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Abstract. We formalize the pair-wise registration problem in a maxi-
mum a posteriori (MAP) framework that employs a multinomial model
of joint intensities with parameters for which we only have a prior dis-
tribution. To obtain an MAP estimate of the aligning transformation
alone, we treat the multinomial parameters as nuisance parameters, and
marginalize them out. If the prior on those is uninformative, the mar-
ginalization leads to registration by minimization of joint entropy. With
an informative prior, the marginalization leads to minimization of the
entropy of the data pooled with pseudo observations from the prior. In
addition, we show that the marginalized objective function can be opti-
mized by the Expectation-Maximization (EM) algorithm, which yields a
simple and effective iteration for solving entropy-based registration prob-
lems. Experimentally, we demonstrate the effectiveness of the resulting
EM iteration for rapidly solving a challenging intra-operative registration
problem.

1 Introduction

The field of medical image registration has been very active in the past two
decades. Although numerous alignment methods have been introduced, only lim-
ited attention has been devoted to study the relationship among the available
methods and the justification for their preference, implicit and explicit hypothe-
sis and their performance[1,2]. Currently, a significant number of methods build
upon the maximum likelihood framework because of its intuitive nature and ease
of implementation. According to this approach, correct alignment is obtained if
we find the transformation that makes the the current observations most proba-
ble. Recently, with the abundance of available data sets, using prior information
to guide registration has received significant attention. Such techniques allow
for more robustness and a larger capture range in the implementation, and with
respect to the transformation domain, they facilitate the introduction of smooth-
ness constraints on the deformation models.
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When relying on prior models, however, it is challenging to find the appro-
priate balance between previous and current observations. For example, it is
not obvious how the level of confidence in the model can be automatically en-
coded and / or changed over time. Preliminary efforts using both model- and
data-related terms have introduced both sequential and unified algorithms with
arbitrary weighing terms [3,4]. In this work, we focus on the establishment of
a maximum a posteriori (MAP) framework that allows for making use of prior
information about both the transformation and the joint statistics of the ob-
served intensity distributions. By treating the former as nuisance parameters,
we can marginalize them out and define our registration goal as a posterior on
the transformation components. Depending on how informative the prior is on
the joint statistics, we demonstrate implicit relationships with currently used
methods. We also introduce an attractive optimization framework over our mar-
ginalized formulation – the Expectation-Maximization (EM) algorithm allows us
to compute the registration update in a simple and elegant way.

2 Problem Formulation

2.1 Marginalized MAP Formulation of Registration

Given multi-modal input data sets, u and v, our goal is to find transformation T
that that brings those into correct alignment. In addition to the unknown trans-
formation parameters, we introduce another set of parameters, Θ, that encode a
discrete joint probability distribution. This model is used in such a way that, if
the intensities in the two images are discretized to take values in {I1, I2, ..., IK}
then the probability of corresponding voxels (at location j) having discrete in-
tensity values of T (u)j = Ia and vj = Ib is p(u, v|T ) = p(T (u)j = Ia, vj = Ib) =
Θ(a, b). If we use a simplified, one-dimensional indexing for the parameters of the
discrete joint probability model, Θ = {θ1, ..., θg} encodes information about in-
tensity joint value occurrences as parameters of an unknown multinomial model,
where ∀i θi ≥ 0 and

∑g
i=1 θi = 1. This model can also incorporate any additive

noise.
The posterior parameter distribution of the transformation variable T and the

joint statistics model Θ with respect to the image observations is p(T, Θ|u, v).
In order to align the data sets, this quantity is to be maximized. For our reg-
istration purposes though, it is more attractive to compute the posterior on
just the transformation parameters. This is manageable given a prior model
on the joint statistics parameters that can be marginalized out. Assuming in-
dependence between the transformation and the joint distribution models, the
posterior distribution of the transformation variable T with respect to solely the
image observations is:

p(T |u, v) ∝
∫

P (u, v|T, Θ)P (T )P (Θ)dθ . (1)

