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Abstract: Recent developments in analysis methods for event-related functional magnetic resonance
imaging (fMRI) has enabled a wide range of novel experimental designs. As with selective averaging
methods used in event-related potential (ERP) research, these methods allow for the estimation of the
average time-locked response to particular event-types, even when these events occur in rapid succession
and in an arbitrary sequence. Here we present a flexible framework for obtaining efficient and unbiased
estimates of event-related hemodynamic responses, in the presence of realistic temporally correlated
(nonwhite) noise. We further present statistical inference methods based upon the estimated responses,
using restriction matrices to formulate temporal hypothesis tests about the shape of the evoked responses.
The accuracy of the methods is assessed using synthetic noise, actual fMRI noise, and synthetic activation
in actual noise. Actual false-positive rates were compared to nominal false-positive rates assuming white
noise, as well as local and global noise estimates in the estimation procedure (assuming white noise
resulted in inappropriate inference, while both global and local estimates corrected false-positive rates).
Furthermore, both local and global noise estimates were found to increase the statistical power of the
hypothesis tests, as measured by the receiver operating characteristics (ROC). This approach thus enables
appropriate univariate statistical inference with improved statistical power, without requiring a priori
assumptions about the shape or timing of the event-related hemodynamic response. Hum. Brain Mapping
11:249–260, 2000. © 2000Wiley-Liss, Inc.
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INTRODUCTION

Event-related analysis methods greatly extend the
range of questions and hypotheses that can be ad-

dressed using fMRI. Importantly, event-related
methods can be applied to experiments where cog-
nitive or perceptual events occur in a randomized
order, thus eliminating potential confounding fac-
tors such as set or strategy effects [Buckner, 1996;
Rosen et al., 1998]. Furthermore, the advent of rapid
presentation event-related analysis methods [Dale
and Buckner, 1997; Clark et al., 1998; Burock et al.,
1998; Dale, 1999] makes it possible to use identical
experimental designs with fMRI, electroencephalog-
raphy (EEG) and magnetoencephalography (MEG),
thus facilitating the integration of different imaging
modalities [Dale et al., 2000].
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In order to estimate the event-related fMRI re-
sponses, or to draw statistical inference from event-
related fMRI experiments, existing methods typically
assume a particular form, or some limited set of basis
functions, for the hemodynamic response [Cohen,
1997; Josephs et al., 1997; Zarahn et al., 1997b]. While
the general linear model (GLM) framework used in
these methods allows for the use of a complete, or-
thonormal basis set spanning the space of possible
responses, most often only one component or a partial
set is used. Imposing any assumed shape on the he-
modynamic response necessarily produces biased es-
timates of the true response if the assumed responses
do not span the space of all possible actual responses.
Given that neuroimaging studies have only begun to
probe the large space of possible behavioral, percep-
tual, cognitive, and pharmacological responses, it may
be premature to presuppose that current models are
universally valid over all brain locations and stimuli.
Assuming a particular shape in the GLM leads to three
potential problems for interpreting neuroimaging
studies: 1) Statistical inference based on the estimated
responses is inappropriate because the data does not
meet the assumptions of the model, 2) interesting
responses that are unlike typical sensory responses
may not be detected, and 3) differences between the
estimated hemodynamic responses elicited by differ-
ent stimuli are difficult to interpret due to the biased
nature of the estimated response timecourses.

Here we present a practical framework for obtain-
ing statistically efficient, unbiased estimates of event-
related hemodynamic responses in the presence of
temporally correlated noise. Our estimates are finite
impulse response (FIR) estimates in that the hemody-
namic response is assumed temporally finite. We fur-
ther expand on the use of the F-test for drawing sta-
tistical inference in event-related fMRI [Friston et al.,
1995b; Josephs et al., 1997]. Specifically, we use linear
restriction matrices to incorporate various forms of
knowledge about the response without biasing the
underlying estimation. The linear restriction matrices
are formally equivalent to the F contrast used in
SPM99 and can be thought of as ‘multidimensional’
contrasts [Andrade et al., 1999]. These restriction ma-
trices are different from traditionally used contrast
vectors, which are a subset of restriction matrices, in
that they are used to impose explicit temporal struc-
ture in the hypothesis test. The appropriateness and
power of these estimation and inference procedures
are assessed using both simulated and actual noise
data.

