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Abstract. In this paper, we propose a novel method for the registration
of volumetric images of the brain that attempts to maximize the overlap
of cortical folds. In order to achieve this, relevant geometrical information
is extracted from a surface-based morph and is diffused throughout the
volume using the Navier operator of elasticity. The result is a volumetric
warp that aligns the folding patterns.

1 Introduction

Pairwise brain registration is one of the active areas of research in the medical
imaging community. Different algorithms have tackled the generic problem of
registering information from two brain scans in various ways. Volumetric regis-
tration (see [1] for a survey) seeks a 3D deformation field which is driven by either
raw intensity information or features derived from image intensities. A different
approach is to extract geometric features from surface models of structures such
as the neocortex, and to reformulate the complex correspondence problem in a
surface matching framework.

Each of these approaches has advantages and weaknesses. Surface-based meth-
ods [2,3,4] have been shown to accurately align the highly complex folding pat-
tern of the human cerebral cortex, and to result in increased statistical power
presumably due to their alignment of functionally homologous regsions accross
subjects. This accuracy stems from the direct use of geometric information that
is generally unavailable to volumetric methods and the relatively close rela-
tionship between folding patterns and functional properties of the neocortex.
Conversely, volumetric methods [5,6,7,8], while frequently failing to align corre-
sponding cortical folds, provide a correspondence field in the whole brain, and
align subcortical and ventricular structures as well as the cortex (regions that
are outside of the domain of classical surface-based registrations).

In this paper, we propose a method which combines the two approaches. This
is done by integrating surface-based information into a volumetric registration
procedure. The result is a 3D deformation field which aligns the folding patterns
of the the two scans. While the idea of using surface registration to drive volu-
metric deformation fields is not new [9,10,11], this is the first paper to explicitly
concentrate on the accurate registration of the cortical sheet in 3D space.

The current work can be seen as growing out of the non-linear registration
literature that aims at integrating prescribed displacements into a volumetric
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morph: [9] proposes a linear and incremental method for performing volumetric
deformations, and [10,11,12] use various types of surfaces and matching algo-
rithms that are then interpolated in the rest of the image to yield a dense de-
formation field, while [13] uses explicitly extracted sulcal traces together with
feature vectors. Perhaps the closest related work to this article is by Liu et al.
[14], where the geometrical information carried by the brain surfaces is explicitely
used in the registration process. However, it should be mentioned that the surface
similarity is maximized after the volumetric warping, which we believe makes it
susceptible to local minima.

2 Methods

We present the process of registering two structural brain scans, fixed and mov-
ing. Each of the scans is independently processed to obtain an accurate topo-
logically correct reconstruction of the cortical surfaces (see [15,16,17,18,19] for
details). Then, we perform a surface-based registration, independently for each
of the surfaces (4/brain - left and right pial and gray/white respectively). This
registration takes place in spherical coordinates and aims at maximizing the
similarity of the folding patterns, while remaining topologically correct and con-
trolling the amount of allowed metric distortions.

The result of the surface registration algorithm provides the input to the volu-
metric registration we present in this paper. Using a regularizer from the theory
of elasticity, we build a displacement field which is driven by the surface regis-
tration. The resulting morph yields surfaces that are as close as possible to the
target surfaces, while being topologically correct and respecting the anatomical
variability between individuals.

2.1 Surface Registration

The surface-based registration of our choice is briefly described below [3]. The
first step is to transform the cortical surface into a spherical representation with
moderate metric distortions [20]. The algorithm aims at iteratively minimizing
the following energy in the spherical space:

J = Jp + λA JA + λdJd (1)

where Jp measures the alignment, based on the cortical depth and the curvature
information, while the other two terms act as regularizers. JA is a topology-
preservation term, while Jd controls the amount of metric distortion allowed:
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Here, superscripts denote time with 0 being the starting point, T and V are
the number of triangles and vertices in the tesselation, xn

i is the position of
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vertex i at iteration n, N(i) is the set of neighbors of the ith vertex and Ai

denotes the oriented area of triangle i. The result of the surface registration is a
1-to-1 mapping that transports each surface of the fixed scan to its counterpart
surface in the moving image Freg : Sfixed → Smoving, where S can be any of the
left/right pial/white surfaces of the brain.

2.2 Volumetric Warping

When the surface registration is completed, we obtain a displacement vector field
which provides a 1-to-1 mapping between the hemisphere surfaces of the fixed
and moving brain scans in the Euclidean space. We now show how to diffuse this
vector field from the cortical surfaces to the rest of the volume.