In Eq.(1), the P (u, v|T, Θ) term indicates the likelihood function of the trans-
formation and the model parameters given the input observations, and the
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right-most two terms are prior distributions over the T and Θ parameters re-
spectively. Optimizing over such a quantity provides a convenient formulation
of the registration objective, if we assume that we have prior knowledge about
both the transformation and the joint statistics. The most optimal set of trans-
formation parameters T̂ are then the ones that optimize the following objective
function:

T̂ = argmax
T

log p(T |u, v) . (2)

2.2 The Likelihood Term

Using the multinomial model for ordered data, the likelihood of the image ob-
servations given the offsetting transformation and an unknown joint probability
model is

p(u, v|T, Θ) ∝
∏

j

θ
nj(T )
j , (3)

where nj(T ) is the number of voxel pairs that map to the intensity bin associated
with θj (i.e. T (u)j = Ia and vj = Ib) and

∑g
i=1 n(T )i = N is the total number

of observations. Note that the values of nj depend on the transformation T , and
this dependency is made explicit in this notation.

2.3 Prior on the Joint Statistics Model

For the registration problem, the multinomial distribution is a convenient choice
of representation as the θi parameters naturally correspond to the widely used
histogram encoding of the joint statistics of images given g number of compo-
nents. Additionally, prior information about such parameters can be expressed
by using the Dirichlet distribution, the conjugate prior to a multinomial distri-
bution. We choose the following encoding

Dirichlet(Θ; w) =
1

Z(w)

g∏

i=1

θ
(wi−1)
i = Γ (w0)

∏

j

θ
(wj−1)
j

Γ (wj)
, (4)

where ∀i, wi > 0 and
∑g

i=1 wi = w0. We may interpret w0 as the total number
of pseudo measurements observed to obtain information about the model and
wi as the individual frequency counts for the joint distribution parameters. The
higher the former number is, the greater our confidence becomes in the values
of the prior observations.

2.4 The Proposed Objective Function

Using Eq.(3) and Eq.(4), we write the posterior probability on T from Eq.(1) as

p(T |u, v, w) ∝ P (T )
∫ (

∏

i

θ
ni(T )
i

)

Γ (w0)

⎛

⎝
∏

j

θ
(wj−1)
j

Γ (wj)

⎞

⎠ dθ (5)
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∝ P (T )
Γ (w0)

Γ (N + w0)

⎛

⎝
∏

j

Γ (nj(T ) + wj)
Γ (wj)

⎞

⎠ , (6)

where we derived Eq.(6) by identifying a Dirichlet distribution with parameters
nj(T )+wj and using the fact that the integral of the distribution over its domain
is equal to one. Therefore, the objective function of our proposed marginalized
MAP registration method becomes

T̂ = argmax
T

log

⎡

⎣P (T )
Γ (w0)

Γ (N + w0)

⎛

⎝
g∏

j=1

Γ (nj(T ) + wj)
Γ (wj)

⎞

⎠

⎤

⎦ (7)

= argmax
T

⎡

⎣log P (T ) +
g∑

j=1

log Γ (nj(T ) + wj) + C

⎤

⎦ . (8)

2.5 Special Cases: Strength of Priors

In the following, we demonstrate how our objective function changes with respect
to the nature of the prior, and we also examine the equivalence of our novel
objective function of Eq.(8) with some widely used methods. These relationships
help us better explain why these registration techniques are expected to converge
to the correct alignment configuration.

Uninformative Prior: First we choose an uninformative prior. This means
that the prior does not favor any solutions a priori and the current observa-
tions are going to be solely responsible for the solution to be computed. As an
uninformative prior (whose use achieves an equivalence with the maximum like-
lihood (ML) solution of the problem), we choose to use Jeffreys’ prior [5]. These
are not affected by any transformations applied to the variables. Accordingly,
we set, w0 = 1 and ∀i, wi = 1

g , or in words, we assume to have only one prior
observation, and it is distributed over all the existing bins (where g represents
the total number of bins used in the multinomial model). Consequently,

log p(T |u, v, w) → log P (T ) +
∑

j

log Γ

(

nj(T ) +
1
g

)

+ C . (9)

