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a b s t r a c t

This paper proposes the use of the surface-based Laplace–Beltrami and the volumetric Laplace eigenvalues
and eigenfunctions as shapedescriptors for the comparison and analysis of shapes. These spectralmeasures
are isometry invariant and therefore allow for shape comparisons with minimal shape pre-processing.
In particular, no registration, mapping, or remeshing is necessary. The discriminatory power of the 2D
surface and 3D solid methods is demonstrated on a population of female caudate nuclei (a subcortical
gray matter structure of the brain, involved in memory function, emotion processing, and learning) of
normal control subjects and of subjectswith schizotypal personality disorder. The behavior andproperties
of the Laplace–Beltrami eigenvalues and eigenfunctions are discussed extensively for both the Dirichlet
and Neumann boundary condition showing advantages of the Neumann vs. the Dirichlet spectra in 3D.
Furthermore, topological analyses employing the Morse–Smale complex (on the surfaces) and the Reeb
graph (in the solids) are performedon selected eigenfunctions, yielding shape descriptors, that are capable
of localizing geometric properties and detecting shape differences by indirectly registering topological
features such as critical points, level sets and integral lines of the gradient field across subjects. The use
of these topological features of the Laplace–Beltrami eigenfunctions in 2D and 3D for statistical shape
analysis is novel.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Morphometric studies of brain structures have classically been
based on volume measurements. More recently, shape studies of
gray matter brain structures have become popular. Methodologies
for shape comparison may be divided into global and local
shape analysis approaches. While local shape comparisons [1–3]
yield powerful, spatially localized results that are relatively
straightforward to interpret, they usually rely on a number of
pre-processing steps. In particular, one-to-one correspondences
between surfaces need to be established, shapes need to be
registered and resampled, possibly influencing shape comparisons.
While global shape comparison cannot spatially localize shape
changes, global approaches may be formulated with a significantly
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reduced number of assumptions and pre-processing steps, staying
as true as possible to the original data.
This paper describes a methodology for global shape compari-

son based on the Laplace–Beltrami eigenvalues and for local com-
parison based on selected eigenfunctions (without the need to
register the shapes). The Laplace–Beltrami operator for non-rigid
shape analysis of surfaces and solids was first introduced in [4–6]
together with a description of the background and up to cubic fi-
nite element computations on different representations (triangle
meshes, tetrahedra, NURBS patches). In [7,8] the eigenvalues of the
(mass density) Laplace operatorwere used to analyze pixel images.
This article focuses on statistical analyses of the Laplace–Beltrami
operator on triangulated surfaces and of the volumetric Laplace op-
erator on 3D solids and extends earlier works [9,10] by addition-
ally analyzing eigenfunctions and their topological features to lo-
calize shape differences. [9] introduces the analysis of eigenval-
ues of the 2D surface to medical applications. Especially [10] can
be seen as a preliminary study to this work, already involving
eigenvalues and eigenfunctions for shape analysis. Related work
in anatomical shape processing that uses eigenfunctions of the
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Laplace–Beltrami operator computed via standard linear FEM on
triangle meshes includes [11,12] who employ the eigenfunctions
as an orthogonal basis for smoothing and the nodal domains of
the first eigenfunction for partitioning of brain structures. In [13]
a Reeb graph is constructed for the first eigenfunction of a mod-
ified Laplace–Beltrami operator on 2D surface representations to
be used as a skeletal shape representation. The modified operator
gives more weight to points located on the geodesic medial axis
(also called cut locus [14]) which originated in computational ge-
ometry (see [15,16] for its computation) and has become useful in
biomedical imaging. In [17] the Laplace–Beltrami operator is em-
ployed for surface parametrization but without computing eigen-
functions or eigenvalues.
Previous approaches for global shape analysis in medical imag-

ing describe the use of invariant moments [18], the shape index
[19], and global shape descriptors based on spherical harmonics
[20]. The proposed methodology based on the Laplace–Beltrami
spectrum differs in the following ways from such approaches.
1. It may be used to analyze surfaces or solids independently