Let Ω be the source image domain. We define an arbitrary transformation
φ : Ω → R

3 of the source image as: φ(x) = x+u(x) where u : Ω → R
3 denotes the

displacement field. The goal here is to find a function φ such that φ
(
xfixed

surf

)
=

Freg

(
xfixed

surf

)
, for any xfixed

surf ∈ S, where S is one of the surfaces of the fixed
brain scan. Since the surfaces represent a space of co-dimension 1, in order for
this problem to be well-posed, we impose an additional regularity constraint. We
require that the displacement field we are searching to be an elastic deformation,
i.e. a smooth, orientation-preserving deformation which satisfies the equations of
static equilibrium in elastic materials. This means that we (additionally) require
u to satisfy

L(u) = 0 (2)

where L is an operator we define below.
The choice of the operator L and the discretization method to numerically

extrapolate the displacement field has numerous solutions that have been pro-
posed in the registration litterature. Some of the better known are the thin plate
splines, proposed by Bookstein [21], or the free-form deformations proposed by
Rueckert et al [22]. We have chosen to use the Navier operator from the lin-
earized elasticity theory together with the finite element method. This choice
was motivated by the high level of flexibility needed in order to satisfy the con-
straints imposed by the displacement fields obtained on the 4 surfaces of the
brain image.

2.3 Elasticity Operator

In order to solve the problem stated above, we use the equilibrium equation for
elastic materials. This states that at equilibrium, the elastic energy equals the
external forces applied to the body L(u) = f [23].

L(u) = − div
[
(I + ∇u) Ŝ

]
(3)

where the second Piola-Kirchoff stress tensor Ŝ : Ω̄ → M3 is defined as

Ŝ = λ tr(Ê)I + 2μ Ê and Ê =
1
2

(
∇uT + ∇u + ∇uT ∇u

)
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is the Green-St. Venant strain tensor. Here λ and μ are the Lamé elastic con-
stants that characterize the elastic properties of an isotropic material. The linear
approximation to the above operator uses the Fréchet derivative of L

L(u) = L(0) + L′(0)u + o(u) ⇒ f = L(u) ≈ L′(0)u

since no deformation occurs in the absence of external forces. Finally, L′(0)u is
computed by dropping the non-linear terms in L(u), which results in
L′(0)u = − div S with S = λ tr(E)I + 2μE the linearized stress tensor and
E = 1

2

(
∇u + ∇uT

)
the linearized strain tensor. Hence, the linear approximation

of (2) can be written as
L′(u) = − div S = f (4)

The main drawback of (4) is that it is only valid for small-magnitude defor-
mations. To overcome this, we implement an extension of the linear model, as
presented in [9]. Namely, given external forces that describe large displacements,
one can iteratively solve for small linear increments using the linearized Navier
equation (4): L

(
un+1

)
= L′ (un)

(
un+1 − un

)
+ o

(
un+1 − un

)
or, by neglecting

the last term,

fn+1 − fn = L
(
un+1) − L (un) ≈ L′ (un)

(
un+1 − un

)
(5)

Using this iterative process, the solution of (5) converges to the solution of (2)
(see [23] for the proof).

The Lamé constants λ and μ are specified as functions of Young’s modulus of
elasticity E and the Poisson ratio ν: λ = Eν

(1+ν)(1−2ν) and μ = E
2(1+ν) . In all our

experiments we used E ≡ 1 and ν = 0.3.

2.4 Finite Element Method

Using the notation introduced in the previous subsection, equation (4) can be
re-written as a minimization problem by considering the potential energy of an
elastic body submitted to externally applied forces

E =
1
2

∫

Ω

⎡

⎣λ ‖∇ · u‖2 + 2μ

3∑

i,j=1

e2
ij(u)

⎤

⎦ d x +
∫

Ω

f · u d x (6)

with eij(u) = 1
2 (∂iuj + ∂jui).

One common way to tackle a minimization problem for (6) is to use the Finite
Element Method. This consists in dividing the domain Ω using an assemblage of
discrete finite elements interconnected at nodal points at the element boundaries
(tetrahedra in our case). The continuous field u within each element can be
approximated as a linear function of the displacements at the nodal points - the
computation is detailed in [24]. The first term in (6) results in a sparse symmetric
matrix K, also called the stiffness matrix, whereas the external forces result in a
vector F . By using the linear approximations mentioned, (6) can be re-written

Emesh = UT K U + UT F (7)
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hence by minimizing (6) wrt. the nodal displacements dEmesh(U)
dUi

= 0, equation
(4) can be written as

K U = F (8)

2.5 Specifying the External Forces

All that remains to be specified for equation (8) is the vector of external forces F .
As mentioned previously, the input to our problem is actually a set of prescribed
displacements.