The information theoretic joint entropy [6], measuring uncertainty related to the
joint occurrence of the input random variables, is defined by :

H
( n

N

)
≡ −

∑

j

nj

N
log

nj

N
= − 1

N

∑

j

nj log nj + log N , (10)

where
∑

j nj = N . For the most part, the differences between expressions
(∑

j nj log(nj)
)

and
(∑

j log Γ (nj)
)

are small (“first order” version of the Stir-
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ling approximation). Therefore, we may re-write the registration objective func-
tion using an uninformative prior as

T̂ = argmax
T

log p(T |u, v, w) ≈ arg min
T

[

cH

(
n(T) + 1

g

N + 1

)

− log P(T)

]

. (11)

This approximation, ignoring the transformation prior, is equivalent to the
widely used minimization of joint entropy method [7]. Although widely used,
the justification of using that metric in registration has long been debated. For-
mally, joint entropy is maximum likelihood method. While others have discussed
a similar equivalence between ML and joint entropy [8], the present marginal-
ization approach provides a rigorous demonstration of its validity.

Informative Prior: When the priors are informative, or in words, when we
have access to a sufficient number of pseudo observations (wj) from, for exam-
ple, training data sets, they allow for a more certain belief in their information
content. In such a case, the objective function can be approximated by

T̂ = arg max
T

log p(T |u, v, w) ≈ arg min
T

[

H
(

n(T) + w
N + w0

)

− log P(T)
]

. (12)

According to Eq.(12), prior information is introduced into the framework by
pooling together corresponding samples from the previously aligned (prior dis-
tribution model) and from the current, to-be-aligned cases. Throughout the opti-
mization, the model observations remain fixed and act as anchor points to bring
the other samples into a more likely configuration. Interestingly, this formula-
tion is closely related to another type of entropy-based registration algorithm.
Sabuncu et al. introduced a registration technique based on minimizing Renyi
entropy, where the entropy measure is computed via a non-plug-in entropy esti-
mator on pooled data [9]. This estimator is based upon constructing the EMST
(Euclidean Minimum Spanning Tree) and using the edge length in that tree to
approximate the entropy. The reason that such an arrangement would provide
a favorable solution has not been previously theoretically justified.

Strong Prior: Lastly, we briefly mention the scenario, where the prior infor-
mation is very strong.

log p(T |u, v, w) ≈ log P (T ) +
∑

j

(

log Γ (wj) + nj(T )
Γ ′(wj)
Γ (wj)

)

+ C (13)

≈ log P (T ) +
∑

j

(wj log(wj) + nj(T ) log(wj)) + C . (14)

In Eq.(13) a first order approximation of log Γ (nj(T )+wj) around wj was written
out, with Γ ′ indicating the derivative of the Gamma function. In Eq.(14), the
approximation for

∑
j log Γ (wj) from Eq.(11) and Γ ′(n)

Γ (n) ≈ log(n) are used, where
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the latter is valid for a large range of n. The only term that depends on nj(T )
is

∑
j nj(T ) log(wj), thus

T̂ = arg max
T

log p(T |u, v, w) ≈ argmax
T

⎡

⎣log P (T ) +
∑

j

(nj(T ) log(wj))

⎤

⎦ .

(15)
If we re-express the sum in Eq.(15) as a sum over data points, we can see that
this formulation is equivalent to an approximate maximum likelihood approach,
where the current samples are, indeed, evaluated under the previously con-
structed model distribution [10]. Chung et al. experimentally showed that the
performance of this similarity measure is not always sufficiently accurate[11].
That finding is now explained by the fact that this objective function considers
the model with such a high level of confidence that might not be justified by the
number of previous observations.