Several studies have assessed the validity of the
GLM in terms of its ability to produce experimental

false-positive rates equivalent to theoretical false-pos-
itive rates [Zarahn et al., 1997a; Purdon and Weisskoff,
1998]. If the statistical hypothesis test is inappropriate,
then it will incorrectly label too many (or too few)
voxels as activations for a given significance level.
Inference will, in general, be inappropriate when it
does not account for the autocorrelations of the un-
derlying noise. Worsley and Friston [1995] demon-
strated a method that accounted for autocorrelations
in fMRI signals; however, they concluded that estimat-
ing the true autocorrelations in fMRI noise was im-
practical and instead chose to filter all data with a
known smoothing function. This approach, as stated
in the above work, is not optimal in that it does not use
the true autocorrelations of the noise. Zarahn et al.
[1997a] found that including in the GLM an empiri-
cally determined smoothing function and model of
intrinsic fMRI noise autocorrelation could bring false-
positive rates to expected theoretical levels. One po-
tential problem with the method used in this study is
that the empirically derived noise model was gener-
ated from runs not involved with the activation task
and that the data was taken over multiple voxels,
multiple experimental runs, and multiple subjects—a
so-called ’global’ noise estimate. It has been shown
that fMRI noise may not be wide-sense stationary
(WSS, a process having a constant mean and covari-
ance structure over time) over these three dimensions,
and thus it may be inappropriate to use a global noise
model derived from a different dataset to draw infer-
ences about activation in a particular voxel, run, and
subject [Purdon and Weisskoff, 1998; Purdon et al.,
1998]. One of the goals of the present study was to
determine if a global noise estimate is appropriate or if
a local noise estimate computed for the same voxel as
the activation is needed to obtain correct false-positive
rates. Unlike previous studies, both the local and
global noise estimates were obtained from the same
data sets used to estimate the hemodynamic re-
sponses.

METHODS

MRI techniques

Noise data sets were collected from 8 healthy sub-
jects (5 men, 3 women) using a 3-T magnetic resonance
imager (General Electric/Advanced NMR). For each
subject, 16 slices were selected for the functional and
anatomical echo-planar acquisitions such that the en-
tire brain was acquired. High-resolution T1-weighted
inversion-recovery echo-planar image were acquired
for anatomic alignment (TR 5 22 sec, TI 5 1,100 msec,
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1.5625 mm in-plane resolution). An automated echo-
planar shim procedure was run to improve Bo mag-
netic field homogeneity [Reese et al., 1995]. T2*-
weighted functional images were acquired using an
asymmetric spin echo sequence sensitive to BOLD
contrast (TR 5 2 sec, TE 5 30 msec, a 5 180°, 3.125
mm in plane resolution, 7 mm thickness). Functional
images were acquired within runs of 128 samples for
each subject. The room was dim, and subjects were not
presented any external stimuli while being imaged.
Four discarded samples were acquired prior to each
functional run to achieve steady-state magnetization.

Response estimation

The goal of this section is to present a procedure for
calculating unbiased and statistically efficient esti-
mates of the underlying hemodynamic responses as-
sociated with event-related fMRI experiments. We as-
sume that the BOLD fMRI signal corresponds to the
output of a linear time-invariant (LTI) system with a
finite impulse response as suggested in several studies
[Boynton et al., 1996; Dale and Buckner, 1997; Dale,
1999]. Therefore, the linear discrete-time model for the
fMRI signal is as follows

y@n# 5 x1@n#ph1@n# 1 x2@n#ph2@n#

1 . . . 1 xi@n#phi@n# 1 w@n# (1)

where y is the fMRI signal at a particular voxel, xi is
the binary stimulus sequence for the ith trial type, hi is
the hemodynamic response of the ith trial type, and w
is a Gaussian noise sequence with arbitrary covariance
matrix Lw. It should be noted that any other typical
’covariates’ could be included in the model but are left
out for simplicity. An equivalent familiar expression
for (1) is

y 5 Xh 1 w (2)

where y is the vector of all observed data, X is the
convolution matrix for all trial types representing the
experimental design, h is a vector of all hemodynamic
responses to be estimated, and w is a Gaussian noise
vector. If the covariance Lw is known, the maximum
likelihood (ML) estimator of the hemodynamic re-
sponse ĥML could be computed according to

ĥML 5 ~XTLw
21X!21XTLw

21y. (3)

Note that this approach can also be used to estimate
the hemodynamic response functions with higher
temporal resolution than that of the measured fMRI
signal, by jittering the timing of the events relative to
the repetition time (TR) of the fMRI acquisition, as
described in [Dale, 1999].

The ML estimate for a linear model with Gaussian
errors is optimal in the sense that it has the smallest
variance among all unbiased estimates of the re-
sponse. This estimator is sometimes called the Aitken
estimator (among other names) and is a special case of
the generalized least-squares estimator that one ob-
tains when the data and model are whitened on the
basis of the known autocorrelations among the errors.
However, as discussed above, the noise covariance Lw
is unknown and potentially varies across voxel, exper-
imental run, and subject. Thus, (3) cannot be used
directly until an estimate of the noise covariance is
computed. Additionally, we wish to estimate the noise
from the same task data and not use separate noise
data sets that may not be representative of the noise in
the particular voxel.

