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ABSTRACT

We propose a Bayesian approach to incorporate anatomical in-
formation in the clustering of fiber trajectories. An expectation-
maximization (EM) algorithm is used to cluster the trajectories, in
which an atlas serves as the prior on the labels. The atlas guides the
clustering algorithm and makes the resulting bundles anatomically
meaningful. In addition, it provides the seed points for the tractogra-
phy and initial settings of the EM algorithm. The proposed approach
provides a robust and automated tool for tract-oriented analysis both
in a single subject and over a population.

Index Terms— Diffusion Tensor MRI, Clustering, Anatomical
Information, Tract-Oriented Quantitative Analysis.

1. INTRODUCTION

Diffusion tensor MR imaging (DT-MRI) has increasingly attracted
attention in the neurosurgical community to identify white matter
pathologies, minimize post-operative neurological deficit, and study
brain development and aging. Pathways of fiber tracts are often
extracted using a tractography algorithm to aid the visualization of
brain connectivity. However, most clinical studies to date have fo-
cused on the analysis of the local parameters measured in a manually
defined region of interest (ROI) [1]. Most recently, tract-oriented
quantitative analysis has emerged as a complementary tool in clini-
cal studies, mitigating the user-dependence and uncertainty in defin-
ing the ROIs [2, 3]. However, tractography methods are also prone
to the subjectivity and sensitivity resulting from the selection of seed
points [4]. Furthermore, due to the presence of noise and image im-
perfections, outliers are often generated in tractography.

In order to benefit from the tract-oriented analysis and to elim-
inate the above mentioned problems of the tractography step, au-
tomated clustering of the fiber trajectories is necessary, so that the
tractography can be seeded from the whole brain or a sufficiently
large ROI. Different methods, mostly unsupervised [2, 5, 6], have
thus been proposed to group trajectories into clusters. However, a
supervised clustering that benefits from anatomical information not
only yields a more robust clustering, that are less sensitive to the
presence of outliers and imperfections in DT data, but also produces

The authors would like to thank Dr. S. Mori for the parcellation map
of fiber tracts, Dr. M. Shenton and Dr. M. Kubiki for providing the DT
images. This work is supported in part by NIH grants P41 RR013218,
U54 EB005149, U41 RR019703, P30 HD018655, R01 RR021885, R03
CA126466, P41-RR14075, BIRN002, U24 RR021382, and R21 MH067054
and NIH R01 MH074794, and grant RG 3478A2/2 from the NMSS.

clusters that are anatomically meaningful. The latter makes the cor-
respondence between clusters across different subjects automatically
known.

Earlier attempts to use anatomical information in fiber cluster-
ing are limited to an atlas-based clustering where trajectories are
grouped based on their distance to the trajectories in a reference sub-
ject (atlas) [7] and associating groups of fiber trajectories to anatom-
ical structures after they are clustered and mapped into an embedded
space [6]. The former relies solely on the atlas information and treats
each trajectory individually, while the latter does not use the atlas in
the clustering phase. Most recently, an atlas-based quantitative anal-
ysis of white matter fiber tracts has been proposed in which a prob-
abilistic parcellation map of the tracts is used to obtain the weighted
average of the quantitative parameters [8]. This approach relies ex-
clusively on the atlas data and hence does not take into account the
coherence among the trajectories in each bundle. Furthermore, the
quantitative analysis is limited to averages over the entire ROI or
slices perpendicular to the main axes of the atlas coordinate system.
This is due to the fact that, unlike tract-oriented methods, a curve is
not defined as the cluster center.

While the existing methods provide valuable quantitative infor-
mation about the integrity of fiber tracts, our experience shows that
they are either limited to specific fiber bundles or prone to be ad-
versely affected by inaccurate setting of user-specified parameters.
Given that an atlas of fiber tracts [9] is available, we propose a prob-
abilistic method to rigorously use the atlas as an anatomical prior.
This is an extension of our earlier work, in which an expectation-
maximization method is used to cluster the fiber trajectories in a
mixture model context [3].

