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Structure of the cortex 
The adult cerebral cortex is a complex convoluted multilayered structure averaging around 
2.3mm thick, but thinner (≤ 2mm) in the depths of the sulcal folds and thicker (3-4mm) at the 
crown of the gyri. It is typically divided into 6 layers depending upon the constituent cell 
types. On examination a section of the cortex, it is seen to consist of alternating white and 
gray layers from the surface inward: (1) a thin layer of white substance; (2) a layer of gray 
substance; (3) a second white layer (outer band of Baillarger or band of Gennari); (4) a 
second gray layer; (5) a third white layer (inner band of Baillarger); (6) a third gray layer, 
which rests on the medullary substance of the gyrus (1). Cortical neurons form a highly 
organized laminar and radial structure with extensive efferents. Long association fibers 
connect to distant regions of the ipsilateral hemisphere, while short fibers connect to nearby 
ipsilateral regions. Commissural fibers connect to the cortical regions of the contralateral 
hemisphere, and projection fibers reach from the cortex into the subcortical structures e.g., 
corticothalamic/subthalamic projections, etc. 
 
High resolution structural MRI of the cortex 
Conventional diagnostic clinical MRI scans, with in plane resolution of ~1mm and slice 
thickness up to 5mm can define the gray-white interface of the cerebral cortex but cannot 
visualize structure within the cortex itself. Nevertheless, even the ability to define the cortical 
margin is valuable. High resolution T1-weighted structural scans can accurately identify the 
gray-white interface as well as the cortical surface, and can therefore be used to map cortical 
thickness over the whole brain (2). Using this approach, cortical thickness changes have been 
demonstrated with normal aging (3) and regional changes have been observed with 
schizophrenia (4, 5), multiple sclerosis (6), Huntington’s disease (7) and HIV/AIDS (8). 
 

Figure 1. Proton density weighted, FSE image of the human primary 
visual cortex showing the line of Gennari (7T, 330μm in plane 
resolution). Courtesy, L. Wald, A. Pothast, G. Wiggins, MGH.

The additional SNR made 
available through the use 
of higher field (3T and 
above) magnets and 
multi-coil head arrays 
now allows the direct 
visualization of the 
cortical ribbon itself. For 
example at 7T, an in 
plane resolution of 
330μm with a 2mm slice 
thickness is sufficient to detect the highly myelinated line of Gennari (cortical layer 4) 
(Figure 1). Such high resolution imaging of the cortex offers improved diagnosis of disease; 
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for example, the detection of subtle cortical neoplasms (not seen on conventional clinical 
scans) can identify an epileptogenic focus on patients who might not otherwise have an 
indication for epilepsy surgery.  
 
Diffusion tensor imaging of the cortex 

Figure 2. DTI at 2mm isotropic resolution at 3T. FA map with
tensors superimposed. (courtesy, D. Tuch, J Wisco, MGH).

DTI tractography studies have sought to characterize the connections between cortical 
regions (9, 10). Typically DTI 
tract tracing algorithms halt when 
the diffusion anisotropy index FA 
falls below a threshold value 
(~0.2) and thus fall short of 
penetrating into the cortex itself. It 
is well known that there is a 
significant orientational 
dependence of diffusion of water 
within the cerebral cortex in the 
early developing brain. This 
cortical anisotropy, which is 
mainly in a radial direction (i.e. 

perpendicular to the cortical surface), was observed in animal MRI studies (11). Serial DTI 
measurements in animals have shown a rapidly decreasing FA in the cortex as a function of 
increasing age (12-14). In extremely premature infants the cortical plate is largely 
unconvoluted and shows significant diffusion anisotropy (15). After birth, radial diffusion 
anisotropy is present in the human neonatal cortex which decreases with age as the cortex 
develops and the sulci become more pronounced (16) and is not typically seen at all in adults. 
Imaging the cortex with DTI in adult human presents a particular challenge because the thin 
cortical sheet is highly convoluted, and diffusion weighted images of this structure are often 
plagued by inadequate resolution, partial volume averaging with CSF (serving to reduce the 
apparent anisotropy (17)) and eddy current effects.. Even at a relatively high resolution (for 
DTI) of 2mm isotropic voxel size in the human brain, it is difficult to find pixels that contain 
only cortical gray matter (Fig. 2). As a result, the familiar FA map of an adult brain shows 
most of the cerebral cortex as dark and generally uninformative. Nevertheless there is some 
evidence that gray matter FA measured by conventional DTI may be sensitive to pathology 
such as stroke (18, 19) although the mechanisms are not yet clear. High b-value DTI 
acquisitions in adult cat brain have indicated the presence of radial fiber structure in the 
cortex (20). Using a multi-channel head coil (e.g. 22+ coils), it is possibly to acquire higher 
resolution DTI with a 1mm voxel size which begins to visualize the cortical strip and shows 
evidence of the radial orientational structure in gray matter. However this is still insufficient 
spatial resolution to see detail such as the layering with the gray matter itself.  
 