3 EM Optimization for the Marginalized MAP
Registration Problem

The above described objective functions could be optimized in several ways.
In general, we can differentiate between gradient- and non-gradient-based tech-
niques. Using gradient-based information in the optimization procedure often
results in significant computational advantages, however, they might also require
challenging approximation of some terms. For example, when using the multino-
mial model, update terms need to be estimated from a discrete distribution
and also it is required to calculate the partial derivative of changing (non-fixed)
joint statistics parameters with respect to the to-be-optimized transformation
components. Although close approximations exist, one might worry about their
accuracy. To escape such computational difficulties, we might optimize both
of the above marginalized formulations by using the Expectation-Maximization
(EM) algorithm [12]. This framework, from the statistical computing literature,
is known to have good properties as an optimizer and the resulting iteration
is attractive from a practical standpoint. If we consider the input images as
observations and the Θ parameters as hidden information, the EM algorithm
defines the solution to T̂ = argmaxT log p(T |u, v) as iteratively obtaining the
best current solution (T̂next) based upon:

T̂next = argmax
T

EΘ|u,v,T̂old
[log P (T, Θ|u, v)] (16)

= argmax
T

EΘ|u,v,T̂old
[log P (T |u, v, Θ) + log P (Θ)] (17)

= argmax
T

EΘ|u,v,T̂old

⎡

⎣log(P (u, v|T, Θ)P (T )) +
g∑

j=1

(wj − 1) log θj

⎤

⎦ ,(18)
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where Bayes rule was applied in order to express the conditional probability
term on the registering transformation. Continuing with the manipulation

T̂next = argmax
T

EΘ|u,v,T̂old

⎡

⎣log
∏

j

θ
nj(T )
j +logP (T ) +

g∑

j=1

(wj−1) log θj

⎤

⎦ (19)

= argmax
T

⎡

⎣log P (T ) + EΘ|u,v,T̂old

⎡

⎣
g∑

j=1

(n(T )j + wj − 1) log θj

⎤

⎦

⎤

⎦ (20)

= argmax
T

⎡

⎣log P (T ) +
g∑

j=1

(n(T )j + wj − 1)EΘ|u,v,T̂old
[log θj ]

⎤

⎦ .(21)

If we define lj ≡ log θj , then we can define the two steps of the EM algorithm:
maximization (M) and expectation (E) as follows:

M − step : T̂next = arg max
T

⎡

⎣log P (T ) +
g∑

j=1

(n(T )j + wj − 1) ljold

⎤

⎦ (22)

E − step : ljnext = EΘ|u,v,T̂old
[lj ] , (23)

In words, the M-step searches for transformation T that optimizes the sum of
expectation over the log model parameters and a transformation prior; and the
E-step calculates the expectation of these log parameters given the current best
estimate of the transformation parameters. Note that in this framework, we need
to pay special attention to the scenario where the θj parameters tend to zero
and we also have to enforce the property that the parameters add to one. More
details on these special cases are discussed below.

3.1 Evaluating the E-Step

In order to evaluate the expression in the E-step, we may use the following form
for the posterior on Θ given the input images and the transform:

P (Θ|u, v, T ) =
P (u, v|Θ, T )P (Θ)

∫
Θ

P (u, v|Θ, T )P (Θ)dθ
. (24)

Computing the expectation term thus becomes:

EΘ|u,v,T̂ [log θl] =
∫

Θ

log θlP (Θ|u, v, T̂ )dθ =
∫

Θ

log θl
P (u, v|Θ, T̂ )P (Θ)

∫
Θ

P (u, v|Θ, T̂ )P (Θ)dθ
dθ.

(25)

Using our multinomial model and the Dirichlet distribution as its prior, the nu-
merator in Eq.(25) has the form of another unnormalized Dirichlet distribution.
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Therefore, if we define a new Dirichlet distribution with parameters β, where
βi = (n(T̂ )i + wi), we may write

EΘ|u,v,T̂ [log θl] =
∫

Θ

log θl

∏g
j=1 θ

n(T̂ )j

j
1

Z(w0)

∏g
k=1 θ

(wk−1)
k

∫
Θ

∏g
j=1 θ

n(T̂ )j

j
1

Z(w0)

∏g
k=1 θ

(wk−1)
k dθ

dθ (26)

= EDir(Θ;β) [log θl] . (27)

The expression in Eq.(27) is the expected value of the (log θl) parameters given a
Dirichlet distribution parameterized by β. As the Dirichlet distribution belongs
to the family of exponential functions, the expectation over its sufficient statistics
can be computed as the derivative of the logarithm of the normalization factor
with respect to its natural parameters[13]. Writing the Dirichlet distribution in
its exponential form results in

Dir(Θ; w) = exp

(
g∑

i=1

(wi − 1) log θi + log Γ (w0) −
g∑

i=1

log Γ (wi)

)

. (28)

Given this form, we see that the sufficient statistics are indeed the (log θl) para-
meters. Therefore, the expectation term we are concerned with can be expressed
by using the Digamma (or Psi) function which is the first derivative of the log
Gamma functions [14].