2. DEFINITIONS AND GRAPHICAL MODEL

We treat each trajectory as a 3-D curve, uniformly sampled along its
arc length. For each cluster, a center is defined, which is a sampled
curve similar to the trajectories. For each trajectory, ri, a vector
di = [di1, ..., diJ ] is calculated, where dij is the distance between
the trajectory and the jth cluster center as a function of their point
coordinates and correspondences [10]. J is a user-defined number
of clusters. We assume that each element of the vector di follows
the distribution

dij ∼
{

Gamma(Θj) j = zi

Uniform([0, d0]) j �= zi

, (1)

where zi denotes the label assignment of trajectory i, and d0 is a
sufficiently large number. This means that when inferring the pa-
rameters for the jth cluster, we only look at the distances to the
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Fig. 1. A Bayesian network that describes the dependencies between
different variables. π: atlas prior, z: trajectory label, d: distance
between trajectory and cluster centers, Θ: parameters of the gamma
distributions, and Θ0: an upper bound on these parameters. Shaded
nodes represent the observed data.

corresponding cluster center, i.e., the jth component of the vec-
tors di. The uniform distributions are added to the definition just
to have a complete probability model for di’s. The gamma distri-
bution associated with cluster j is defined by Θj = {αj , βj}, i.e.,
its shape and inverse scale parameters. As we previously showed
in [10], the gamma distribution well models the nature of the dis-
tance between the trajectories and the cluster centers. One could
define hyper-parameters Θ0 to introduce prior information over Θ.
Here, we assume a uniform distribution since such information is not
available.

In this work, we further assume that the labels follow a multino-
mial distribution, zi ∼ Multinomial(πi), where πi’s are supplied
by an atlas, as described in Section 4. Specifically, Pr(zi = j|πi) =

πij , where
∑J

j=1 πij = 1.

To better understand the dependencies between the variables,
Fig.1 shows the directed graphical model of the problem setup. Note
that this model can be extended to define a prior distribution for πi’s
in order to control the influence of the atlas on the clustering.

The goal is to estimate the unknown parameters Θ by:

Θ̂ = arg max
Θ

log p(Z,Θ|D, Π), (2)

where D and Π are the observed data and the prior information, i.e.
the collection of di’s and πi’s, respectively. We propose to perform
the optimization using the expectation-maximization method as de-
scribed in Section 3.

3. METHOD

Once the trajectories are extracted from the DT data, they are
mapped into the atlas coordinate system. Each trajectory ri then
takes a membership probability πi = [πi1, ..., πiJ ], where each
πij element denotes the atlas-specified membership of ri to cluster
j. The number of clusters, J, is a subset of anatomical bundles
in the atlas. The details of this procedure are given in Section 4.
Initial cluster centers are provided by the atlas and the distance vec-
tors are computed [3]. Expectation-maximization [11] is then used
to infer the unknown model parameters, Θ, and the membership
probabilities in two steps.

In the expectation step, given the current estimates of the param-

Fig. 2. Visualization of some of ROIs outlined by the atlas. These
ROIs correspond to the major anatomical fiber tracts.

eters, Θt, the membership probabilities are calculated.

pij = Pr(zi = j|di,Θ
t) =

Pr(di|zi = j,Θt) Pr(zi = j|Θt)∑
k Pr(di|zi = k,Θt) Pr(zi = k|Θt)

.