of their isometric embedding whereas methods based on spherical
harmonics or invariant moments are not isometry invariant (find-
ing large shape differences in bendable near-isometric shapes that
might only be located differently but otherwise the same, e.g. a
person in different body postures). Furthermore, some spherical
harmonics-based methods require spherical representations and
invariant moments do not easily generalize to arbitrary Rieman-
nian manifolds.
2. Onlyminimal pre-processing of the data is required, in partic-

ular no registration is needed. 3D volume data may be represented
by its 2D boundary surface, separating the object interior from its
exterior or by the 3D volume itself (a volumetric, region-based ap-
proach). In the former case, the extraction of a surface approx-
imation from a binary image volume is the only pre-processing
step required. In the volumetric case even this pre-processing step
can be avoided and computations may be performed directly on
the voxels of a given binary segmentation.1 This is in sharp con-
trast to other shape comparison methods, requiring additional ob-
ject registration, remeshing, etc. The presented Laplace–Beltrami
eigenvalues and eigenfunctions are invariant to rigid transforma-
tions, isometries, and to grid/mesh discretization (as long as the
discretization is sufficiently accurate) [6] and fairly robust with re-
spect to noise.
This article summarizes and significantly extends previous

Laplace–Beltrami shape analysis work on subcortical brain struc-
tures [9,10]. Results are presented both for the 2D surface case
(triangle mesh), as well as for 3D solids consisting of non-uniform
voxel data. Neumann spectra are used as shape descriptors in 3D,
with powerful discrimination properties for coarse geometry dis-
cretizations. In addition to the eigenvalues (allowing only global
shape comparisons), new eigenfunction analyses are introduced
employing theMorse–Smale complex and Reeb graph to shed light
on the behavior of the spectra as well as on local shape differences.
This can be done by automatically defining local geometric features
described by topological features of the eigenfunctions (e.g. critical
points, nodal domains, level sets and integral curves of the gradient
field). The first eigenfunctions indirectly register these features ro-
bustly across shapes, therefore an explicit mesh registration is not
necessary. In this paper we are mainly interested in the statistical
analysis of populations of shapes. We use a study of differences in

1 Note that of course other pre-processing steps might be necessary to initially
obtain the geometric data, such as scanning, manual or automatic segmentation of
the image. For the purpose of shape analysis, the shape has to be given in a standard
representation, which is usually 3D voxel data or 2D triangular meshes.
a subcortical structure (the caudate nucleus) as a real world exam-
ple to demonstrate the applicability of the presentedmethods. The
presented topological study of eigenfunctions is a novel approach
for statistical shape analyses.
Section 2 describes the theoretical background of the Laplace–

Beltrami operator and the numerical computation of its eigenval-
ues and eigenfunctions. Normalizations of the spectra, properties
of the Neumann spectrum as well as the influence of noise and of
the discretization are investigated. Section 3 gives an overview of
the used topological structures, namely theMorse–Smale complex
and the Reeb graph while Section 4 explains the statistical meth-
ods used for the analysis of populations of Laplace–Beltrami spec-
tra. Results for two populations of female caudate shapes are given
in Section 5. This section is subdivided into the 2D and 3D analy-
ses. Within each of these subsections, we start with a global anal-
ysis on the eigenvalues and continue with local shape measures
derived from a selection of eigenfunctions. The paper concludes
with a summary and outlook in Section 6.

2. Shape-DNA: The Laplace–Beltrami spectrum

In this section we introduce the necessary background for
the computation of the Laplace–Beltrami spectrum beginning se-
quence (also called ‘‘Shape-DNA’’). The ‘‘Shape-DNA’’ is a finger-
print or signature computed only from the intrinsic geometry of
an object. It can be used to identify and compare objects like sur-
faces and solids independently of their representation, position
and (if desired) independently of their size. This methodology was
first introduced in [4] though a sketchy description of basic ideas
and goals of this methodology is already contained in [21]. The
Laplace–Beltrami spectrum can be regarded as the set of squared
frequencies (the so-called natural or resonant frequencies) that are
associated to the eigenmodes of a generalized oscillating mem-
brane defined on the manifold. We will review the basic theory in
the general case (for more details refer to [6] and especially [5]).