Estimation of the noise covariance within the
same activation dataset

To estimate the noise covariance within the same
activation data, first the ordinary least squares (OLS)
estimate of the hemodynamic response is computed

ĥOLS 5 ~XTX!21XTy (4)

The OLS estimator is an unbiased but inefficient esti-
mate of the underlying hemodynamic response. Ad-
ditionally, appropriate statistical inference cannot be
drawn from (4) because the noise is nonwhite and
unknown. Since ĥOLS is an unbiased estimator, the
underlying noise structure is estimated from the re-
sidual error of the estimates given by e 5 Y 2 XĥOLS.
Note that the covariance structure of the residuals for
a finite number of samples is not identical to the true
covariance of the noise; however, it has been shown
that statistically consistent covariance estimates can be
derived from the residuals for various noise processes
[Greene, 1993].

It is helpful (although not necessary) to have a pa-
rameterized model of the noise process in order to
estimate the covariance matrix L̂W from the residuals.
The power spectral density of fMRI noise has been
shown to contain a component that decays with fre-
quency and a component that is relatively flat for all
frequencies [Weisskoff et al., 1993; Friston et al., 1994;
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Boynton et al., 1996]. There is some debate whether
the correlations in the noise are physiological in origin
or induced by the measurement. For our purposes, we
simply desire a robust description of the process with
few parameters. We adopt a model for the noise sim-
ilar to previously proposed models that assume that
the noise can be modeled as the superposition of a
white Gaussian noise process and a correlated com-
ponent [Zarahn et al., 1997a; Purdon and Weiskoff,
1998]. Assuming that the noise process is wide-sense
stationary, our model covariance function (Kww[n]) of
the total noise process takes the form

Kww@n# 5 s2~ld@n# 1 ~1 2 l!r unu!, 1 $ a, l $ 0 (5)

We sought estimates of the parameters l and r in
order to form the estimated covariance matrix

L̂w 5 Lw~l̂, r̂!

5 s23
K̂ww@0# K̂ww@1# · · · K̂ww@R#
K̂ww@1# K̂ww@0#

······ K̂ww@0# K̂ww@1#
K̂ww@R# · · · K̂ww@1# K̂ww@0#

4
It should noted that an estimate of s2 is not needed to
form L̂w because s2 is estimated from the residual
errors of the fit. A simple linear estimate of l and r can
be formed from the sample covariance function by
first normalizing it such that K̂ww[0] 5 1. The model of
the sample covariance function for lags greater than
zero is then

K̂ww@n# 5 ~1 2 l!rn, R . n . 0 (6)

which can be transformed to the ’linear’ form

ln~K̂ww@n#! 5 ln~1 2 l! 1 n ln r (7)

such that the OLS estimate of the transformed noise
parameters is

û* 5 F Est. ln~1 2 l!
Est. ln r G 5 ~ATA!21ATk

k 5 F ln K̂ww@1#
···

ln K̂ww@R#
G , A 5 F 1 1

···
···

1 R
G (8)

Maximum likelihood or other estimation techniques
can be used to estimate the parameters in L̂w; how-

ever, solutions to their equations require iterative,
nonlinear minimization routines that are ill suited to
practical fMRI data processing. In testing these proce-
dures we made two different classes of noise param-
eter estimates. The first was a spatially global noise
estimate where the time courses from all voxels within
a particular brain slice were used to estimate one set of
parameters. The same global noise estimate was used
to estimate the responses in all voxels for that slice.
This method assumes that the noise process is spa-
tially WSS across the slice. The second method was a
spatially local estimate where a given voxel and its
eight nearest neighbors contributed to the estimated
noise parameters. For this method every location in
the brain had a potentially different set of noise pa-
rameters. In both methods, activation and noise were
estimated within the same datasets. Additionally, vox-
els outside of the brain did not contribute to the noise
estimates.

It is of course possible that K̂ww[n] could be neg-
ative for particular values of n, in which case the log
transform in (7) is not defined. For the global noise
estimates, no negative estimated autocorrelations
where observed at lags less than 10 samples for
all data sets. The local estimates were more vari-
able, thus when the estimated correlations at lags
greater than zero were sufficiently small, we as-
sumed the noise was white. Specifically, when
K̂ww[0]/K̂ww[1].15, the noise process was consid-
ered to be white and no additional parameters were
estimated. Lags up to 5 were used for local noise
estimates, with voxels still having negatives auto-
correlations considered to be white. It should be
noted that noise estimates with the constraints
above will be biased; however, we demonstrate that
this bias is not significant using simulated and fMRI
noise data sets.