Assuming that Z and Θt are independent, the class assignment is
independent of the model parameters:

Pr(zi = j|Θt) = Pr(zi = j) = πij ,

which is supplied by the atlas (See Section 4). So,

pij = Pr(zi = j|di,Θ
t) =

Gamma(dij ; Θ
t
j)πij∑J

k=1 Gamma(dik; Θt
k)πik

. (3)

The new estimates of the model parameters are updated in the
maximization step:

Θt+1 = arg max
Θ

(
EZ|D,Θt [log p(D, Z|Θ)]

)
= arg max

Θ

(
EZ|D,Θt [log p(D|Z,Θ) + log p(Z|Θ)]

)
Since we assume Z to be independent of Θ, the last term can be
eliminated from the maximization. Also, di’s are independent and
each di only depends on zi. Hence,

Θt+1 = arg max
Θ

N∑
i=1

EZ|D,Θt [log p(di|Θ, zi)]

= arg max
Θ

N∑
i=1

J∑
j=1

Pr(zi = j|di,Θ
t) log p(di|Θ, zi = j)

(4)

where Pr(zi = j|di,Θ
t) is given by (3), calculated in the expec-

tation step. The maximization expression (4) is similar to what we
previously derived in the absence of the atlas prior [10] as the prior
only appears in the expectation step. So, to update the gamma pa-
rameters we have:

αj ≈ 3 − xj +
√

(xj − 3)2 + 24xj

12xj
, (5)

where

xj = log

(∑
i pijdij∑

i pij

)
−

∑
i pij log(dij)∑

i pij
. (6)

and
βj = αj

∑
i

pij/
∑

i

pijdij . (7)

Once the EM algorithm converges, we update the cluster centers and
recompute the distance vectors. The outliers are identified in the
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Fig. 3. Demonstration of the registration process for the trajecto-
ries of superior cingulum in one of the subjects. Original trajectories
(green) and trajectories mapped into the atlas space with either an
affine registration (red) or a congealing registration to a common
space for all subjects and then by an affine registration into the at-
las space (yellow) are shown. The spatial extent of the cingulum
specified by the atlas is also shown for comparison.

expectation step: If the membership likelihoods of a trajectory in
all clusters are less than a user-specified threshold, that trajectory
is identified as an outlier and is removed from further data process-
ing. In fact, with this threshold, the heterogeneity of the trajecto-
ries within each cluster is controlled. The larger the threshold is,
the more compact the resulting bundles are, and consequently the
greater the number of unclustered trajectories.

4. EXPERIMENTS AND RESULTS

We use the atlas constructed by Mori et al. (http://lbam.med.jhmi.edu),
which consists of 48 labeled regions that correspond to major
anatomical bundles of fiber tracts in the human brain. Visualiza-
tion of some of these regions in the 3D Slicer (www.slicer.org)
is shown in Fig. 2. To allow a probabilistic assignment at the region
boundaries, we apply a Gaussian kernel with a 3 × 3 × 3 window
with standard deviation of 2 to each region.

EPI DT-MR images were acquired from healthy volunteers as
well as Schizophrenia patients on a 3T scanner. DT data were re-
constructed from 5 baseline and 51 gradient images and a spatial
resolution of 0.93 × 0.93 × 1.7 mm.

Trajectories are extracted for each subject using a streamline
tractography method [12] and mapped into the MNI atlas space.
Seed points for tractography are provided by the mapped and di-
lated regions from the atlas to each subject’s space. Registration is
performed on the corresponding maps of the fractional anisotropy
(FA) to normilize for brain geometry, and then the obtained trans-
formation is applied to the trajectories. An affine registration [13]
usually gives satisfactory results as reflected in Fig. 3. However, for
population studies we opted to first map the subjects into a common
space using the congealing algorithm [14] followed by the affine reg-
istration to the MNI space. We decided to use this approach, as op-
posed to a series of pair-wise subject-template registration, in order
to avoid introducing bias in the population analysis. Figure 3 shows
the results of registering the trajectories from the superior cingulum
to the atlas space for one of the subjects.