EDir(Θ;β) [log θl] = Ψ(βl) − Ψ(β0) = Ψ(n(T̂ )l + wl) − Ψ(N + w0) . (29)

In the following, we approximate the Digamma expressions in Eq.(29) by using
Ψ(x) ≈ log(x − .5) [15]. This approximation is very accurate in the positive real
domain, except for values in the range of [0, 1]. A value in that particular range
would correspond to the extreme scenario of an “empty bucket”, where there
are neither current nor prior observations associated with a particular model
parameter. In order to make the approximation hold even in such a scenario,
we differentiate between two cases: uninformative and informative priors. In the
case of uninformative priors, we propose to use Laplace priors [5] instead of
zero counts for the Dirichlet parameters. Consequently, when no prior / pseudo
information is available for the model, we initialize all parameters uniformly
as one. The case of informative priors requires more attention. Although the
total sum of pseudo information in this case is significant, we cannot directly
assume that it holds for all individual Dirichlet parameters. Thus in that case we
explicitly require that each pseudo count should hold at least one count. With
such specifications we can ensure that our approximation holds regardless of the
nature of the prior information and that the argument of the log function, in the
case of the parameter update, does not approach zero (which could be a concern
as mentioned while defining the EM framework). Thus the E-step of the EM
algorithm is expressed as

(l̄l)next = Ψ
(
n(T̂old)l + wl

)
− Ψ(N + w0) (30)
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≈ log
(
n(T̂old)l + wl − .5

)
− log(N + w0 − .5) (31)

= log

(
n(T̂old)l + wl − .5

N + w0 − .5

)

. (32)

This rule assigns the logarithm of normalized sum of the pseudo and observed
counts minus a constant to the most current log(θ) parameters. This pooling
of current and pseudo counts for describing joint intensity statistics has been
already discussed in Sec.2.5. We point out that, in order to enforce the relation-
ship

∑g
i=1 θi = 1, we compute the E-step for all 1 ≤ j ≤ (g − 1) and we assign

the last remaining parameter as (l̄g)next = log
[
1 −

∑g−1
i=1 exp((l̄i)next)

]
.

3.2 Evaluating the M-Step

Using the results from the E-step, we may now express the M-step (the most
current estimate of the registration parameter), which indeed results in a simple
formulation of the problem:

T̂next = argmax
T

EΘ|u,v,T̂old
[log P (u, v, Θ|T )] (33)

= argmax
T

⎡

⎣logP (T ) +
g∑

j=1

(n(T )j + wj − 1)EΘ|u,v,T̂old
[lj]

⎤

⎦ (34)

= argmax
T

⎡

⎣log P (T ) +
g∑

j=1

(n(T )j + wj − 1) log

(
n(T̂old)j + wj − .5

N + w0 − .5

)⎤

⎦

(35)

= argmax
T

⎡

⎣log P (T ) +
g∑

j=1

n(T )j log
(
n(T̂old)j + wj − .5

)
⎤

⎦ (36)

Therefore, ignoring the prior on transformation T , our objective function in the
M-step is the maximization of a log likelihood term. When solving the optimiza-
tion problem with a non-informative set of priors, the solution approaches an
iterated ML framework. This result underlies the fact that an MAP framework
with a non-informative prior produces results that are equivalent to the ML solu-
tion. The best transformation parameters therefore are calculated by using old,
currently the best, model estimates. In the scenario where we have significant
amount of prior information with respect to the model, again, the pseudo and
the current observations are pooled together.

