This can for instance be achieved using
the TBSS analysis pipeline (Smith et al., 2006; Smith et al., 2007),
which aligns different subjects' images onto a common white matter
skeleton and minimizes likely confounds in group-based diffusion im-
aging studies. For the rest of the section we restrict our presentation
to a single voxel on the common template. The treatment of each
voxel is identical.

At a given voxel in the common template space we stack the differ-
ent diffusion parameters of the ith subject into vector formand represent
it with xi∈Rd, where Rd is the parameter space (d-dimensional
Euclidean space) with each axis corresponding to a different diffusion
parameter. We represent the condition-related variable for the same
subjectwith letters in regular font, such as yi or zi.We remove the offsets
between different diffusion parameters by removing the sample means
from each parameter in isolation. We also remove differences in scales
between the parameters by dividing them by sample standard devia-
tions. This step ensures that the scale differences do not affect the re-
sults, i.e. components with larger scale would otherwise dominate the
results and shadow differences in components with smaller scales.
The proposedmethodwith all the normalizations is how PLSC is widely
used in neuroimaging (Krishnan et al., 2011). It might also be seen as a
variation of Canonical Correlation Analysis (CCA). In the supplementary
material (Appendix B) we provide the precise links between these
methods. The identical normalization is also applied to the condition-
related variables. To not alter notation, we will keep using xi ,yi and zi
for the normalized variables.

In conventional univariate analysis one estimates a linear model
between y and each element of x separately, keeping y as the inde-
pendent variable, and determines the significance of the coefficients
of the linear model. In the multivariate setting however, all the ele-
ments of x are used jointly. The covariance between y and x is de-
fined as a function of direction in the parameter space. For a given
direction v∈Rd (with |v |2=1 where |⋅|2 is the Euclidean norm),
the direction-specific covariance is simply the covariance between
the condition-related variable and the magnitude of the parameter
vector in that direction. Mathematically, direction-specific covari-
ance can be estimated as.

ρy vð Þ ¼ cov ðvTx� �
; y�≈ 1

N−1

XN

i¼1

vTxi
� �

yi

The quantities of interest of the ρy(v) function are its maximum
value, i.e. the maximum covariance between the y and x, and the direc-
tion ofmaximumcovariance, i.e. the v vector atwhich themaximumco-
variance is achieved. These quantities can be computed by solving the
following optimization problem

ρy ¼ max
v

ρy vð Þ; such that vj j2 ¼ 1

wy ¼ argv maxρy vð Þ; such that vj j2 ¼ 1
ð1Þ

We refer to the maximum covariance ρy as the effect strength and
the direction of maximum covariancewy as the effect type. The effect
strength can simply be considered as the condition's effect size on
the entire set of diffusion parameters, i.e. aggregation of effect sizes
on individual parameters. The effect type on the other hand is the
vector of proportions indicating the relative effect size of each pa-
rameter compared to the others. While the effect strength gives a
measure of how much the underlying tissue varies with the condi-
tion, the effect type provides a profile that is descriptive of the nature
of the variation.
The optimization problem in (1) can be solved analytically and the
solutions are given as

ρy ¼
1

N−1

XN

i¼1
yixi

���
���
2
andwy ¼

XN

i¼1
yixi

ρy
ð2Þ

These forms have very close relationships to the diffusion footprint.
Specifically, considering the diffusion footprint representation as a vector,
ρy is themagnitude andwy is the direction of this vector. The advantage of
this novel interpretation is that it allows us to easily define different mul-
tivariate procedures, as we will describe in Sections 2.4 and 2.5.

One point to clarify is the use of categorical condition-related vari-
ables. In two-group analysis the group assignments are represented in
binary, thus, the condition-related variables take the values 0 or 1
(can also be−1 or 1). For instance,when examining the effect of AD, di-
agnosis can be used as the condition related variable, where patients
take the value 1 and non-demented controls take the value 0. In this
case, the normalization across the sample and formulations in Eqs. (1)
and (2) are applied as if the condition-related binary variable were con-
tinuous, without any modification. In the case of 3 or more categories,
the analysis described here cannot be used immediately unless the cat-
egories are ordered in the mathematical sense in which case we treat
them as continuous variables.

Three points we would like to note are:

1. Both the effect strength and type depend on the condition-related
variable. Different conditions might yield different values for both
of these quantities. Furthermore, the analysis is done on each voxel
separately; hence different locations may yield different results. As
a result, both the effect strength and type can be compared between
different locations and different conditions.

2. The straightforward derivation given in this section is simply the
applicationofPLSC in thecasewhereoneof the tables is one-dimensional.

3. In previous multivariate analysis methods for neuroimaging, includ-
ing applications of PLSC, localized interpretations of condition effects
were not possible as Friston et al. point out in (Friston et al., 1995).
The main reason is these approaches used the entire set of voxels
as a singlemultivariate representation. Hence, the estimated correla-
tion strength can only be attributed to the entire set of voxels and
voxel-wise interpretation becomes not possible. However, the appli-
cation of PLSC proposed here ismultivariate in the number of param-
eters at a given voxel and not in the number of voxels involved in the
analysis. As a result, localized interpretations are possible.

2.3. Statistical inference through permutation testing

Statistical inference in partial least squares analyses is mostly done
using non-parametric permutation testing (Good, 2005; Nichols and
Holmes, 2002). Herewe follow suit. The generality of permutation testing
is also useful for probing more complex questions. The inference aims to
test the statistical significance of the effect strength, i.e. maximum covari-
ance ρy. The null hypothesis states there is no relationship between the
condition and the diffusion parameters. In the permutation-testing
framework we can estimate the corresponding null distribution by per-
muting the condition-related variables across the sample and computing
themaximumcovariance for each permutation. Inmathematical notation
this is written as

ρπ yð Þ vð Þ ¼ 1
N−1

XN

i¼1

vTxiyπ ið Þ;

ρπ yð Þ ¼ max
v

ρπ yð Þ vð Þ; such that vj j2 ¼ 1

where π is a random permutation of the subject index set {1,… ,N} and
the subscript π(y) represents the correspondence between the variable
and the permutation π. Using the maximum covariance values obtained
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with permuted data one can assign a statistical significance to observed
effect strength by determining the ratio of permutations that achieve
higher effect strength, i.e.

p ρy

� �
¼ 1

M

XM

m¼1

δ ρy ≤ρπ mð Þ yð Þ
� �

ð3Þ

whereM is the total number of random permutations computed. Follow-
ing standard practice in permutation testing if there are no permuted
datasets that achieve higher effect strength than observed we report
p=1/M. In the next two sections we use the PLSC-based interpretation
of diffusion footprint to define two statistical procedures that are multi-
variate in nature. We start by describing how PLSC-based analysis and
permutation testing can be used to compare the multivariate effect
types between two different conditions.

