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bstract

The prediction of individuals with mild cognitive impairment (MCI) destined to develop Alzheimer’s disease (AD) is of increasing clinical
mportance. In this study, using baseline T1-weighted MRI scans of 324 MCI individuals from two cohorts and automated software tools, we
mployed factor analyses and Cox proportional hazards models to identify a set of neuroanatomic measures that best predicted the time to progress
rom MCI to AD. For comparison, cerebrospinal fluid (CSF) assessments of cellular pathology and positron emission tomography (PET) measures
f metabolic activity were additionally examined. By 3 years follow-up, 60 MCI individuals from the first cohort and 58 MCI individuals from
he second cohort had progressed to a diagnosis of AD. Cox models on the first cohort demonstrated significant effects for the medial temporal
actor [Hazards Ratio (HR) � 0.43{95% confidence interval (CI), 0.32–0.55}, p � 0.0001], the fronto-parietoccipital factor [HR � 0.59{95% CI,
.48–0.80}, p � 0.001], and the lateral temporal factor [HR � 0.67 {95% CI, 0.52–0.87}, p � 0.01]. When applied to the second cohort, these
ox models showed significant effects for the medial temporal factor [HR � 0.44 {0.32–0.61}, p � 0.001] and lateral temporal factor [HR �
.49 {0.38–0.62}, p � 0.001]. In a combined Cox model, consisting of individual CSF, PET, and MRI measures that best predicted disease
rogression, only the medial temporal factor [HR � 0.53 {95% CI, 0.34–0.81}, p � 0.001] demonstrated a significant effect. These findings
llustrate that automated MRI measures of the medial temporal cortex accurately and reliably predict time to disease progression, outperform
ellular and metabolic measures as predictors of clinical decline, and can potentially serve as a predictive marker for AD.

2010 Elsevier Inc. All rights reserved.
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Predicting the time to progress from mild cognitive im-
airment (MCI) to clinical Alzheimer’s disease (AD) is of
ncreasing importance as therapeutic interventions for the
revention or delay of dementia onset are developed. Struc-
ural MRI provides visualization of the macroscopic tissue
trophy that results from the cellular changes underlying
D and as such, offers one potential, noninvasive method

or early detection and prediction of AD.
A number of prior structural MRI studies have employed

ither manual region of interest (ROI) (Devanand et al., 2007;
leisher et al., 2008; Jack et al., 1999; Killiany et al., 2002) or

utomated whole brain approaches (Karas et al., 2008; Whit-
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ell et al., 2007; Whitwell et al., 2008) to identify those
CI individuals at greatest risk for AD. Though these
ethods offer several advantages, manual ROI methods

ave limited clinical use because they do not allow for the
imely analysis of regions across the entire brain or in large
atasets while many whole brain approaches cannot evalu-
te the disease state in a single individual. More recent ROI
nd whole brain studies have demonstrated that automated
RI-based computational measures can successfully dis-

riminate those MCI individuals who progress to AD from
hose MCI individuals who do not progress (Bakkour et al.,
009; Misra et al., 2009; Querbes et al., 2009; Vemuri et al.,
009). However, only a handful of studies have attempted to
xamine the time to progress from MCI to AD and most of
hese have used manual ROI approaches (Desikan et al.,
009a; Devanand et al., 2007; Jack et al., 1999).

Advances in image analysis algorithms have led to the
evelopment of structural MRI-based software tools that
an automatically parcellate the entire brain into anatomic
egions and quantify the tissue properties in these regions
or a single individual (Desikan et al., 2006; Desikan et al.,
009b; Fischl et al., 2002). In this study, we investigated the
easibility of using these automated MRI-based software
ools as a predictive marker for AD. Using baseline MRI
cans from 162 MCI individuals, we employed factor anal-
ses and Cox proportional hazards models to identify a set
f neuroanatomic regions that best predicted the time to
rogress from MCI to AD. We then examined the predictive
onsistency of these automated MRI measures on a second
ohort of 162 MCI individuals. For comparison, we addi-
ionally evaluated cerebrospinal fluid (CSF) assessments of
ellular pathology and positron emission tomography (PET)
easures of metabolic activity.