Once L̂w is estimated, the original data is used to
compute the so-called feasible generalized least
squares (FGLS) estimate of the hemodynamic re-
sponses according to

ĥFGLS 5 ~XTL̂w
21X! 2 1XTL̂w

21y (9)

The FGLS estimator has the same asymptotic proper-
ties as the ML estimator under very general condi-
tions; specifically, it will be an asymptotically efficient
estimate given that L̂w is a consistent estimator of the
noise. Depending on the mismatch between the as-
sumed and actual autocorrelations (9) will have nearly
the minimum variance. It is interesting to note that our
FGLS estimator is the same as using an OLS estimator
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having first whitened the data and model with an
estimate of the noise autocorrelations. A similar ap-
proach was first proposed by Bullmore et al. [1997]
using a first-order autoregressive noise model and
later by Purdon and Weisskoff [1998] using an autore-
gressive moving average model, although neither
method is directly applicable to event-related re-
sponse estimation.

Activation detection based on unbiased
estimated responses

In order to generate activation maps, statistical in-
ference must be drawn from the estimated hemody-
namic responses. Because we did not assume an a
priori functional shape but rather estimated the fMRI
response directly, previously used statistical methods
[Worsley and Friston, 1995] are not immediately ap-
plicable. Specifically, statistical inference from ĥFGLS is
based on the generalized hypothesis test

H0:Rh 5 q

H1:Rh Þ q (10)

where R is a restriction matrix and q is a deterministic
vector typically equal to an appropriately sized col-
umn vector of zeros. R represents any linear transfor-
mation on the set of hemodynamic responses. It is
important to note that h is the set of actual hemody-
namic responses and not a vector of potentially unre-
lated covariates. The actual shape of h is important in
defining the particular statistical test because its
power is a function of the different knowledge incor-
porated into R. The F statistic is used to draw infer-
ence from (7), specifically

F@J, n 2 K#

5
~RĥFGLS 2 q!T@ŝ2R~XTL̂w

21X!21RT#21~RĥFGLS 2 q!

J (11)

where J is the number of rows in R, n and K are the
number of rows and columns in X, respectively, and
ŝ2 is the standard error estimated from the whitened
residual error e* 5 Lw

21/2(y 2 XĥFGLS) where Lw
21/2 is

computed from the Cholesky factorization of Lw
21 and

can be considered the matrix representation of a
causal whitening filter.

Although our FGLS estimator is unbiased, the sta-
tistic given by (11) may be biased in relation to the F
distribution. This bias enters as a result of any discrep-

ancy between the estimated and the true autocorrela-
tion structures. We have addressed this potential bias
in terms of false-positive rates, using the above statis-
tic, through simulated data. We show below that if
any bias is incurred it is not substantial for both sim-
ulated and real fMRI noise.

We specifically tested these statistical techniques
setting q 5 0 and using three different R matrices,
each imposing different restrictions in the hypothesis
test:

Test 1: R 5 I

Test 2: R 5 F 0 · · · 1 · · · 0 0 0
0 0 · · · 1 · · · 0 0
0 0 0 · · · 1 · · · 0

G
Test 3: R 5 hIDEAL

T

Test 1 makes no assumptions about the specific
waveform of the hemodynamic response. It is the
most general and should be sensitive to any hemo-
dynamic response form. The rationale of Test 2 is to
draw inference based on the predicted range of
possible latencies of the maximal hemodynamic re-
sponse amplitudes. This test assumes that there is
knowledge of when the peak values will occur, al-
though it does not assume any particular shape.
Test 3 assumes that the exact shape of the hemody-
namic response is known and is akin to a matched
filter. Because hIDEAL

T ĥFGLS is scalar for Test 3, the
F-statistic in equation 11 will reject whenever an
analogously defined t-statistic rejects for this case.
The different tests, in addition to being more or less
sensitive to the shape of the hemodynamic response,
make different use of the statistical information in
ĥFGLS. It is important to note that regardless of the
restrictions imposed, statistical inference will be ap-
propriate (theoretical false-positive rates will equal
nominal false-positive rates); however, failure of the
restrictions to meet the hypothesis test will result in
decreased power to detect the actual hemodynamic
responses.