Permutation testing is a generic technique that does notmake distri-
butional assumptions. However, one point to note is that, as most para-
metric and non-parametric techniques, permutation testing is prone to
problems related to outliers, see (Good, 2005) Chapter 11 for a thorough
treatment. In the presence of outliers the null distribution estimated via
permutations is less reliable and therefore, the p-values are less reliable,
which might mean higher type I errors. In addition, authors in
(Kovacevic et al., 2013) point out thatwhen the correlation is strong be-
tween different elements of x (and possibly between the elements of y
in case it hasmultiple dimensions), the permutation tests can yield high
type I errors. This is issue is most probably due to the fact that in these
cases permutation testing should be implemented so to preserve the
correlation structure across the elements of x. Otherwise, they might
be misleading. In our case, we have not observed explicit outliers in
our data. Furthermore, in our permutation scheme we make sure the
correlation structure within x is preserved.

2.4. Comparing multivariate effects types of different conditions

Comparing the effects of different conditions is a statistical procedure
that builds upon basic group analysis. As the name suggests, it facilitates
the detection of similarities and differences between conditions. A
useful example of the application of this procedure is the comparison of
effects of MCI and AD. Specifically, by using this procedure one can
examine whether MCI's effects are the same as AD's only less pro-
nounced, orwhether the effects of these conditions differ. dMRImeasure-
ments are particularly important for such comparisons as they allowus to
examine the differences in the alterations in the tissue microstructure,
and it is currently the only way to do this non-invasively.

Univariate analysis can be used to compare effects of conditions for
each parameter. However, the univariate analysis can only compare
the conditionswith respect to effect-sizes, it will not be possible to com-
pare effect-types, which may possibly relate to differences in histopa-
thology. The PLSC-based group analysis presented in Section 2.2
allows comparing effect-types between conditions. In this section we
describe how this can be done and present the multivariate statistical
procedure to test the question: at a given voxel where two conditions
show effects, do they have the same effect-type, i.e. w vectors?

Let us assume there are three groups: one control and two case
groups corresponding to two different conditions, which we would
like to compare. We represent these three groups with two binary var-
iables: y and z. A zero value for both of these variables means the indi-
vidual is in the control group, while y=1 indicates the individual is in
the first group and z=1 indicates the individual is in the second
group. Let us also further assume that the case groups are non-
overlapping, i.e. y and z are never both one for the same individual. In
theory, one can have overlapping groups as well but we keep the pre-
sentation to non-overlapping groups for ease of explanation.

Using the methodology presented in Section 2.2, we can estimate
effect-strengths and effect-types for each condition by comparing the
respective case group with the control group. To compare the effects
of two conditions we estimate the effect-types for each condition inde-
pendently using the corresponding case group and the same control
group. Since effect types are formulated as unit-norm vectors in the dif-
fusion parameter space, a natural choice of statistic for quantifying their
difference is their dot product:

a ¼ wy �wz

Since w is normalized, the a variable is by definition in the interval
[−1, 1]. a=1 indicates that the vectors are the samewhile ab1 suggests
that the effect types are different between the conditions. We perform
statistical inference on a using a permutation-testing framework. To
formulate the specific permutation structure test let us denote the three
groups with index sets IC={i1,… , iNC}, IGY={j1,… , jNY} and IGZ=
{k1,… ,kNZ} corresponding to the subjects in the control group, group
with y=1 and group with z=1, respectively. These indices are simply
integers; we denote them with different letters to make the following
permutation analysis easier to present. With these group definitions
let us first re-formulate the effect type estimation presented in
Section 2.2:

wy ¼ argv max
1

NC þ NY−1

X
n∈IC∪IGY

vT xn−xCYð ÞyCYn ; xCY

¼ 1
NC þ NY

X
n∈IC∪IGY

xnwz

¼ argv max
1

NC þ NZ−1

X
n∈IC∪IGZ

vT xn−xCZð ÞzCZn ; xCZ

¼ 1
NC þ NZ

X
n∈IC∪IGZ

xn

Note that these formulations are slightly different than the ones pre-
viously given. First of all, the variables of interest y and z are normalized
(to zero-mean and unit variance) using only the samples in the respec-
tive computations. For instance yCN indicates that this variable is nor-
malized using the subjects in the control group and the subjects in the
group with y=1. The measurement vectors x on the other hand are
normalized across the entire sample including all three groups. This en-
sures that we do not introduce any group specific bias in the normaliza-
tion and the estimated vectors can be compared. However, as a result
we need to include the respectivemeans in the estimation of the covari-
ance in the formulations.

The null hypothesis we focus on states thatwy andwz vectors are the
same and hence a=1 (with an infinite number of samples). As a result,
the group assignments between y=1 and z=1 samples are irrelevant
in terms of the difference in effect-type. Hence, if we change these assign-
ments across the individuals in the respective groups the value of a
should only vary due to noise and finite sample size. Accordingly, to
estimate the null distribution for a we randomly permute across the
groups y=1 and z=1 while keeping the control group fixed. The per-
muted index sets for the groups obey the group sizes, e.g. πGY=
{j3,k6,k14, j7,…}with |πGY|=NY and πGZ={k2,k4, j1,k21,…}with |πGZ |=
NZ. For each permutation we re-estimate the effect types with

wπ yð Þ ¼ argv max
1

NC þ NY−1

X
n∈IC∪πGY

vT xn−xCπ Yð Þ
� �

yCπ Yð Þ
n ; x

Cπ Yð Þ

¼ 1
NC þ NY

X
n∈IC∪πGY

xnwπ zð Þ

¼ argv max
1

NC þ NZ−1

X
n∈IC∪πGZ

vT xn−xCπ Zð Þ
� �

zCπ Zð Þ
n xCπ Zð Þ

¼ 1
NC þ NZ

X
n∈IC∪πGZ

xn
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and compute the dot product as aπ=wπ(y) ⋅wπ(z). The significance level
is then computed by counting the number of permutations with lower
dot products:

p að Þ ¼ 1
M

XM

m¼1

δ a≥aπmð Þ ð4Þ

While it is possible to apply this analysis to compare effect types
in any voxel, it is generally only meaningful to do so in voxels
where the effect strength of both conditions is significant as tested
by the procedure detailed in Section 2.3. The reason for this is the
statistic a only quantifies the angular difference between the
vectors and ignores their magnitudes. In regions where the signal
is mostly likely only composed of noise, the vectors will have
small magnitudes but may have large angular differences. The
permutation-based null distribution will most likely capture this
but the test is needless since both vectors are most likely noise.
On the other hand, in the regions where only one of the conditions
have signal the a statistic can show large angular differences that
are statistically significant based on the permutation test. It is diffi-
cult to talk about angular differences in this case since one of the
conditions do not show signal on that region. We thus constrain
the analysis to voxels whose effect-strength significance exceeds
a threshold for both of the conditions. In order to provide intuition
about the a statistic and its null distribution as estimated through
permutation analysis, we provide brief analysis using synthetic
dataset in the supplementary materials Appendix A.