. Methods

.1. Overview

All participants were selected from the Alzheimer’s dis-
ase Neuroimaging Initiative (ADNI) database (www.loni.
cla.edu/ADNI). The ADNI is a large multisite collabora-
ive effort launched in 2003 by the National Institute on
ging, the National Institute of Biomedical Imaging and
ioengineering, the Food and Drug Administration, private
harmaceutical companies, and nonprofit organizations as a
ublic–private partnership aimed at testing whether serial
RI, PET, other biological markers, and clinical and neu-

opsychological assessment can be combined to measure the
rogression of MCI and early AD. The Principal Investiga-
or of this initiative is Michael Weiner MD, and ADNI is the
esult of many coinvestigators from a broad range of aca-
emic institutions and private corporations, with subjects
ecruited from over 50 sites across the USA and Canada.

or more information, please see www.adni-info.org. a
.2. Clinical Assessments and Group Characteristics

The institutional review boards of all participating insti-
utions approved the procedures for this study. Written
nformed consent was obtained from all participants or
urrogates. Each participant was selected using eligibility cri-
eria that are described in detail elsewhere (www.adni-info.
rg/index.php?option�com_content&task�view&id�9&
temid�43). The degree of clinical severity for each partic-
pant was evaluated by an annual semi-structured interview.
his interview generates both an overall Clinical Dementia
ating (CDR) score and a measure known as the CDR Sum
f Boxes (CDR-SB) (Morris, 1993). Experienced clinicians
onducted independent semi-structured interviews with the
articipant and a knowledgeable collateral source, which
ncluded a set of questions regarding the functional status of
he participant, along with a standardized neurologic, psy-
hiatric, and health examination. The MiniMental State Ex-
mination (MMSE) (Folstein et al., 1975) and a complete
europsychological battery were also conducted.

Participants were selected from the ADNI database if
hey were clinically classified as the amnestic subtype of

CI, based on the revised MCI criteria (Petersen, 2004).
hese included individuals with MMSE scores between 24
nd 30, a subjective memory complaint verified by an in-
ormant, objective memory loss as measured by education
djusted performance on the Logical Memory II subscale
delayed paragraph recall) of the Wechsler Memory Scale-
evised (Wechsler, 1987), a CDR of 0.5, absence of sig-
ificant levels of impairment in other cognitive domains,
ssentially preserved activities of daily living, and an ab-
ence of dementia. From a total of over 400 MCI individuals
vailable from the ADNI database, 324 individuals with the
mnestic subtype of MCI were selected. For the purposes of
he present study, this larger sample was randomly split
using a random number generator employing a uniform
istribution) into two equal samples (training and validation
ohorts). No statistical differences in demographic variables
ere noted between the two samples.

.3. Cohort 1 – training cohort

At baseline, 162 MCI individuals were examined. At
ollow-up (mean follow-up time of 1.89), 60 of these indi-
iduals met clinical criteria for probable AD (MCI-Convert-
rs) (McKhann et al., 1984) while 102 remained mildly
mpaired (MCI-Nonconverters). Of those mildly impaired at
ollow-up, 46 had CDR-SB scores that increased but their
mpairments had not progressed to the point where they
eceived a diagnosis of AD, 32 had CDR-SB scores that
emained stable and 24 had CDR-SB scores that declined.
pproximately 54 % of these mildly impaired subjects (n �
5) had a CDR-SB of two or higher, and approximately
6% (n � 47) had a CDR-SB score of 0.5–1.5. The mean

ge, educational status, CDR-SB scores, MiniMental State

http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/ADNI
http://www.adni-info.org
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xamination (MMSE) scores, gender distribution, percent
POE-�4, and follow-up time are shown in Table 1.