2.1. Definitions

Let f be a real-valued function, with f ∈ C2, defined on a
RiemannianmanifoldM (differentiablemanifold with Riemannian
metric). The Laplace–Beltrami Operator 1 is:

1f := div(grad f ) (1)

with grad f the gradient of f and div the divergence on themanifold
(Chavel [22]). The Laplace–Beltrami operator is a linear differential
operator. It can be calculated in local coordinates. Given a local
parametrization

ψ : Rn → Rn+k (2)

of a submanifoldM of Rn+k with

gij := 〈∂iψ, ∂jψ〉, G := (gij),

W :=
√
detG, (g ij) := G−1,

(3)

(where i, j = 1, . . . , n and det denotes the determinant) the
Laplace–Beltrami operator becomes:

1f =
1
W

∑
i,j

∂i(g ijW∂jf ). (4)

If M is a domain in the Euclidean plane M ⊂ R2, the
Laplace–Beltrami operator reduces to the well-known Laplacian:

1f =
∂2f
(∂x)2

+
∂2f
(∂y)2

. (5)
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Fig. 1. Eigenfunction 30 and 50 of the disk.

The wave equation

1u = utt , (6)

may be decomposed into its time dependent and its spatially
dependent parts

u(x, t) = f (x)a(t). (7)

Separating variables in the wave equation yields [23]

1f
f
=
att
a
= −λ, λ = const.

Thus, the vibrational modes may be obtained through the
Helmholtz equation (also known as the Laplacian eigenvalue
problem) on manifoldM with or without boundary

1f = −λf . (8)

The solutions of this equation represent the spatial part of the
solutions of the wave equation (with an infinite number of
eigenvalue λi and eigenfunction fi pairs). In the case of M being
a planar region, f (u, v) in Eq. (8) can be understood as the natural
vibration form (also eigenfunction) of a homogeneous membrane
with the eigenvalue λ. The square roots of the eigenvalues are
the resonant or natural frequencies (ωi =

√
λi). If a periodic

external driving force is applied at one of these frequencies, an
unbounded response will be generated in the medium (important,
for example, for the construction of bridges). In this work the
material properties are assumed to be uniform. The standard
boundary condition of a fixed membrane is the Dirichlet boundary
condition where f ≡ 0 on the boundary of the domain (see
Fig. 1 for two eigenfunctions of the disk). In some cases we also
apply the Neumann boundary condition where the derivative in
the normal direction of the boundary ∂ f

∂n ≡ 0 is zero along the
boundary. Here the normal direction n of the boundary should not
be confused with a normal of the embedded Riemannian manifold
(e.g., surface normal). n is normal to the boundary and tangential to
themanifold. Wewill speak of the Dirichlet or Neumann spectrum
depending on the boundary condition used.
The spectrum is defined to be the family of eigenvalues of the

Helmholtz equation (Eq. (8)), consisting of a diverging sequence
0 ≤ λ1 ≤ λ2 ≤ · · · ↑ +∞, with each eigenvalue repeated
according to its multiplicity and with each associated finite-
dimensional eigenspace (represented by the corresponding base of
eigenfunctions). In the case of the Neumann boundary condition
and for closed surfaces without boundary the first eigenvalue λ1 is
always equal to zero, because in this case the constant functions
are solutions of the Helmholtz equation. We then omit the first
eigenvalue so that λ1 will be the first non-zero eigenvalue.
Because of the rather simple Euclidean nature of the voxel rep-

resentations used later, themore general (Riemannian) definitions
given above are not necessarily needed to understand the com-
putation in the 3D voxel case. Nevertheless, the metric terms are
helpful when dealing with cuboid voxels (as we do) and of course
for analyzing the 2D boundary surfaces of the shapes. Furthermore,
Fig. 2. Objects with same shape index but different spectra.

this approach clarifies that the eigenvalues are indeed isometry in-
variants with respect to the Riemannian manifold. Note that two
solid bodies embedded in R3 are isometric if and only if they are
congruent (translated, rotated and mirrored). In the surface case
this is not true, since non-congruent but isometric surfaces exist.