The PLSC-based interpretation of diffusion fingerprint not only al-
lows for comparing multivariate effect-types between conditions,
but also for regressing out one effect from the other in the multivar-
iate setting. The next section describes the procedure to accomplish
this.

2.5. Regressing out nuisance parameters in the multivariate setting

An important procedure in statistical analysis in neuroimaging is
to “regress out” the effects of unwanted or nuisance variables in
order to identify the effects that are unique to the condition of inter-
est. An example from univariate analysis would be to regress out the
effects of aging when analyzing the effects of Alzheimer's disease on
a single diffusion parameter. The PLSC-based formulation of
Section 2.2 allows a straightforward definition of the regressing out
procedure in the multivariate setting.

We will treat the regressing out procedure in two parts. Let us as-
sumewe have two condition-related variables y and z, andwe are in-
terested in regressing out the effect of z from the data to determine
the “z-normalized” effect of y. In the multivariate setting the PLSC-
based analysis quantifies the effect of z with the effect-strength ρz

and the effect-type wz, which can be combined into a single vector
ρzwz. We consider the regressing out procedure as determining
the effect of y on the diffusion parameters in addition to the
effect of z. In the multivariate setting, this additional effect has two
components, one parallel and one orthogonal towz. The parallel com-
ponent is the additional effect of y that has the same type as the effect
of z. An example of parallel component is for instance the rapid aging
effect of Alzheimer's disease. In this example z becomes the age of
the subject and y is the diagnosis for AD. The parallel component
would quantify AD's accelerated aging effect as seen through
diffusion parameters. Conversely, the orthogonal component is y's
additional effect that is orthogonal to the effect type wz. In the
above example, the orthogonal component would quantify AD's ef-
fect on the diffusion parameters that is structurally different than
that of aging.

Both the parallel and the orthogonal components can be estimated
from finite data by modifying the formulations given in Section 2.2.
We estimate the orthogonal component by extending the optimization
problem given in Eq. (1). We simply add an extra constraint and
solve

ρy⊥z ¼ max
v

ρy vð Þ;wy⊥z ¼ argv maxρy vð Þ; such that vj j2
¼ 1 and vTwz ¼ 0:

The solution of this optimization problem can be computed using
the method of Lagrange multipliers and is given by

ρy⊥z ¼
1

N−1

XN

i¼1

wT
y⊥zxi

� �
yi ð5Þ

wy⊥z ¼
XN

i¼1
xiyi−

XN

i¼1
wT

zxi
� �

yiwzXN

i¼1
xiyi−

XN

i¼1
wT

zxi
� �

yiwz

���
���
2

wy⊥z is the direction that maximizes the covariance with respect to
y and orthogonal to the effect type of z, as given by the directionwz. The
quantity ρy⊥z quantifies the size of the effect in this orthogonal
direction.

The parallel component captures the residual covariance between y
and x in thedirection of z’s effect, once z's effect has been subtracted out.
We first note that if both x and z are normalized (zero-mean and unit
variance), then ρz is also the coefficient of the linear model (wz

Tx)=
ρzz that gives the least-squares error. Based on this observation, for a
given subject we can estimate an effect vector ziρzwz that captures the
component in xi that is explained by zi. To find the parallel component
we subtract the effect vector from xi and estimate the effect strength
in the samewz direction with

ρy∥z ¼
1

N−1

XN

i¼1
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z xi−ziρzwz½ �yi

¼ 1
N−1
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i¼1
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yi−

ρz
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XN
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ð6Þ

Readers familiar with partial least squares regression (PLSR)will no-
tice the similarity between this derivation and that of PLSR. We sketch
the parallel and the orthogonal components in Fig. 1 in a toy example
with 3 different diffusion parameters x(1) ,x(2) and x(3).

We perform statistical inference for both ρy⊥z and ρy∥z using permu-
tation testing. We permute the y variables across the sample, and keep
both x and z fixed to preserve the covariance structure between these
variables and break their statistical linkswith y. For the orthogonal com-
ponent the significance values are assigned as before, i.e. based on the
number of permutations with higher covariance values

p⊥ ¼ 1
M

XM

m¼1

δ ρy⊥z ≤ρπ mð Þ yð Þ⊥z

� �
ð7Þ

For the parallel component, since the covariance values can now be
also negative, we use a two-sided test as follows:

p∥ ¼
1
M

XM

m¼1

δ ρy∥z ≤j jρπ mð Þ yð Þ∥z
���

���
� �

ð8Þ

We also note that one could formulate the regressing-out procedure
by combining ρy⊥z and ρy∥z. This approach would provide a single cor-
relation coefficient and vector. However, to dissect the result into the
parallel and orthogonal component one would have to devise a subse-
quent procedure. Here, our aim is to provide the procedure that focuses
on analyzing the multivariate aspect. Thus we have chosen to separate
the perpendicular and parallel effects from the start.



Fig. 1. Regressing-out procedure in themultivariate setting. The effect of z is regressed out
to determine the z-normalized effect of y. The axes represent the three diffusion
parameters in this toy example. The red vector is the effect of y when z is ignored and
the blue vector is the effect of z when y is ignored. The parallel and orthogonal
components of the z-normalized effect of y are shown in pale red.
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The regressing out procedure in the multivariate setting also pro-
vides a different opportunity that is decomposing the effect of a condi-
tion with respect to the other one. The parallel component quantifies
the similarities between the effects of conditions while the orthogonal
component quantifies their differences. Hence, this procedure can also
be used to compare effect of different conditions.