To summarize the algorithm for estimating and de-
tecting hemodynamic responses: 1) Compute ĥOLS

(unbiased, but inefficient); 2) From residual error e 5
y 2 XĥOLS, estimate L̂w 5 Lw(l̂,r̂) (global and local);
3) Compute ĥFGLS (asymptotically efficient); and 4)
Compute F-statistic for particular restrictions R.

r Event-Related fMRI Signals r

r 253 r



ANALYSIS OF FALSE-POSITIVE RATES

Methods

The goals of this experiment were (1) to determine
the effect of nonwhite noise on the false-positive error
rate for three different hypothesis tests and (2) to
contrast the performance between spatially global and
local noise estimates. We examined both synthetic
noise with known covariance structure and actual
fMRI noise. The actual noise was collected as de-
scribed in the MRI methods section above. The syn-
thetic fMRI noise data sets were generated from a
noise process (5) with model parameters l5 0.75 and
r 5 0.88, values observed to be typical for a 2-sec
sampling interval experiment on our 3.0T scanner. The
synthetic datasets consisted of 64 3 64 spatial points
and 128 time points, consistent with the dimensions of
the actual noise data collected. Each synthetic time
course was generated independently and from the
same process.

To test the estimation and inference procedures dis-
cussed above, we used a pseudo-excitation sequence
to generate synthetic activation data, from which we
could estimate the hemodynamic response and corre-
sponding residual error. The assumed excitation se-
quence consisted of a single event type, and the se-
quence of 60 events was randomized as described in
[Dale, 1999] to optimize estimation efficiency. The
mean stimulus onset asynchrony (SOA) was 4 sec.

We tested the error rate of our statistical test by first
transforming the F-statistic to a P-value (the smallest
significance level (a) at which our test rejects the null
hypothesis). For an appropriate hypothesis test, the
distribution of the P-value given that the null hypoth-
esis is true is uniform [0,1]. Noting this fact, we com-
pared the actual false-positive rate, Prob(P-value , a),
of our tests to the nominal false-positive rate (a) for
0.0001 , a , 0.05 in steps of 0.0001.

Results

The actual false-positive rates are plotted against the
nominal false-positive rates for the synthetic noise
data in Figure 1. Test 1 (no assumptions, Fig. 1A) and
Test 3 (assumed shape, Fig. 1C) have similar error
rates. The error rates for the two tests when the noise
was not estimated (dashed lines) are significantly
greater than the nominal rates as indicated by values
above the shaded region. For all tests, including either
a local or global estimate of the noise in the FGLS
estimator and F statistic brought the actual false-pos-
itive rates very close to nominal values, although for

the synthetic noise with the same covariance structure
the global estimate performed slightly better. The er-
ror rates of Test 2 (assumed peak values, Fig. 1B) are
relatively unaffected by nonwhite noise, and in con-
trast to Tests 1 and 3, not including a noise estimate in
Test 2 resulted in false-positive rates below nominal
level as indicated by values in the shaded region.

The Test 1 P-value histograms for the synthetic
noise illustrate the actual P-value distributions (Fig. 2).
An appropriate test should yield the uniform distri-
bution. Not including noise estimates (Fig. 2A) re-
sulted in greatly exaggerated P-values. The false-pos-
itive rates deviate further from nominal values as the
p-value decreases. Figures 2B,C are relatively flat, in-
dicating that the noise was appropriately estimated
globally and locally, and that the test is valid.

The actual false-positive rates are plotted against the
nominal false-positive rates for the actual fMRI noise
data in Figure 3. The curves were computed from all 8
subjects, each with 16 slices of noise data encompass-

Figure 1.
False-positive rates for three tests and three noise estimates vs.
the nominal significance level for synthetic noise data. A: Test 1
(no assumed form). B: Test 2 (assumed peak values). C: Test 3
(assumed hemodynamic shape). In all tests, not estimating the
noise parameters produced false-positive rates significantly differ-
ent from nominal values, although Test 2 was least sensitive.
Values above the shaded region are inappropriately high, while
values in the shaded region are too low.

r Burock and Dale r

r 254 r



ing the entire brain volume. Tests 1 and 3 (Fig. 3A,C)
again exhibit similar false-positive rates. Not account-
ing for the noise structure resulted in error rates sig-
nificantly greater than nominal values at all signifi-
cance levels. Additionally, the percentage deviation
from the nominal values increases with decreasing
significance level. In the worst case, for a 5 0.0001, the
error rate of Test 1 with no noise estimate is approxi-
mately 200 times greater than the nominal rate. The
local noise estimates for Test 1 and 3 brought the error
rates closer to nominal values than the global estimate,
although both are slightly elevated. Like with syn-
thetic noise, Test 2 (Fig. 3B) is the least sensitive to
nonwhite noise, and both global and local noise esti-
mates bring false-positive rates to the nominal rates.