2.2. Properties

The following paragraphs describe the well-known results on
the Laplace–Beltrami operator and its spectrum.
(i) The spectrum is isometry invariant as it only depends on
the gradient and divergence which in turn are defined to be
dependent only on the Riemannian structure of the manifold
(Eq. (4)), i.e., the intrinsic geometry.

(ii) Furthermore, scaling an n-dimensional manifold by the factor
a results in eigenvalues scaled by the factor 1

a2
. Therefore,

by normalizing the eigenvalues, shape can be compared
regardless of the object’s scale (and position as mentioned
earlier).

(iii) Changes of themembrane’s shape result in continuous changes
of its spectrum [23].

(iv) The spectrum does not characterize the shape completely,
since some non-isometric manifolds with the same spectrum
exist (for example see [24]). Nevertheless these artificially
constructed cases appear to be very rare cf. [6] (e.g., in the
plane they have to be concavewith corners and until now only
isospectral pairs could be found).

(v) A substantial amount of geometrical and topological informa-
tion is known to be contained in the spectrum [25] (Dirichlet
as well as Neumann). Even thoughwe cannot crop a spectrum
without losing information, we showed in [5] that it is pos-
sible to extract important information just from the first few
Dirichlet eigenvalues (approx. 500).

(vi) The nodal lines (or nodal surfaces in 3D) are the zero level sets
of the eigenfunctions. When the eigenfunctions are ordered
by the size of their eigenvalues, then the nodes of the nth
eigenfunction divide the domain intomaximal n sub-domains,
called the nodal domains [23]. Usually the number of nodal
domains stays far below n.

(vii) The spectra have more discrimination power than simple
measures like surface area, volume or the shape index (the
normalized ratio between surface area and volume, SI =
A3/(36πV 2) − 1) [19]. See Fig. 2 for simple shapes with
identical shape index, that can be distinguished by their
Laplace–Beltrami spectrum.2 Furthermore, as opposed to the
spectrum, a moment-based method did not detect significant
shape differences in the medical application presented in
Section 5. The discrimination power of the spectra can
be increased when employing both the spectra of the 2D
boundary surface and the 3D solid body (cf. isospectral GWW
prisms in [6]).

For more properties see [6,5].

2 In fact, Riemannian volume and volume of the boundary are spectrally
determined (see also [6] where these values were numerically extracted from the
beginning sequence of the spectrum in several 2D and 3D cases).
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2.3. Variational formulation

For the numerical computation, the first step is to translate
the Helmholtz equation into a variational formulation. This is
accomplished using Green’s formula∫ ∫

ϕ1f dσ = −
∮
ϕ
∂ f
∂n
ds−

∫ ∫
∇(f , ϕ)dσ . (9)

(Blaschke [26] p.227) with the Nabla operator defined as

∇(f , ϕ) := Df G−1 (Dϕ)T =
∑

(∂if g ij ∂jϕ) (10)

with the vector Df = (∂1f , ∂2f , . . .). Employing the Dirichlet
(f , ϕ ≡ 0) or the Neumann ( ∂ f

∂n ≡ 0) boundary condition (Eq. (9))
simplifies to∫ ∫

ϕ1f dσ = −
∫ ∫

∇(f , ϕ)dσ . (11)

The Helmholtz equation (8) is multiplied with test functions
ϕ ∈ C2, complying with the boundary condition. By integrating
over the area and using (11) one obtains:

ϕ1f = −λϕf

⇔

∫ ∫
ϕ1f dσ = −λ

∫ ∫
ϕf dσ

⇔

∫ ∫
∇(ϕ, f ) dσ = λ

∫ ∫
ϕf dσ

⇔

∫ ∫
Df G−1 (Dϕ)T dσ = λ

∫ ∫
ϕf dσ

(12)

(with dσ = Wdudv being the surface element in the 2D case
or the volume element dσ = Wdudvdw in the 3D case). Every
function f ∈ C2 on the open domain and continuous on the
boundary solving the variational equation for all test functions ϕ
is a solution to the Laplace eigenvalue problem (Braess [27], p.35).
This variational formulation is used to obtain a system of equations
constructing an approximation of the solution.

2.4. Implementation

To solve the Helmholtz equation on any Riemannian manifold
the Finite Element Method (FEM) [28] can be employed. We
choose a tessellation of the manifold into the so-called elements
(e.g., triangles or cuboid voxel). Then linearly independent test
functions with up to cubic degree (the form functions Fi) can
be defined on the triangles or cuboid voxel elements (explained
in the next section). The high degree functions lead to a better
approximation and consequently to better results, but because
of their higher degree of freedom more node points have to be
inserted into the elements. See [5] or [6] for a detailed description
of the discretization used in FEM that finally leads to the following
general eigenvalue problem

AU = λBU (13)

with the matrices

A = (alm) :=
(∫ ∫

DFl G−1 (DFm)Tdσ
)
,

B = (blm) :=
(∫ ∫

FlFmdσ
)
,

(14)

where Fl is a piecewise polynomial form functionwith value one at
node l and zero at all other nodes. HereU is the vector (U1, . . . ,Un)
containing the unknown values of the solution at each node and
A, B are sparse positive (semi-)definite symmetric matrices. The
solution vectors U (eigenvectors) with corresponding eigenvalues
λ can then be calculated. The eigenfunctions are approximated
by
∑
UiFi. In the case of the Dirichlet boundary condition, the

boundary nodes do not get a number assigned to them and do
not show up in this system. In the case of a Neumann boundary
condition, every node is treated exactly the same, no matter if it is
a boundary node or an inner node. Since only a small number of
eigenvalues is needed, a Lanczos algorithm [29] can be employed
to solve this large symmetric eigenvalue problem much faster
than with a direct method. In this work we use the ARPACK
package [30] togetherwith SuperLU [31] and a shift-invertmethod,
to compute the eigenfunctions and eigenvalues starting from the
smallest eigenvalue in increasing eigenvalue order. The sparse
solver implemented in Matlab uses a very similar indirect method.
It should be noted that the integrals mentioned above are

independent of the mesh (as long as the mesh fulfills some
refinement and condition standards). Since the solution of the
sparse generalized eigenvalue problemcanbedone efficientlywith
external libraries, we will now focus on the construction of the
matrices A and B.

2.5. Form functions

In order to compute the entries of the two matrices A and B
(Eq. (14)) we need the form functions Fi and their partial
derivatives (∂kFi) in addition to the metric values from Eq. (3). The
form functions are a basis of functions representing the solution
space.
Any piecewise polynomial function F of degree d can easily