In Section 3 we apply the proposed procedures to test several differ-
ent hypothesis regarding non-demented aging,MCI andAD. Before that,
in the next section we would like to relate the proposed model to the
previously proposed multivariate analysis techniques for analyzing dif-
fusion data and more broadly other images in neuroimaging.
2.6. Links to existing multivariate methods

Previous research on multivariate statistical methods in neuro-
imaging and diffusion image analysis, mostly focus on whole brain
analysis, in which case all voxels are analyzed jointly rather than
analyzing each voxel independently. Proposed techniques can be
roughly categorized in two groups: exploratory and predictive. Ex-
ploratory methods mostly use variations and combinations of the
fundamental decomposition techniques Principal Component
Analysis (PCA), Independent Component Analysis (ICA), Canonical
Correlation (Variant) Analysis (CCA), PLS and tensor decomposi-
tion. The goal of these methods is to discover “patterns” of brain re-
gions, i.e. groups of voxels, that are affected by a condition of
interest either in one image modality (or a parameter map when
diffusion is considered) (McIntosh et al., 1996; McIntosh and
Lobaugh, 2004; Krishnan et al., 2011; Ouyang et al., 2014; Teipel
et al., 2007; Abdi et al., 2012) or in multiple modalities through
data fusion (Ouyang et al., 2015; Groves et al., 2011; Groves et al.,
2012; Kincses et al., 2013; Sui et al., 2011; Sui et al., 2013; Avants
et al., 2010; Chen et al., 2009). Sui et al. in (Sui et al., 2012) provides
a relatively recent review of such exploratory techniques. Explor-
atory methods do not have to be applied to image intensities di-
rectly but can also been applied to results of initial statistical
analysis, which is often done in functional MRI analysis, see for in-
stance Krishnan et al.'s review on different use cases of PLS
(Krishnan et al., 2011). Predictive methods on the other hand use
statistical learning or machine learning techniques, such as Sup-
port Vector Machines (Xie et al., 2015; Wee et al., 2011; Wee
et al., 2012), Linear Discriminant Analysis (Oishi et al., 2011),
Deep Boltzmann Machines (Suk et al., 2014) or other techniques
(Brown et al., 2012). These methods combine information coming
from different modalities and parametric maps derived from
diffusion data with the aim to predict the condition of interest,
such as diagnosis or age. The derived maps do not necessarily
have to be voxel-wise information but can also be connectivity ma-
trices, from which features are extracted and fed to the predictive
modeling.

The proposed method falls within the exploratory group. However,
it is a “voxel-based” multivariate approach and not a multi-voxel one.
Arguable the biggest advantage of multi-voxel multivariate approaches
is that they do not make the “independent voxels” assumption univari-
ate approaches make. They take into account the empirical correlation
structure between voxels, thus do not suffer from the multiple compar-
isons problem related to testing millions of voxels independently, a
great advantage. Similar to the method proposed here, multi-voxel
approaches can also fuse different imaging modalities or diffusion-
derived parametric maps, where the underlying idea is to identify pat-
terns of changes correlated across modalities and to the condition of
interest. However, multi-voxel multivariate approaches have one im-
portant drawback that limits their application in population-wide stud-
ies: localized interpretations are not possible (Friston et al., 1995; Teipel
et al., 2007). The analyses result in spatial patterns that span a group of
voxels or the entire set of voxels in some cases. Currently, there is no
way to break such maps apart and interpret various regions locally.
The pattern has to be interpreted as a whole. For instance, if a factor
shows positive values on one region and negative on the other, one can-
not interpret these two regions in isolation and the only plausible way
would be to interpret the two regions jointly. Although resampling
techniques can quantify the reliability of this pattern at each voxel
(McIntosh and Lobaugh, 2004), the reliable set of voxels still need to
be interpreted jointly. This limits the application of multi-voxel multi-
variate models.

How important is this limitation? Being able to perform localized
interpretations allow more precise characterization of regional
changes due to pathologies and disorders. This is crucial to build
the bridges between the observed changes and the underlying anat-
omy, and eventually to get a better understanding of the neurobio-
logical underpinnings of various diseases. Multi-voxel multivariate
approaches may achieve higher global sensitivity than voxel-wise
methods, however, due to their limitations they cannot be used to
characterize regional changes; they have lower regional specificity
than voxel-wise approaches. The approach proposed in this article
extends voxel-wise univariate approach by adding specificity to the
effect type. Since the resulting method is still voxel-wise, it main-
tains the desired regional specificity and allows localized
interpretations.

The closest existing work to the proposed method is Naylor et al.’s
voxel-wise multivariate analysis proposed in (Naylor et al., 2014). Sim-
ilar to our work this method combines information from different para-
metric maps derived from different imaging modalities at each voxel
using multivariate regression between modalities (dependent vari-
ables) and subject variables (independent variables). Multivariate re-
gression is not different than applying univariate regression to each
modality independently (Izenman, 2008). However, authors in this
work define multivariate contrast matrices and an appropriate unified
statistical test to leverage the higher statistical power arising from
using all the modalities jointly instead of applying univariate tests to
each modality in isolation. The main point is that one has to apply mul-
tiple comparisons correction when testing different modalities in isola-
tion and combining results. The joint test does not need such a
correction and according to the results in (Naylor et al., 2014) may
lead to higher statistical power in certain cases, especially when the pa-
rameters are strongly correlated. The resulting formulation is very sim-
ilar to the proposed multivariate effect strength. The method proposed
here extends thework of Naylor et al. and additionally allows computa-
tions of multivariate effect-types, comparisons of effect types and mul-
tivariate regressing out that disentangles the effects into orthogonal and
parallel components.

Image of Fig. 1
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3. Experiments

In all the experiments we used the publicly available dataset from
the Alzheimer's Disease Neuroimaging Initiative (ADNI, http://adni.
loni.usc.edu). Below, we present three different experiments with the
ADNI dataset to demonstrate the proposedmultivariate statistical anal-
ysis procedures. In the supplementary material (Section C) we present
additional experimental results with synthetically generated dataset
and empirical quantitatively analysis of the proposed procedures.

3.1. Participants and MRI acquisition

We constructed a sample from the ADNI dataset that included 74
controls, 97 participants with MCI and 48 participants with AD. All sub-
jects were scanned with a 3T GE Medical Systems scanner and had sag-
ittal T1-weighted 3D spoiled gradient echo images and diffusion-
weighted images (b = 1000 s/mm2, 41 directions) available at the
time of download. The scans were acquired using ADNI Core MRI and
DTI protocols (Jack et al., 2008). Group designation of control, MCI and
probable AD was determined by ADNI based on the criteria of the Na-
tional Institute of Neurological Disorders and Stroke— Alzheimer's Dis-
ease and Related Disorders Association (McKhann et al., 1984). Subjects
with Clinical Dementia Rating (Morris, 1993) of 0were grouped togeth-
er into the control group. Participants enrolled as early and late MCI
were combined into one MCI group (see ADNI 2 Procedures Manual
on www.adni-info.org for more information). Demographics are pro-
vided as part of Table 1.