EVALUATION OF STATISTICAL EFFICIENCY
(POWER)

Methods

The goals of this experiment were 1) to determine
the effect of nonwhite noise on the statistical power of
three different hypothesis tests and 2) to contrast the

performance between spatially global and local noise
estimates. We added synthetic activation to the eight
actual noise data sets. The activation was created by
convolving the random interval stimulus sequence
described in the previous section with an assumed
ideal hemodynamic [Boynton et al., 1996; Dale and
Buckner, 1997]. Thus, our simulated signal/activation
corresponded to the output of a LTI system. Since
fMRI responses are usually measured in percent sig-
nal change, we scaled our hemodynamic responses to
a 1% signal change (a typical value for fMRI data) on
a voxel by voxel basis. We randomly selected approx-
imately half of the voxels within brain and added the
synthetic activation only to these voxels. We estimated
the receiver operating characteristics (ROC) of our
tests by measuring the fraction of true-positive and
false-positive test outcomes over all subjects and all
brain slices [Xiong et al., 1996].

Figure 2.
P-value histograms for Test 1 (no assumptions) and three noise
estimates. The histograms should be flat if inference is appropriate.
A: No noise estimate. B: Global estimate. C: Local estimate. Not
including noise estimates (A) produces more extreme p-values
than expected. B and C are relatively flat, indicating that the noise
was appropriately estimated and that the test is valid.

Figure 3.
False-positive rates for three tests and three noise estimates vs.
the nominal significance level for actual noise data. A: Test 1 (no
assumed form). B: Test 2 (assumed peak values). C: Test 3
(assumed hemodynamic shape). Similar to the synthetic data, not
estimating the noise parameters produced false-positive rates sub-
stantially greater than nominal values, although Test 2 was least
sensitive. The false-positive rates were slightly greater than nom-
inal rates even when the noise was estimated. Values above the
shaded region are inappropriately high, while values in the shaded
region are too low.
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Results

Within-test comparisons of the ROCs are shown as
a function of the noise estimates in Figure 4. Test 1 (no
assumptions, Fig. 4A) and Test 3 (assumed shape, Fig.
4C) show similar performance with regard to noise
estimate. In Figure 4A, the no estimate (dashed line)
ROC begins at false-positive rate a 5 0.02 because that
was the smallest actual false-positive rate measured
given the smallest tested nominal a 5 0.0001. For all
tests, estimating the noise locally (dash-dot) yields the
greatest statistical power for most significance levels.
The performance of Test 2 (assumed peak values) is
relatively insensitive to the particular noise estimate.
For this test, the no estimate (dashed) ROC is slightly
better than the global noise estimate (solid).

Within-noise estimate comparisons of the ROCs are
shown as a function of the hypothesis tests in Figure 5.
When the noise is not estimated (Fig. 5A), Test 2 and
3 have very similar ROCs, and both significantly out-
perform Test 1 (125% greater true-positive rate at pos-
itive rate a 5 0.02). The global (Fig. 5B) and local (Fig.
5C) noise estimate ROCs are similar. Test 3 performs

best for all false-positive rates, followed by Test 2 and
lastly Test 1, which exhibits the poorest performance.

Figure 6 summarizes the ROCs for all tests and all
noise estimates. Test 3 (triangles) with local (dash-dot)
noise estimates has the best overall performance for all
false-positive rates. For example, the true-positive rate
for this test at false-positive rate a 5 0.001 is 540%
greater than that of Test 1 (circles) with a global (solid
line) noise estimate.

DISCUSSION

We have demonstrated straightforward procedures
for making efficient estimates of event-related fMRI
responses and drawing appropriate statistical infer-
ence from these estimates. The key features of this
method are that it avoids heuristic smoothing of data,
does not require any assumptions about the response
shape to achieve adequate sensitivity, is theoretically
asymptotically efficient, and does not require extra
data collection to define noise and assumed response.
Similar to previously analyzed block-design statistical

Figure 5.
Within-noise estimate comparisons of receiver-operating-charac-
teristics (ROCs) as a function of test for actual fMRI noise data
with synthetic activation A: No estimate. B: Global estimate. C:
Local estimate. Test 1 (no assumptions) performs significantly
poorer than the two test with assumptions for all noise estimates.
Test 3 (assumed form) has the best performance for all noise
estimates.

Figure 4.
Within-test comparisons of receiver-operating-characteristics
(ROCs) as a function of noise estimate for actual fMRI noise data
with synthetic activation A: Test 1 (no assumed form). B: Test 2
(assumed three peak values). C: Test 3 (assumed shape). For Tests
1 and 3, the local noise estimate performs best, followed by the
global estimate. Test 2 performance is least sensitive to the noise
estimate.
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methods [Zarahn et al., 1997a; Purdon and Weiskoff,
1998], it was shown that not including the covariance
structure of the noise in the statistical test resulted in
actual false-positive rates far exceeding assumed rates.
The percentage deviation from the expected error
rates increased with decreasing nominal P-values. In
the worst case observed, false-positive rates were 200
times greater than expected. Finally, estimation using
the FGLS estimator resulted in more powerful statis-
tical tests that were better able to detect fMRI activa-
tion as demonstrated by ROC analysis with synthetic
activation in additive fMRI noise.