We note that the expression in Eq.(36) can be further simplified to result
in an information theoretic framework that comprises of a data- and model-
related term. The former measures the KL-divergence between two categorical
distributions over the parameters describing the current joint statistics and that



A Marginalized MAP Approach and EM Optimization 671

including pseudo observations from the prior model and the latter computes the
entropy of the estimated joint statistics of the observations.

T̂next ≈ arg max
T

[
log P (T ) − DKL

(
n(T ) ‖ n(T̂old) + wj − .5

)
− H(n(T))

]
(37)

≈ arg min
T

[
DKL

(
pT ‖ pT̂old,w

)
+ H(pT) − log P(T)

]
(38)

In summary, the utilization of the EM framework provides an iterative method
for the transformation parameter estimation where the model parameter updates
are computed in an efficient and principled manner.

4 Experimental Results

In this section, we present our experimental results from an iterated registration
algorithm that uses uninformative priors. The resulting EM solution to the ML
(in θ) formulation is demonstrated on a complex intra-operative non-rigid brain
registration problem. We introduced a prior on the deformation field that approx-
imates a fluid flow model. The algorithm also facilitates (on the EM iterations) a
quadratic approximation to the search problem that may be quickly solved. That
would not be justified if the multinomial model were not constant within the it-
erations. Preliminary experimental results for the scenario where we do have ac-
cess to informative prior information was presented in [16]. At each iteration, our
non-rigid registration algorithm defines the prior probability on configurations
phenomenologically, using linear elastic deformation energy and Boltzmann’s
Equation, as P (T ) ∝ exp(−E/τ). Configurations of the deforming anatomy are
parameterized by the coordinates of the vertices of an adaptive tetrahedral mesh.
Using standard methodology of the Finite Element Method (FEM) [17], the stress-
strain integral is linearized about the current configuration, yielding a quadratic
approximation for the energy in terms of displacements from the current config-
uration, E ≈ ΔT

T KΔT ,where K is a banded elasticity matrix. At each iteration,
the log likelihood, log P (n(T )old|ΔT ), is approximated by a second order Taylor
expansion. This is centered on a nearby local maximum of the likelihood func-
tion that we locate using a greedy method. The resulting quadratic expression is
combined with the quadratic prior term, and the resulting approximation to the
posterior probability is easily solved as a linear system. This iterative method re-
sets the elastic energy to zero at each iteration. Papademetris et al. [18] call this
“history free” approach the incremental approach, and point out that, in a limiting
case, it is equivalent to the fluid model [19].

Figures 1 (a) and (b) show two MRI images of the same brain taken during
brain surgery. The images contain 256x256x124 voxels with 0.9375x0.9375x1.5
mm spacing. According to visual comparison, deformation between the two im-
ages mostly occurs near the incision. The result of the non-rigid registration
algorithm is shown in Fig. 1 (c). The warped image is very similar to the tar-
get image. In particular, the small displacement of the left and right ventricles
was captured and the boundaries near the incision appear to be in appropriate
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(a) Intra-operative slice at t1 (b) Intra-operative slice at t2 (c) Deformed acquisition

Fig. 1. MRI acquisition of the brain: (a) taken during surgery with edges highlighted;
(b) taken later in the surgery, with the edges from (a) overlaid; (c) deformed the former
image onto the latter, with the edges of (a) overlaid

places as well. The final match used 8500 mesh nodes, and the entire matching
process was finished in less than 6 minutes on a 2 Ghz desktop computer. To
validate our registration results, we compared manually located landmarks in
the initial and the deformed images. The majority of the motion was captured
by our non-rigid registration algorithm, with disagreements typically not more
than the voxel size. More details on the experimental setup and the validation
results is described in dissertation work [20].

5 Conclusion

We introduced an MAP framework for the pair-wise registration problem that
allowed us to include prior information about not only the transformation para-
meter space but also the joint intensity statistics of the inputs. Treating the lat-
ter as nuisance parameters and marginalizing them out allowed us to establish a
close relationship between our method and certain entropy-based objective func-
tions. We also demonstrated that using an EM-based optimization framework
the aligning transformations can be computed in a principled and computation-
ally attractive manner.
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