3.2. Diffusion data pre-processing

The diffusion dataset was corrected for 3D head motion and eddy
current distortion using FSL (http://www.fmrib.ox.ac.uk/fsl), and trans-
lation and rotation motion estimates were obtained from the registra-
tion matrices (Yendiki et al., 2014). For individuals from the ADNI
sample with multiple available scans, we picked the one with the least
average translation motion. The motion parameters for the groups are
given in Table 1. The diffusion tensor imaging (DTI) model was fit to
the diffusion dataset using FSL, and three diffusion parameters were ex-
tracted for each voxel: axial diffusivity (λ1), radial diffusivity (λR) and
fractional anisotropy (FA). Parametric maps of each diffusion metric
were registered to a common FA template in MNI152 space using the
FSL Tract-Based Spatial Statistics procedure (TBSS) (Smith et al., 2006;
Smith et al., 2007). All parameter maps were registered using a single
deformationfield thatwas estimated using the FAmaps. Statistical anal-
yses were limited to voxels with mean FA values higher than 0.2 on a
standard tract skeleton in order to minimize partial volume and regis-
tration confounds, as described previously in (Smith et al., 2006;
Smith et al., 2007).
Table 1
Demographics for all participants.

All ADNI, n = 219

CN MCI AD P-value

Participants
(female)

74 (47) 97 (36) 48 (17) 0.0007

Age in years 73.06 (0.84) 73.82 (0.73) 74.73 (1.04) 0.4607
Education in
years

16.32 (0.32) 16.14 (0.28) 15.27 (0.40) 0.1045

MMSE (−)a 28.69 (0.25) 27.86 (0.21) 23.16 (0.31) 0.0001
Translation
motion in mm

1.33 (0.07) 1.34 (0.06) 1.32 (0.08) 0.9869

Rotation motion
in degrees

0.0063 (0.0003) 0.0063 (0.0003) 0.0066 (0.0004) 0.7900

All significant p-values are bold. Standard errors are shown in parentheses. (MMSE: Mini-
Mental State Exam; CN: control; MCI: mild cognitive impairment; AD: Alzheimer's
disease).

a Information missing for 16 CN, 20 MCI, 11 AD.
3.3. Details on analyses

We experimented with three different analyses.

1. In the first analysis we examined: (i) themultivariate effects of aging
in the control group (min age = 63, max age = 89, mean age =
73.06, std. = 5.53), (ii) the effect of Alzheimer's disease by compar-
ing AD and control groups, and (iii) the effect of mild cognitive
impairment by comparingMCI and control groups. In each comparison
we computed the multivariate effect-strength and effect-type based
on the formulations given in Section 2.2. Statistical inference was per-
formedusing permutation testing as described in Section2.3. The anal-
yses were performed at each voxel independently resulting in voxel-
wisemaps ofmultivariate effect strength and type.We also performed
univariate analysis on each diffusion parameter in isolation as is typi-
cally done in the literature. For each parameterwe computed the sam-
ple correlation coefficient and performed inference using permutation
testing. The results of the univariate analysis obtained this way are di-
rectly comparable to the multivariate results.

2. In the second analysis we examined the effect of AD when the effect
of aging was regressed out. In particular, we computed the AD effect
that was orthogonal to the aging effect and the residual effect that
was parallel to the aging effect as described in Section 2.4. The anal-
ysis was based on comparing the AD and the control groups.

3. Our last analysis examined the difference of effect-type between AD
andMCI as compared to the control group. This analysis used the re-
sults of the first analysis to identify regions where both conditions
showed significant effects. The comparison study was restricted to
these regions. The analysis and inference was performed based on
the method described in Section 2.5.

In all the statistical tests the level of significance was set at pb0.05
(uncorrected). The analyses and the statistical tests were applied to
each voxel in the white matter skeleton independently. For all analyses
10,000 permutations were computed to estimate the null-distribution.
P-value maps were thresholded at p b 0.05, binarized, dilated using
the FSL “tbss_fill” function and presented on an MNI152 T1-weighted
template for ease of visualization.

In this preliminaryworkwedid not correct formultiple comparisons
problem to show the results below. The reason for this is the lack of an
appropriate correction method that would take into account the spatial
correlation structure for skeleton based analysis, themultivariate nature
of the resulting statistics and the symmetry characteristics of the final
maps. We refrained from applying Bonferroni correction, as it is ex-
tremely conservative, and False Discovery Rate (FDR) correction be-
cause it does not take full advantage of the spatial content. However,
FDR as well as enhancing techniques such as Threshold-Free-Cluster-
Enhancing (TFCE) (Smith and Nichols, 2009) can be applied to the re-
sults as commonly done with univariate analysis. We provide FDR
corrected results in the supplementarymaterials (Appendix E) for com-
pleteness. In addition, we also used TFCE to enhance the statistical
maps, i.e. covariance strength maps, and then compute p-values over
the enhanced statistics maps using permutation testing, as often done
in neuroimaging studies (Williams et al., 2013). We later correct the
TFCE enhanced p-value maps using FDR. The FDR corrected and TFCE
enhanced and then FDR correctedmaps are provided in the supplemen-
tary materials (Appendix E). We would like to emphasize the need for
an appropriate correction method for the multiple comparisons prob-
lem and set this as a future research project.

3.4. Multivariate analysis of the effect of aging, AD and MCI

Figs. 2, 3 and 4 present the results of the univariate and multivariate
analyses of the effect of aging, AD andMCI, respectively. Figs. 2A, 3A and
4A show the p-valuemaps resulting fromunivariate analyses. Themaps
display the areas on thewhitematter skeletonwhere each diffusion pa-
rameter was significantly related to the respective conditions. Figs. 2B,

http://adni.loni.usc.edu
http://adni.loni.usc.edu
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3B and 4B show the p-values maps for the multivariate effect-strength
(computed using Eq. (3)) and the effect-types obtained with the multi-
variate PLSC-based method (wycomputed using Eq. (2)). The effect
types are only shown for voxels that had significant multivariate effect
strength. The effect-type vectors are unit-norm vectors, where each el-
ement can take positive or negative values. To map such vectors we
compute the RGB vectors as wRGB=(wy+1)/2. In each figure we pro-
vide the color code for interpreting the multivariate effect types. Since
the effect types are formulated as unit norm vectors, the color code is
drawn on a sphere and the figures show 4 projections of the sphere.
In the 4 projections view the first row shows the colors where FA
shows increase and decrease, and the second row shows the colors
where λ1 shows increase and decrease respectively. The existence of
blue hue indicates the condition is related to increasing FA values
while the lack of it to decreasing values. Similarly red hue indicates in-
creasing and its lack decreasing λ1 values. Lastly, green hue indicates in-
creasing and its lack decreasing λRvalues. We also present additional
images showing different slices of effect-type maps are shown in Sup-
plementary materials Appendix D.