Both global and local noise estimates brought actual
false-positive rates close to the assumed false-positive
rates, although the local noise estimate performed
slightly better than the global estimate. This result
implies that the noise process in not spatially wide-
sense stationary (WSS); however, the departure from
WSS is not so severe that the global estimate is wholly
inappropriate. It has previously been suggested that
using the across-voxel global estimate of the noise
may be inappropriate for correcting false-positive
rates [Zarahn et al., 1997a; Purdon et al., 1998]. The
previous methods using global noise estimates dif-
fered from ours in that their ’global’ estimate of the
noise was across multiple slices and subjects while our

’global’ estimate was only over a particular slice.
There was little difference between false-positive rates
for our global and local estimates. Clearly, including
some estimate of the noise is necessary in order to
bring false-positive rates closer to those assumed by
the statistical test. As a practical consideration, the
computation time of the statistics and estimates using
the local noise estimate was several orders of magni-
tude greater than when using the global estimate. A
compromise between the global and local noise esti-
mates could be to compute a small subset of global
estimates across the slice. Our results indicate (not
shown) that the noise parameter r did not vary much
over the slice and that a set of approximately four
noise estimates with different noise parameters a
would characterize the noise process over the entire
brain well without significantly increasing computa-
tion time.

In this work we presented a practical method for
estimating the parameters of an autoregressive mov-
ing average model thought to be representative of
fMRI noise. Our noise estimation procedure is biased
in that we had to avoid negative valued sample auto-
correlations, although empirically this bias did not
have a significant effect as demonstrated by its use on
simulated and actual data. We chose this technique
with the intent of avoiding iterative fitting procedures,
which when applied on a voxel by voxel basis result in
computational demands that most laboratories would
find impractical. If computational demands are not an
issue, then more robust iterative methods should be
considered.

Although our tests with noise estimates for actual
fMRI data had false-positive rates close to the nominal
values, the tests did not reach nominal values exactly.
This result indicates that either the noise model is
incorrect or that fMRI data includes a global signal
that is not related to stimulus induced activation. It is
likely that both of these explanations contribute to the
slight departures from assumed false-positive rates.
The noise in the fMRI signal is the result of physio-
logical processes (e.g., cardiac and respiratory), mo-
tion artifacts, as well as various forms of instrument
measurement noise; and it is thus unlikely that our
simple model explains the correlation structure ex-
actly. Also, it has been demonstrated that the presence
of a global signal in fMRI data could affect the actual
specificity of the statistical tests [Zarahn et al., 1997a].
Additionally, the exact specification of the test did
affect how well false-positive rates were corrected;
specifically, Test 2 (Fig. 3B), which tested the three
latencies of maximal signal brought measured errors
rates to nominal rates for all measured significance

Figure 6.
Comparison of ROCs for all tests and noise estimates. Test 3 with
local noise estimates has the best overall performance for all
false-positive rates, with a 540% greater true-positive rate than
Test 1 with a global noise estimate, at the false-positive rate a 5
0.001.
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levels using both global and local noise estimates. This
test would also be the test of choice if the noise were
not estimated and independence was assumed be-
cause its false-positive rate was least sensitive to the
noise.

It should be stressed that the covariance structure of
the residuals is not identical to the covariance struc-
ture of the underlying noise process. The design ma-
trix induces model specific correlations in the residu-
als that are not present in the original noise process. It
is therefore conceivable then that our method would
lead to incorrect inference. To test this possibility, we
used our method to estimate the noise parameters on
the residuals of synthetic noise data and found that
the false-positive rates were appropriated controlled.
This result suggests that the slight departure of the
actual false-positive rates from nominal rates when
using real noise data is not due to fitting the residual
errors but rather to incorrect model specification. It is,
however, possible that our method would be less ro-
bust if different noise models or design matrices were
used.