With the trajectories projected to the atlas space, the member-
ship probability for each trajectory, πik’s, is calculated by summing
up the probabilities of its overlapping voxels with the probability
maps of the fiber tracts in the atlas, and normalizing with the vol-
ume of each tract in the atlas. This insures that the results are not
biased towards large tracts, such as the corpus callosum. The mem-
bership probabilities of each trajectory are then normalized, so that
∀i,

∑K
j=1 πij = 1. Note that with this implementation, the atlas

Fig. 4. A comparison of the clustering results without (top) and with
(bottom) atlas. Axial and sagittal views are shown for superior cin-
gulum. Trajectories are colored by their assigned membership prob-
ability. The cluster centers at consecutive EM iterations are shown in
yellow, and dotted lines represent the initial centers. Without the at-
las, and with improper setting of the clustering parameters the cluster
centers drift and its extent increases as the algorithm proceeds. Less
sensitivity to parameter setting and robustness is achieved with the
atlas incorporated.

ROIs provide the spatial prior, while the information about the shape
and orientation of the tracts are captured by a representative curve
for each bundle, used as the initial center. Unlike a voxel-based
method in which individual voxels (of each trajectory) receive their
own membership probability [8], in our approach the probability is
assigned to the trajectory and hence the method is less sensitive to
local errors in registration.

Figure 4 compares the clustering results obtained with and with-
out incorporating the atlas prior for the superior cingulum. The tra-
jectories are colored based on their membership probability in each
case. To emphasize the effect of the atlas, a worst-case scenario is
presented in which the parameters that control the extent of the clus-
ters are set such that the algorithm only excludes those trajectories
that receive very small membership probability. Without the atlas,
the algorithm gives moderate membership probability to those tra-
jectories that are not very close to the initial center. However, as
the algorithm proceeds, the cluster center drifts as shown in Fig. 4
(a), so that these trajectories receive higher and higher membership
probabilities. Even though the clustering results might be still ac-
ceptable, the cluster center is deformed, introducing significant error
in the quantitative analysis. If the parameters are set in the correct
range, the extent of the cluster can be controlled in order to prevent
the inclusion of outliers and excessive drift of the cluster center. A
trade-off should be made between the homogeneity of the clustered
trajectories and the number of unclustered trajectories. With the at-
las prior included, more robust results are obtained, less sensitive to
incorrect user settings.

Figure 5 shows an example of a population study that consists
of clustering and quantitative analysis performed on the uncinate fas-
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(a) (b) (c)

Fig. 5. A 3D view of the uncinate fasciculi (UNC) trajectories, left and right, from 26 subjects mapped into the atlas space and an example of
the quantitative analysis. (a) Tractography results seeded from UNC ROI. (b) Clustering results colored by the local fractional anisotropy. (c)
A box-plot showing the FA variation along the tract for healthy (black) and schizophrenia (red) cases and for the right (up) and left (down)
UNC. Note that (c) quantifies the trend of FA variations, visualized in (b).

ciculus (UNC) fiber tracts of 13 healthy and 13 schizophrenia sub-
jects. The tractography on each subject was seeded from the dilated
UNC ROI, mapped from the atlas to the subject’s space. Figure 5(a)
shows the trajectories from all cases mapped back to the atlas space.
The clustering results are shown in Fig. 5(b), where the trajectories
are colored based on their local FA. With the point correspondence
between the trajectories and the cluster centers, the tract-oriented
analysis is easily performed by calculating a weighted average of
the quantitative parameters along the cluster center. An example
is shown in Fig. 5(c), which shows box-plots of the FA variation
along the cluster center for the left and right UNC and for healthy
and schizophrenia cases. Only the superior part of the UNC shows
significant difference between the left and right structures. No sig-
nificant difference is seen between control and pathological cases.

5. CONCLUSIONS

We have proposed a novel probabilistic framework that incorporates
an atlas of fiber tracts as anatomical prior in clustering of fiber tra-
jectories. To the best of our knowledge, such a framework has not
been previously reported. The supervision of anatomical informa-
tion combined with sophistication of the similarity-based clustering
yields a robust method for accurate tract-oriented quantitative anal-
ysis. An important aspect of our method is that it does not only take
into account the spatial prior, but also the shape of the fiber bundles.
An example was presented to demonstrate the applicability of the
proposed method for population studies.
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