Imaging studies of fixed cortical samples 
While advances in human MRI hardware continue to improve spatial resolution in the brain 
in vivo, there are some compelling reasons to carry out studies of fixed brain tissues; the most 
obvious being that the stability of such samples allows for extended scanning in high field 
magnets to achieve much greater spatial resolution than is currently possible in vivo. 
Noninvasive ‘histology’ using MRI and MR microscopy is an established methodology (21, 
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22). It can provide a way to relate macrostructure (seen on in vivo scans) to microstructure 
(seen on conventional histology), as well as to establish the spatial resolution needed to 
visualize various structures (e.g. cortical layering), as well as providing morphological 
phenotyping in model systems (23).  

The protein cross linking that occurs upon 
tissue fixation significantly reduces both 
T1 and T2 (24, 25) and has the effect of 
flattening image contrast in the brain. 
However proton density contrast is 
maintained and even increases slightly 
upon tissue fixation (26). Therefore, a 
mixed contrast imaging protocol has 
proved useful for delineating cortical 
layering structure (27) and entorhinal 
islands in the hippocampal cortex (28). In 
addition to proton density contrast, T2* 
provides excellent tissue contrast at high 
field, Figure 3. Both contrast mechanisms 
seem to be related to differences in the 
tissue myelination and correspond well to 
contrast seen on Nissl stains (28). 

Figure 3: PD/T2* weighted image of the V1/V2  
boundary in human visual cortex (7T, 160μm iso-
tropic resolution, TE 46.5ms). 

 
DTI studies of fixed brain tissue indicate that while the trace ADC values are significantly 
reduced, the diffusion anisotropy is well preserved (12, 29). This is true of both FA from DTI 
scans and also higher order orientational structure (e.g. from DSI scans (30)) (31).  High 
resolution DTI scans of human cortical samples show laminar structure and tractography 
results show white matter fibers inserting into the cortical gray matter, and also short range 
U-fibers connecting nearby cortical regions (32), see Figure 4. This approach shows promise 
for detecting changes in complex fiber ‘connectivity’ patterns in conditions such as stroke, 
and for characterizing developmental and other abnormalities of the cortex (33).  
 

(A)                                (B)                          (C)(A)                                (B)                          (C)

Figure 4: High resolution 3D DTI scans of fixed human premotor cortex (4.7T, 220μm isotropic 
resolution). (A) ADC (trace), (B) FA, (C) DTI tractography. 
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Summary 
Current clinical MRI scans do not yet typically resolve structure within the cerebral cortex, 
however high resolution 3D scanning allows accurate measurements of the thickness of the 
cortical ribbon, which may be a valuable indicator of various disease states. Very high 
resolution structural scans of fixed brain specimens reveals detailed structure consistent with 
histological sections and points the way for further developments in in vivo MRI of the 
cortex. DTI scans in human neonates have showed strong diffusion anisotropy in the cerebral 
cortex which declines rapidly with age. DTI data from animal and in vitro human 
experiments confirm the presence of diffusion anisotropy in adult cortex, a weaker form of 
that present in infant brain. Ex vivo DTI tractography shows complex structure in the cortex 
which is markedly perturbed in several disease states. The keys to successfully implementing 
such methods in the living human cortex are high spatial resolution, high SNR and high b-
values. Continued improvements in multi-coil technology, high field MRI scanners and pulse 
sequence design will allow us to meet this challenge. Given the tremendous yield from 
studies of diffusion anisotropy in cerebral white matter, there is every reason to expect that 
extending the methodology to cortical gray matter would be well worth the effort. 
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