The three conditions varied in the spatial extent of their significant
effects. Aging showed effects in most of the white matter, while AD ef-
fects were more constrained and MCI effects were even further
constrained. The univariate effects were similar to those described in
prior studies (Salat et al., 2010; Salat et al., 2005; Amlien and Fjell,
2014; Bartzokis et al., 2004). The significant areas for the multivariate
effect-strength contained almost all the regions that were present in
the different univariate analyses. Comparing the multivariate map
with each univariate map independently, we observe that multivariate
analysis detects effects on larger areas than each univariate map. This
is expected because the multivariate analysis captures the effect-
Fig. 2. Effects of aging on white matter: (A) univariate and B)multivariate analyses of the effect
and the multivariate effect strength on the white matter skeleton in red (p b 0.05). These effec
type is shown at each point where the effect-strength was significant and the corresponding co
purposes, four views of the color code sphere are shown.
related variations in all components jointly and therefore, the effect
strength map can be seen as a “statistical union” of univariate analyses
maps of individual metrics. Conversely, there are some regions in each
univariate map (different regions for different maps) that show effect
in the univariate analysis and not in the multivariate. This is explained
by the lack of correction for multiple corrections when testing several
univariate hypotheses. The univariate analyses are not corrected for
multiple comparisons related to testing 3 diffusion measures, while
the multivariate analysis has implicit correction for this comparison. If
the univariate maps are corrected they may detect smaller areas, as
also demonstrated in (Naylor et al., 2014). To illustrate this point for
the AD versus control group comparison we present an image in the
supplementary material (Appendix D, Fig. D8) where we corrected the
univariatemapsusing Bonferroni correction (for testing 3 components).

Therewas also great spatial variation in effect-type for all of the con-
ditions. Even though the effects of aging and AD show overlap in the re-
gions where they are significant for the effect strength, the effect-types
in these regions differed. Slight differences between the effect-type
maps for AD and MCI were also observed. These differences motivate
the following analyses presented below.

Lastly, the colors in the effect-type maps were mostly in between
colors, such as yellow, green and purple-mauve. Essential colors, i.e.
red, blue and green, are not strongly represented. There are two reasons
for this. First, the mapping between the effect-type vectors and the RGB
vectors would already result in intermediate colors when only one of
the components has an effect, e.g. when only λ1 is decreasing the
color would be cyan andwhen only FA is decreasing it would be yellow.
In addition, due to correlation between different parameters the effect-
type vectors include multiple non-zero components for most regions,
which leads to intermediate colors.
of aging in the control group. P-valuemaps show significant effects for univariate analyses
ts were dilated to surrounding areas in red for easier visualization. The multivariate effect
lor code is given on a sphere as the effect-types are given as unit vectors. For visualization

Image of Fig. 2


Fig. 3. Effects of Alzheimer's disease on whitematter: A) univariate and B)multivariate analyses of the group difference between individuals with Alzheimer's disease and non-demented
controls. The same visualization as Fig. 2 is used. P-value maps show significant effects for univariate analyses and themultivariate effect strength on the white matter skeleton in yellow
(p b 0.05). The multivariate effect types are only shown on regions with significant effect.

581E. Konukoglu et al. / NeuroImage 134 (2016) 573–586
3.5. Multivariate effects of Alzheimer's disease regressing out age

Fig. 5 shows the results from the second experiment, where the ef-
fects of Alzheimer's disease were analyzed while regressing out the ef-
fects of aging using the procedure described in Section 2.4. The
procedure subtracts the effect of aging from the data and computes
the AD effect in the remaining in two components: the orthogonal com-
ponent in the orthogonal direction to aging effect type (computed using
Eq. (5)) and the parallel component in the same direction as the aging
effect type (computed using Eq. (6)). The first two images in the top
row show the p-value maps for these components (Eqs. (7) and (8)).
In the parallel componentmap the effect can be either positive (acceler-
ated aging) or negative (decelerated aging) and these are shown in red
and blue respectively. The orthogonal component map shows the areas
where Alzheimer's disease effect has a significant component that is
orthogonal to that of aging, and thus the overall effect is different
than aging. The observed difference in these areasmight indicate possi-
ble differing structural variations related to AD compared to non-
demented aging. Almost half of the voxels showed effects both in the
parallel and in the orthogonal components. However, there were
regions where AD effect did not have an orthogonal component. To
identify these areas we removed the regions that had a significant or-
thogonal component from the map of parallel components. Third
image in the top row in Fig. 5 shows this purely parallel map. In these
areas AD's estimated effect-type was identical to that of aging. While
the regions in the orthogonalmap correspond to areaswhere AD's effect
might structurally differ from that of aging, the regions in the purely
parallel map correspond to areas where AD's effect might be the same
as aging but in different magnitude. In the second row we render the
regions with purely parallel and orthogonal components in blue and
red respectively. We further, render orthogonal and purely parallel
component in 3D and visualize it in a glass brain in Fig. 5. These 3D ren-
derings demonstrate the symmetric characteristics and extents of the
differences in effects.

Additional images of the p-value maps of the parallel and orthog-
onal components are provided in Supplementary materials Appen-
dix D, Figures D4, and D5. In the same Appendix Figure D6 we
show additional slices of the purely parallel map. The supplementary
figures demonstrate the similarity of AD's effect-type to aging
around the parahippocampal regions and the broad areas in which
a significant effect-strength with an orthogonal effect-type to aging
was found, including large bilateral portions of the internal capsule.
3.6. Differences in the effect-types of MCI and AD

Fig. 6 presents the results of comparing the effect types between AD
and MCI, using the procedure in Section 2.5. The analysis was
constrained to the regions where both MCI and AD showed significant
effects, as presented in Section 3.4. The images show p-value maps cor-
responding to the angle difference between effect types computed
using Eq. (4). There were multiple areas where the effect-types of
these conditions differed. While some areas may arise due to the lack
of voxel-wise correction for multiple comparisons, regions that show
symmetric differences across hemispheres, such as bilaterally in the
parahippocampal area, may represent real differences in effect-type.
Images of additional slices of the difference in effect-type between
MCI and AD are provided in Supplementary Figure C7.