be linearly combined by a base of global form functions Fi (of
same degree d) having the value one at a specific node i and zero
at the others. For linear functions it is sufficient to use only the
vertices of the triangle mesh as nodes. In the case of a voxel the
values at the 8 vertices are sufficient to define a trilinear function
in the inside c1 + c2u + c3v + c4w + c5uv + c6uw + c7vw +
c8uvw. For higher degree approximations further nodes have to
be inserted. When applying a Dirichlet boundary condition with
zero values at the boundary, we only need a form function for each
node in the interior of the domain. If we look at a 2D example
(a single triangle of a triangulation), a linear function above the
triangle can be linearly combined by the three form functions
at the corners. These local functions can be defined on the unit
triangle (leg length one) andmapped to an arbitrary triangle. Fig. 3
shows examples of a linear and a quadratic local form function
for triangles. It can be seen that the form function has the value
1 at exactly one node and 0 at all the others. Note that in the
case of the quadratic form function new nodes were introduced
at the midpoint of each edge, because quadratic functions in two
variables have six degrees of freedom. On each element containing
n nodes exactly n local form functionswill be constructed this way.
The form functions and their derivatives can be defined explicitly
on the unit triangle or unit cube. Since high order approximations
lead to much better results, we mainly use cubic form functions
of the serendipity family for the computation of the spectra in
this paper. To set up these functions over a cuboid domain new
nodes have to be inserted (two nodes along each edge makes
32 nodes together with the vertices, see Fig. 3). A cubic function
of the serendipity family with three variables has 32 degrees of
freedom, that can be fixed by giving the function values at these
32 locations. A full tricubic approach of the Lagrange family needs
64 nodes (32 along the edges, 24 inside the faces, and 8 inside the
cuboid) and increases the total degree of freedom tremendously
without adding much accuracy to the solution. More details on the
construction of these local functions can be found in most FEM
books (e.g. Zienkiewicz [28]). For each element the results of the
integrals (14) are calculated for every combinationm, l of nodes in
the element and added to the corresponding entry in the matrix A
or B. Since this entry differs only from 0when the associated global
form functions Fi overlap (i.e. the associated nodes share the same
element) the matrices A and Bwill be sparse.
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Fig. 3. A linear and a quadratic form function and location of 32 nodes for cubic
serendipity FEM voxel.

2.6. Cuboid voxel elements

For piecewise flat objects the computation described above
can be simplified, thus speeding up the construction of the two
matrices A and B significantly. If the local geometry is flat we do
not need to integrate numerically on themanifold since themetric
G (see Eq. (3)) is constant throughout each element. The integrals
can be computed once for the unit element explicitly and then
mapped linearly to the corresponding element. This makes the
time consuming numerical integration process needed for curved
surfaces or solids completely unnecessary.
As opposed to the case of a surface triangulation with a

piecewise flat triangle mesh (with possibly different types of
triangles), the uniform decomposition of a 3D solid into cuboid
voxels leads to even simpler finite elements. A parametrization
over the unit cube of a cuboidwith side length s1, s2, s3 (and volume
V ) yields a diagonal first fundamental matrix G:

G = diag
(
(s1)2, (s2)2, (s3)2

)
(15)

W =
√
det(G) = (s1)2(s2)2(s3)2 = V (16)

G−1 = diag
(
1
(s1)2

,
1
(s2)2

,
1
(s3)2

)
. (17)

These values are not only constant for an entire voxel, they are
identical for each voxel (since the voxels are identical). Therefore
we can pre-compute the contribution of every voxel to the
matrices A and B once for the whole problem after setting up the
form functions Fl as described above:

al(i),m(j)+ = V
∫ ∫ 1

0

∫ (
3∑
k=1

∂kFi ∂kFj
(sk)2

)
dudvdw

bl(i),m(j)+ = V
∫ ∫ 1

0

∫
FiFjdudvdw.

(18)

The local indices i, j label the (e.g. 32) nodes of the cuboid voxel
element and thus the corresponding local form functions and their
partial derivatives. These integrals can be pre-computed for every
combination i, j. In order to add (+ =) these local results into the
large matrices A and B only a lookup of the global vertex indices
l(i),m(j) for each voxel is necessary. Therefore the construction
of the matrices A and B can be accomplished in O(n) time for n
elements.
2.7. Normalizing the spectrum

As mentioned above, the Laplace–Beltrami spectrum is a
diverging sequence. Analytic solutions for the spectrum and the
eigenfunctions are only known for a limited number of shapes
(e.g., the sphere, the cuboid, the cylinder, the solid ball). The
eigenvalues for the unit 2-sphere for example are λi = i(i + 1),
i ∈ N0 with multiplicity 2i + 1. In general the eigenvalues
asymptotically tend to a linewith a slope dependent on the surface
area of the 2D manifoldM