Since the noise covariance Lw is always unknown,
modeling fMRI noise with a simple autoregressive
moving average model may not be feasible in general.
It is conceivable that different noise model structures
may be necessary for different brain regions, subjects,
and even MRI scanners or pulse sequences. In this
situation, OLS may be the only estimator available,
and the only strategy is to use an estimator of the
asymptotic covariance matrix of ĥOLS which is known
to have autocorrelated disturbances. This is similar to
the approach taken by Worsley and Friston [1995],
although their solution was to ‘smooth’ intrinsic auto-
correlations rather than to estimate them directly. An
alternative solution is to compute a non-parametric
estimate of the covariance of ĥOLS. If Lw were known,
then the covariance of ĥOLS is given by

Var@ĥOLS# 5 ~XTX!21S~XTX!21

where S 5 XTLwX. The problem can therefore be
approached by estimating S rather than Lw directly.
Estimating S in the case of autocorrelated noise is
actually a more tractable problem, for which the esti-
mate of S is given by

Ŝ 5 O
i51

N

ei
2xixi

T 1 O
m51

L O
t5m11

N

wmetet2m~xtxt2m
T 1 xt2mxt

T!

wm 5
m

~L 1 1!

where N is the number of sample observations, ei is the
ith residual error of the OLS estimate, xt is the tth

column of the design matrix X, and Ŝ is the Newey-
West autocorrelation consistent covariance estimator
of S [Newey and West, 1987]. The Newey-West esti-
mator will be consistent (and therefore asymptotically
unbiased) so long as the correlations in the noise ap-
proach zero as observations become more separated in
time. It must, however, be determined in advance the
maximum lag L at which autocorrelations at lags
longer than L are small enough to ignore. Use of
consistent covariance estimates in models with un-
known noise structure remains an avenue of future
work.

In addition to measuring the false-positive rates, we
examined the sensitivity or power of our statistical
tests. Although the FGLS estimator is not guaranteed
to be efficient, it is clear that including the noise esti-
mates for Tests 1 and 3 resulted in significantly in-
creased sensitivity (Fig. 4A,C). In the best case, the
true-positive rate was increased by 67% for the local
estimate of the noise relative to no estimate of the
noise at the same significance level. This result implies
that for a given imaging time, smaller signal changes
will be detectable using the two-step estimation
method described here.

Throughout this work we state that our estimates
are unbiased. This point is made in contrast to much of
the literature on practical event-related methods in
which a partial set of basis functions are fit to the fMRI
signal. Whenever a basis set is not complete and or-
thonormal over the time points of the hemodynamic
response, the estimates of the signal will be biased [see
Dale, 1999]. This subtlety is not often addressed when
assessing the appropriateness of the statistical test. As
the shape and latency of the hemodynamic response
are known to vary considerably across the brain
[Buckner et al., 1996; Schacter et al., 1997], statistical
inference based on an assumed shape may be inap-
propriate. Note, however, that the statistical approach
presented here can be easily extended to estimates
constrained to lie within a specified subspace [Dale,
1999]. Specifically, if the columns of the matrix L form
an orthonormal basis for the space of hemodynamic
response vectors, then the (biased) maximum likeli-
hood estimate of the of the hemodynamic response
vector is given by

ĥBML 5 L~LTXTLw
21XL!21LTXTLw

21y.

Although the validation studies presented here con-
sidered only experiments with one trial type, the
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methods described extend readily to any number of
trial types. In most experiments it is desirable to make
statistical comparisons between the different trial
types. To this end, a restriction matrix can be formed
that represents the difference operation between two
trial types, or some linear function of the difference.
Although our techniques were specifically designed
for use with event-related experiments, the proce-
dures are general and can be extended for use with
traditional block designs for appropriate and more
efficient statistical inference.

CONCLUSIONS

We have described a general framework for obtain-
ing efficient estimates of event-related hemodynamic
responses using fMRI and for drawing appropriate
inferences from the estimated responses in the pres-
ence of temporally correlated noise. Analysis of sim-
ulated and actual noise data using these procedures
gave the following results:

1) Not including an estimate of the noise in the
statistical tests results in false-positive rates far ex-
ceeding nominal values (200 times greater at worst)
and less powerful statistical tests. Similar results were
observed for synthetic and actual noise.

2) Including either global or local noise estimates into
the statistical test brought false-positive rates down to
nominal values and led to increased efficiency (more
powerful statistical tests), although the tests with local
noise estimates performed slightly better. These results
suggest that the FGLS estimator and statistical inference
drawn from it are nearly appropriate.

3) The hypothesis test (Test 2), which restricted only
the range of possible peak latencies of the hemodynamic
response, was least sensitive to nonwhite noise in terms
of the false-positive rate. Additionally, it was nearly as
powerful as the test incorporating exact a priori knowl-
edge of the hemodynamic response waveform.

4) Hemodynamic responses can be detected without
assuming any a prior response shape, although in-
cluding assumptions about the specific form can in-
crease the sensitivity of the test when the assumptions
are correct. In general, the use of linear restrictions in
the form of temporal hypothesis testing extends the
flexibility of statistical procedures that can be tailored
to the specific experiment and a priori knowledge
without biasing estimation.
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