One way of implementing prescribed displacements as external forces when
solving a FEM problem is described in [9]. It consists of modifying the matrix
K and the vector F so that the value of the variable Ui we want to prescribe is
forced. This is implemented by setting Kij = δij and Kji = δji ∀j and subtract-
ing the appropriate quantity on the right hand side. However, numerical exper-
iments showed that this way of constraining the stiffness matrix is too strong
and it can cause topology problems (i.e. noninvertible regions). Indeed, in the
current problem domain, where anatomical differences between the two brains
are to be expected (such as a split fold), such hard constraints are undesirable,
as they result in overfitting the warp field.

We have instead opted for an implementation of prescribed displacements
using penalty weighting. This means that we use the displacements given by
the surface registration Freg to modify equation (4). Indeed, without external
constraints, the elasticity problem simply reads KU = 0, with a trivial solution.

Suppose we want to impose a constraint u(x) = v. We start by determin-
ing the tetrahedron Ti such that x ∈ Ti and we know that we must have∑4

j=1 NTi

j (x)UTi

j = v, where Nj are the barycentric coordinates of x in Ti.
Then we impose the condition by modifying (7) so that the energy becomes

Emod
mesh = UT K U + αUT (AiU − Bi) (9)

where Ai are the barycentric coordinates of x ∈ Ti and Bi = v (which are
immersed in the global array U using the correspondence table of the nodes of
tetrahedron Ti). In (9), α is the weight placed on the constraints. In all of our
experiments we used a constant weight for all displacement vectors, although
this could change in the future. For instance, a surface similarity measure could
be used to better condition the morph.

2.6 Handling Topology Problems

After each iteration of the elastic solver, we check for potential topology prob-
lems, i.e. tetrahedra with negative Jacobian. Indeed, in spite of using the incre-
mental model and solving the elasticity equation in more iterations, topology
problems do appear. There are two general techniques used for performing mesh
untangling: smoothing or, more generally, solving an optimization problem aim-
ing at locally fixing tangles (see [25] for an algorithm that combines the two).
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In our case, the goal pursued was to solve the tangles from the deformed
mesh (i.e. inverted tetrahedra in the deformed configuration) while modifying
the displacement field as little as possible. This task is facilitated by the fact that
in the absence of displacements, the initial mesh is guaranteed to be topologically
correct. Thus, we opt for a local smoothing-based algorithm, which we formulate
as the solution of a local linear elastic problem.

We segment the regions with topological defects into local connected com-
ponents. We then solve a linear elastic equation within each local cluster, the
external forces being the displacements on the boundary of the cluster. Finally,
we discard the initial displacements inside the cluster and replace them with the
solution of the system.

We repeat the above clustering procedure until there are no more tetrahedra
with topology problems. Although there is no formal proof of it, the above
procedure has solved all the topological problems we were experiencing in the
tests we ran thus far.

2.7 Implementation

To resume, the execution of the pipeline described in this section results in the
following:

1. compute surfaces for each of the brain images (2 surfaces per hemisphere -
pial and gray/white);

2. perform surface registration for each of the surfaces independently in spher-
ical coordinates;

3. recover sparse displacement fields xfixed
i → ymoving

i ;
4. regress out affine transform from the displacement field A; this results in the

updated sparse displacement field xfixed
i → A−1

(
ymoving

i

)
= zi;

5. apply linear incremental model in n steps; i.e. loop j = 1 . . . n
(a) get current morphed positions φj ◦ φj−1 ◦ . . . φ1(xi) = xj

i and create
sparse displacement field vj

i = 1
n−j+1 (zi − xj

i )
(b) create tetrahedral mesh based on current surface positions and initialize

the stiffness matrix and the external forces;
(c) solve the linear system;
(d) handle potential topology problems.

We use TetGen [26,27] to build a Delaunay tetrahedral mesh which is adapted
to the input surfaces and PETSc [28,29] to solve the linear system at each step.
Generally, we place a constraint on the volume of the tetrahedra that are near
the surfaces (so that they have a lower volume), since it is expected that the
morph will require greater flexibility in those areas.

It should also be noticed that prior to the elastic registration we apply an affine
registration. This is motivated by the fact that the linearized version of the elastic
operator does not satisfy the axiom of material frame-indifference [23,30]. This
means that the linearized elastic energy increases when the object is rotated. This
occurs because the linearized operator drops the quadratic terms. Even though
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the linear incremental model approximates the Navier operator as the number
of steps n → ∞, applying the affine transform prior to performing the elastic
registration allows to decrease n, which results in a significant computational
time gain.

3 Results

We illustrate the utility of the method through two experiments. First, we show
how the elastic warping can succesfully recover the nonlinear deformation caused
in the brain due to autopsy and fixation. Subsequently, we present a more ambi-
tious experiment, where we use the pairwise surface correspondence to obtain a
warp between brain images of different subjects. As will be seen, this is a more
challenging problem, being inherently ill-posed.