Image of Fig. 3


Fig. 4. Effects of mild cognitive impairment on white matter: A) univariate and B) multivariate analyses of the group difference between individuals with mild cognitive impairment and
non-demented controls. The same visualization as Figs. 2 and 3 is used.
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4. Discussions

The statistical multivariate analysis procedure presented in this
study is based on partial least squares correlation analysis and extends
the work of (Coutu et al., 2014). The main advantages of the proposed
procedure are to allow voxel-wise quantification of effect-types and
through this quantification to enable testing sophisticated multivariate
hypotheses, which were not possible with previous approaches. In this
article we presented two such multivariate procedures. The first is for-
mal statistical testing of differences in type of effects within a region
across conditions, such as mild cognitive impairment (MCI) and
Alzheimer's disease (AD). The results given in Section 3.6 demonstrated
this point for the MCI–AD example. The observed differences between
effect types of MCI and AD could be based on differing histopathology
in these populations; for instance, a demyelinating effect may be ob-
served in MCI while more significant pathology in AD may involve a
substantial reduction in fiber density, leading to a different effect on
the set of diffusion parameters. Future work in comparing conditions
more distinct in histopathology, such as differentiating AD from Lewy
body dementia, will be of great interest.

The second procedure extended the regressing nuisance parameters
to the multivariate setting. The proposed approach through the
regressing-out procedure allows for removing the effects of a nuisance
condition in the multivariate setting through decomposing the effects
of a condition with respect to another one. In the example we used in
our experiments the regressing out procedure decomposed the effects
of AD with respect to the effects of aging into two components: one
that is parallel to the effect of aging and therefore has a similar effect-
type, and one that is orthogonal and therefore suggestive of a different
underlying histopathological mechanism. This enabled the statistical
determination that there is a stronger aging type of effect in AD patients
in some areas such as the parahippocampal region, in addition to show-
ing other regions that display a different type of effect due to the condi-
tion.While it is not possible to ascribe a specific biophysical mechanism
to these differing effects, and it is also possible that certain effects are re-
lated not only to the pathological changes but also to the initial baseline/
premorbid anatomy (e.g. natively highly anisotropic regions may be-
have differently than regions with greater crossing fibers due to similar
pathology), it is likely that the multivariate profile and the proposed
procedures would have a greater specificity for a single mechanism
compared to any individual measure. Future work will continue to ad-
vance the procedures demonstrated here, and work towards gaining a
better understanding of the distinct effects of various conditions e.g.
aging and AD.

In addition to the multivariate procedures regarding effect-types, as
a secondary advantage the proposed method removes the need for
correcting for multiple comparisons problem related to testingmultiple
parametric maps from one or multiple modalities. The statistical signif-
icancemaps ofmultivariate effect-strength can be loosely interpreted as
the statistical union of univariate tests. The correction for the related
multiple comparisons problem is implicit and in certain cases and
leads to higher statistical power than performing univariate tests for
each parameter independently and then correcting for the multiplicity.
This property has been analyzed thoroughly by Naylor et al. in (Naylor
et al., 2014) for their voxel-based multivariate model, which in essence
provides similar quantification to the effect-strength we propose. A
major finding in their simulation studies was that when the different
parameters are highly correlated the multivariate method improves
statistical power. Our method enjoys this characteristic in theory as
well. Similarly in this study, our proposed multivariate method demon-
strated equivalent or superior statistical results compared to univariate
testing.

Image of Fig. 4


Fig. 5.Multivariate analysis of group differences between individuals with Alzheimer's disease and non-demented controls regressing out agewith themultivariate procedure. The results
are presented in three parts: parallel component (left), orthogonal component (middle) and purely parallel component (right). Left: P-value maps show significant effects for the parallel
component on thewhitematter skeleton in red and blue, respectively corresponding to effects significantly greater and lower than the effect of aging in the same type (p b 0.05). Middle:
P-valuemaps show the significant effects for the orthogonal component in red. Right: P-valuemap shows the significant effects that only have a parallel component. The 3D renderings in
the second row visualize the orthogonal (red) andpurely parallel (blue) components. The effects were dilated to surrounding areas in red and darker blue for easier visualization. In the 3D
renderings very small clusters (size less than 20 voxels) have been removed and the remaining clusters have been smoothed for visualization. These areas display the regions where AD's
effect on the diffusion parameters was the same type as aging and different than aging.
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In the results, it was observed that the multivariate effect strength
and effect type of aging and AD were largely symmetric across hemi-
spheres. This symmetric behavior also exists in the effect-type map of
Fig. 6.Multivariate analysis comparing the effect type of the group difference between individ
difference between individuals with MCI and non-demented controls. P-value maps show si
(p b 0.05). These effects were dilated to surrounding areas in red for easier visualization. MNI
MCI but is less prominent. This symmetric behavior is not an artifact in-
duced by the method considering that all the voxels are treated inde-
pendently during the statistical analysis, and might instead reflect the
uals with Alzheimer's disease and non-demented controls to the effect-type of the group
gnificant effects for the multivariate effect strength on the white matter skeleton in red
coordinates are also provided for each image.
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underlying biological and microstructural symmetry of the brain and
the pathological processes of AD and aging. This is particularly valid in
the case of aging and AD where asymmetries in degenerative effects
are minimal or not particularly noted in comparison to other conditions
such as semantic dementia (Galton et al., 2001; Shi et al., 2009; Barnes
et al., 2005).

Previous studies have suggested regionally varying effects of AD
compared to cognitively healthy older adults when examiningmultiple
diffusion parameters (Salat et al., 2010; Lee et al., 2015). However, these
effects were not statistically integrated and therefore could not qualita-
tively distinguish among effects measured. The results here further
demonstrate statistical differences in effect type within regions across
group, for example, in the parahippocampal region in AD compared to
MCI. Two possible explanations exist for these differences. First, consid-
eringMCI as an initial stage for AD, the pathology might be changing its
alteration type on the tissue structure during its progression. Second,
the MCI group might be composed of several sub-groups some of
which show similar effect-type as AD and others not. These results pro-
vides the motivation for future work where we will investigate the use
of clustering within the multivariate analysis procedures to dissect the
MCI group and investigate the existence of sub-groups. They also
provide motivation to investigate whether the multivariate effect-type
or more simply a ratio of diffusion parameters may track the disease
better than any single diffusion parameter, providing potentially differ-
entiation of individuals with MCI who progress to AD from those who
do not.

Results suggested that parahippocampal white matter exhibits a
type of change due to AD that is similar to the type of effect seen in
aging in the same region. That is, the residual effect of AD after
regressing out the effects of aging was similar in type to aging. This
was somewhat contrary to expectations given that damage of the
parahippocampal white matter is presumed to be related and/or sec-
ondary to the medial temporal degeneration that occurs in the early
stages of AD. However, while it was possible to dissect the AD effect
and find a stronger age-like component than is normally seen in non-
demented aging, there remains a possibility that a different histo-
pathological mechanism than the one observed in non-demented
agingmay be responsible by having an effect on diffusion parameters
that is not intrinsically orthogonal to the effect of aging and may
have a stronger effect than aging in the same direction of the aging
effect-type.