λn ∼
4πn
area(M)

, as n ↑ ∞. (19)

Therefore a difference in surface area manifests itself in different
slopes of the eigenvalue asymptotes. Fig. 4 shows the behavior
of the spectra of a population of spheres and a population of
ellipsoids respectively. The sphere population is based on a unit
sphere where Gaussian noise is added in the direction normal
to the surface of the noise-free sphere. Gaussian noise is added
in the same way to the ellipsoid population. Since the two
basic shapes (sphere and ellipsoid) differ in surface area, their
unnormalized spectra diverge (Fig. 4a), so larger eigenvalues lead
to a better discrimination of groups. Surface area normalization
greatly improves the spectral alignment (Fig. 4b). Fig. 4c and d
show zoom-ins of the spectra for small eigenvalues. Even for the
surface area normalized case, the spectra of the two populations
clearly differ. Therefore the spectra can be used to pick up the
difference in shape in addition to the size differences.
A similar analysis can be done for 3D solids. The eigenvalues for

the cuboid (3D solid) with side length s1, s2 and s3 for example are

λM,N,O = π
2
(
M2

(s1)2
+
N2

(s2)2
+
O2

(s3)2

)
with M,N,O ∈ N+ for the Dirichlet case and M,N,O ∈ N for the
Neumann case. In general the Dirichlet and Neumann eigenvalues
of a 3D solid asymptotically tend to a curve dependent on the
volume of the 3D manifoldM:

λn ∼

(
6π2n
vol(M)

) 2
3

, as n ↑ ∞. (20)

Fig. 5 shows the discrete Dirichlet spectra of a unit cube (V = 1), a
cuboid with side length 1, 1.5, 2 (V = 3) and a unit ball (V = 4

3π ).
It can be seen how the difference in volume manifests itself in
different scalings of the eigenvalue asymptotes.
A statistical method able to distinguish shapes needs to account

for this diverging behavior so not to limit the analysis to an analysis
of surface area or volume. Therefore the Laplace–Beltrami spectra
should be normalized. Fig. 6 shows the spectra of the volume
normalized solids. The zoom-in shows that shape differences are
preserved in the spectra after volume normalization.

2.8. Exactness of the spectrum

When using an FEM with p-order form functions, the order of
convergence is known. For decreasing mesh size h it is p + 1 for
eigenfunctions and 2p for eigenvalues [32]. This is the reason, why
it makes sense to use higher order elements (we use up to cubic)
instead of a global mesh refinement.
To verify the accuracy of the numerically computed spectra, we

compare the eigenvalues of a cuboid with side length (1, 1.5, 2)
and of a ball with radius one to the known exact values. In the
case of the cuboid we computed the first 200 eigenvalues. The
maximum absolute difference occurring in the Dirichlet spectra is
less than 0.044 (which is less than 0.015% relative error). This is
due to the fact that the voxels represent the cuboid exactlywithout
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Fig. 5. Unnormalized exact spectra of cube, cuboid, ball.

Fig. 6. Volume normalized spectra and zoom-in.

Fig. 7. Approximation of the ball.
Fig. 4. Spectral behavior from top to bottom: (a) unnormalized, (b) Area
normalized, (c) unnormalized (zoom), (d) Area normalized (zoom).

any approximation error at the boundary. The Neumann spectra
have only a maximum absolute difference of less than 0.01 (which
is less than 0.005% relative error), due to the higher resolution at
the boundary.
In the case of the ball an exact voxel representation is not

possible, therefore the numerical results differ more strongly from
the analytical ones especially for high eigenvalues (up to 6%
relative error for the first 100 Dirichlet eigenvalues). Since the
exact values of the object represented by the voxelization are
unknown, a fair analysis of the accuracy of the computation is
difficult. Nevertheless, it is interesting to see that the numerical
values closely approximate the exact ones of the ball the more
voxels are used (see Fig. 7, the value r describes the number of
voxels used in the direction of the radius).
