3.1 Registration of ex-vivo Scans with the Corresponding in-vivo
Scan

In this case, the imaging protocol for the ex-vivo tissue is different due to the
reduced T1 contrast observed post-mortem, so a Multi Echo Flash protocol
is used. This makes the pre-processing required to obtain the surfaces for the
ex-vivo images a little more challenging, but does not affect the registration
algorithm proposed here.

We present in figure 1 the result of the volumetric warp applied to the ex-vivo
image so that it matches the in-vivo one. The resulting correspondence is almost
perfect, since the underlying anatomy is the same and the deformation is a truly
mechanical one. However, we remind the reader that the correspondence is not
perfect near the lateral ventricles, because none of the cortical surfaces we have
used crosses that area.

Also, it should be noted that in this case only the surfaces from one hemisphere
were used in the process, as we only had one hemisphere available for the ex-
vivo imaging. Nevertheless, the resulting match is excellent, and highlights the
insensitivity of the procedure to the underlying image contrast, as the geometric
features are of course invariant to the contrast properties.

3.2 Inter-subject Registration

In this section, we show results from a comparison of our morphing method with
the morph produced by the publicly available version of HAMMER [31]1 . We
selected eleven subjects for which we had labels that had been manually drawn
on the surface [33] and we morphed each of them on a randomly chosen subject

1 We would like to mention that the HAMMER version we have uses the gray/white
matter segmentation produced by FAST [32] exclusively to produce the attribute
vectors. As such, it is possible that results improve with different inputs to the
attribute vector.
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Fig. 1. Results of the surface-driven morph between an ex-vivo hemisphere and an
in-vivo scan of the same subject. Surfaces are from the in-vivo data (pial surface in red
and gray/white surface in yellow).
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Fig. 2. Average DICE measures with standard error for cortical and subcortical areas
over 10 brains. As expected, the measure for cortical areas shows the surface-based
morph out-performs HAMMER by 20%. Surprisingly, HAMMER is also out-performed
for sub-cortical areas, although our morph does not use any information from these
regions.

which played the role of template. We then performed a DICE measure sepa-
rately for the cortical and subcortical areas and compared the results produced
by FLIRT [34] (i.e. 12 DOFs) and HAMMER.
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Fig. 3. Visual Comparison of inter-subject registration. Surfaces are from the atlas
(pial surfaces in red and gray/white surfaces in yellow). Upper row - FLIRT. Middle
row - HAMMER. Bottom row - result of the surface-based morph. It is apparent
the HAMMER result is trapped in local minima in certain regions, which does not
happen for the surface-based morph. Gyri where large differences occur emphasized
with an arrow. It seems reasonable to believe local mis-registrations occur due to a
poor initialization.
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The validation measures we used were DICE measures on two sets of labels. Us-
ing [35], we created a label volume independently for each brain image with each
of the major subcortical structures. In addition, we filled the cortical ribbon with
manual surface-based labels from [33] for each of the subjects to generate volu-
metric labels for surface folding patterns. The DICE results were divided into two
sets to illustrate the differences in these structures: the sparse displacement fields
were explicitly generated to align cortical folds. The degree to which the volumet-
ric morph generated from the surface registration also aligns subcortical regions
thus reflects how well predicted the position and shape of subcortical structures
are from the folding patterns, with potential implications for neurodevelopment.

To be more specific, the measure we used to compare the degree of overlap be-
tween two volumes V1 and V2 for a set of labels S = {si, i = 1 . . . n} is given by

DICES (V1, V2) =
∑n

i=1 |[V1 = si] ∩ [V2 = si]|∑n
i=1 |[V1 = si] ∪ [V2 = si]|

(10)

The morph was executed with n = 13 iterations for the linear incremental
model and the results are summarized in figure 2. An example of the alignment
achieved is shown in figure 3. As was to be expected, the cortical measure is higher
by 20% for the surface driven morph than HAMMER (as can be seen in figure 3,
HAMMER can get caught in local minima, resulting in over-deformed gyri). Sur-
prisingly, the results also show we outperform HAMMER for subcortical regions,
despite the lack of any specific information from these regions in the morph.

4 Conclusion and Future Work

We presented a technique for computing a dense volumetric registration field that
was shown to align cortical folding patterns as well as deep brain structures. This
was achieved by using a surface-driven morph, together with a regularizer taken
from the theory of elasticity to compute a volumetric registration.

Another finding from the present study that has potentially interesting neu-
roscientific applications is that the alignment of cortical folds also appears to
align subcortical structures, indicating that the folds are good predictors of the
position/shape of deep brain regions.

In future work, we will use this volumetric field to initialize a volumetric regis-
tration algorithm to further align non-cortical structures. We anticipate that this
technique will resolve one of the main difficulties with volumetric registration:
they do not in general align cortical folding patterns.
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