In this initial work we used the tensor-model to extract parameters
from the diffusion imaging data. Despite its shortcomings, the tensor
model is widely used for population-wide studies in the neuroimaging
literature. In particular, disease-related and aging-related studies heavi-
ly rely onmetrics derived from the tensor-model, such as Fractional An-
isotropy (FA). However, we would like to emphasize that the proposed
method is generic and can be applied to different multi-parametric dif-
fusion signals including the entire tensor extracted in theDTImodel and
othermore realistic diffusion imagingmodels including diffusion kurto-
sis imaging and possibly an entire orientation distribution function
(ODF) representation. In this study, we focus our experiments on the
tensor-model and in particular on the metrics derived from this model
to demonstrate the advantages of the proposed method for a wide
range of studies, including retrospective studies, which might only
have limited diffusion imaging data, as well as to prospective studies
that plan to implement state-of-the-art diffusion acquisitions to support
more realistic diffusion models. Furthermore, although we apply the
proposed method on diffusion imaging data, the method is not specific
to diffusion data. The proposed analysis can be easily extended to other
multi-parametric imaging data, which might include images coming
from different modalities or MR spectroscopy.

In terms of computational burden of the presented work, the main
bottleneck is the permutation testing. Our experiments included 219
study participants and each of them had 116,474 data points on the
TBSS skeleton, with each data point represented by three diffusion
metrics. The analysis that took the longest timewas the regression pro-
cedurewith 1500 permutations and it took 92min on a single core of an
Intel Xeon X5482 CPU at 3.20GHz. Although this is a substantial compu-
tational load, we believe it is tolerable for statistical analysis in neuroim-
aging studies. The computational load can be decreased significantly if
one replaces the permutation testing with parametric tests, which
need to be derived specific to each procedure. In this work we aimed
to take a generic approach and used permutation testing that can be ap-
plied to all the different procedures.

The proposed procedure also has limitations. First of all, the analysis
does not explicitly account for the dependencies between the diffusion
parameters. For instance, fractional anisotropy is closely related to the
radial and axial diffusivities. From a technical perspective there are no
limitations caused by such dependencies. However, as the dependence
increases, the contributions of the additional dependent dimensions
will decrease in the multivariate analysis. In the extreme case where
all variables are affine transformations of each other, the proposedmul-
tivariate method will reduce to univariate analysis and therefore the
procedures will not be relevant. Modeling existing dependencies and
possibly reducing the dimension of the parameter space should ideally
provide higher specificity for differentiating between conditions be-
cause lower dimensionality will yield higher statistical power. In the
current work, we preferred not to perform such dimensionality reduc-
tions on the diffusion parameters. The motivation behind this choice
was to allow for interpretations of the effect-types in terms of parame-
ters that are intuitive and well understood in the literature. We would
also like to note that the dependency between parameters is taken
into account in the statistical tests through appropriate permutation
schemes.

The second limitation is that the proposed method does not take
into account the spatial context and the empirical correlation struc-
ture of the parametric maps across voxels. In this first work, we pres-
ent a voxel-wise approach to facilitate localized interpretability. This
approach can be extended by post-hoc clustering or using unsuper-
vised multi-voxel approaches as a preceding step. In particular, as
is commonly done in analyzing functional MRI, one can use an unsu-
pervised decomposition technique to define data-driven regions of
interest. The proposed analysis can then be performed on these
pre-defined regions. Both of these extensions are subjects of our fu-
ture research.

The third limitation is the lack of appropriate voxel-wise correction
for multiple comparisons. In the main text we provide results without
any correction and in the supplementary materials we present
results with FDR both on the raw p-value maps and on the TFCE en-
hanced maps. However, currently we do not have an ideal method to
deal with this problem that arises due to performing statistical tests in
thousands of voxels on the white matter skeleton. In future work we
intend to devise an appropriate correction method that would take
into account spatial correlations and the symmetry across the
hemispheres.

Finally, it is currently difficult to directly relate the diffusion param-
eters and how conditions affect them to the underlying biological
changes, and therefore more studies correlating histology with MRI
are needed. The RGB visualization used in the article is helpful in appre-
ciating the spatial variations and also for visually comparing effect-types
across conditions. However, we acknowledge that this method is not
ideal and cannot be easily extended to studies with higher number of
parametric maps. Furthermore, when parameters are strongly correlat-
ed to each other, the resulting effect-type maps will have intermediate
colors, which might make visual interpretations more challenging. Our
future research focuses on better visualization techniques for suchmul-
tivariate analyses.

The presented study was cross-sectional. Application of the pro-
posed multivariate approach in longitudinal studies may be useful in
better characterizing the progression of the Alzheimer's disease as
well as other pathologies. Furthermore, we constrained our study to
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the white matter. As the dMRI acquisition technologies evolve the pro-
posed multivariate techniques can be useful for characterizing changes
of the graymatter. Lastly, in the current article we presented regressing
out one variable as the initial step. The natural extension of the
regressing out procedure would be to include multiple nuisance vari-
ables. The PLSC roots of the proposed method and the optimization
framework that we based regressing-out procedure on allows for such
extensions. This is the focus of our future research.
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Appendix A. Supplementary data

Data used in the preparation of this article were obtained from
the Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003 by the National In-
stitute on Aging (NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Administration (FDA), pri-
vate pharmaceutical companies and non-profit organizations, as a $60
million, 5-year public-private partnership. The primary goal of ADNI
has been to testwhether serialmagnetic resonance imaging (MRI), pos-
itron emission tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early Alzheimer's
disease (AD). Determination of sensitive and specific markers of very
early AD progression is intended to aid researchers and clinicians to
develop new treatments and monitor their effectiveness, as well as
lessen the time and cost of clinical trials.

The Principal Investigator of this initiative isMichaelW.Weiner,MD,
VAMedical Center and University of California— San Francisco. ADNI is
the result of efforts of many coinvestigators from a broad range of aca-
demic institutions and private corporations, and subjects have been re-
cruited from over 50 sites across the U.S. and Canada. The initial goal of
ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-
GO and ADNI-2. To date these three protocols have recruited over 1500
adults, ages 55 to 90, to participate in the research, consisting of cogni-
tively normal older individuals, people with early or late MCI, and peo-
ple with early AD. The follow up duration of each group is specified in
the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally re-
cruited for ADNI-1 and ADNI-GO had the option to be followed in
ADNI-2. For up-to-date information, see www.adni-info.org. Supple-
mentary data associated with this article can be found in the online
version, at doi: http://dx.doi.org/10.1016/j.neuroimage.2016.04.038.
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