.4. Cohort 2 – validation cohort

At baseline, 162 MCI individuals were examined. At
ollow-up (mean follow-up time of 1.90), 58 of these indi-
iduals met clinical criteria for probable AD (MCI-Convert-
rs) (McKhann et al., 1984) while 104 remained mildly
mpaired (MCI-Nonconverters). Of those mildly impaired at
ollow-up, 52 had CDR-SB scores that increased but their
mpairments had not progressed to the point where they
eceived a diagnosis of AD, 23 had CDR-SB scores that
emained stable, and 29 had CDR-SB scores that declined.
pproximately 42 % of these mildly impaired subjects (n �
4) had a CDR-SB of two or higher, and approximately
8% (n � 60) had a CDR-SB score of 0.5–1.5.

.5. MRI image acquisition

All ADNI MRI scans were acquired at multiple sites
sing either a GE, siemens, or Philips 1.5-T system. Mul-
iple high-resolution T1-weighted volumetric MP-RAGE
cans were collected for each subject and the raw DICOM
mages were downloaded from the public 1ADNI site (www.
oni.ucla.edu/ADNI/Data/index.shtml). Parameter values vary
epending on scanning site and can be found at www.loni.
cla.edu/ADNI/Research/Cores/.

.6. Automated image analysis procedures

All MRI scans were processed, with little to no manual
ntervention, using the FreeSurfer software package, freely
vailable at surfer.nmr.mgh.harvard.edu. A single, raw
PRAGE MRI acquisition for each participant was down-

oaded from the ADNI database and normalized for inten-
ity inhomogeneities to create an image volume with high
ontrast-to-noise (Dale et al., 1999). This volume was used
o locate the gray/white matter boundary (white matter sur-
ace) (Fischl et al., 1999a) and this in turn, was then used to
ocate the gray/CSF boundary (gray matter surface) (Fischl
nd Dale, 2000). Cortical thickness measurements were
hen obtained by calculating the distance between the gray
nd the white matter surfaces at each point (per hemisphere)

able 1
escriptive statistical information for the participants in the study

iagnostic group Training cohort

MCI-converters MCI

ample size 60 102
ge 75.73 (6.86) 74.2
ercent female 42% 34%
MSE 26.58 (1.83) 27.4
DR-SB 1.85 (0.93) 1.5
ercent APOE-�4 65% 50%
ollow-up Time (years) 1.44 (0.60) 1.8

eans listed with standard deviations in parentheses.
cross the entire cortical mantle (Fischl and Dale, 2000). c
his cortical thickness measurement technique has been
reviously validated via histological (Rosas et al., 2002) as
ell as manual measurements from MRI (Salat et al., 2004).
he reliability of these cortical thickness measures as well
s the other image analysis procedures presented here has
een demonstrated across different scanner manufacturers
nd upgrades, varying contrast with noise ratio, and the
umber of MPRAGE MRI acquisitions used (Fennema-
otestine et al., 2007; Han et al., 2006; Jovicich et al.,
009).

The neocortex of the brain on the MRI scans was then
utomatically subdivided into 32 gyral-based ROIs (per
emisphere, total of 64 neocortical measures). To accom-
lish this, a registration procedure was used that aligns the
ortical folding patterns (Fischl et al., 1999b) and probabi-
istically assigns every point on the cortical surface to one of
he 32 ROIs (Desikan et al., 2006). In addition, two non-
eocortical regions of the brain, namely the amygdala and
he hippocampus, were automatically delineated using an
lgorithm that examines variations in voxel intensities and
patial relationships to classify non-neocortical regions on
RI scans (Fischl et al., 2002).
The anatomic accuracy of the gray and white matter

urfaces as well as each of the individual ROIs was care-
ully reviewed by a trained neuroanatomist (RSD), with
articular attention to the medial temporal lobe where non-
rain tissue, such as dura mater and temporal bone, often
eeds to be excluded. Of note, none of the herein presented
24 datasets required any manual editing. All the MRI scans
ere processed on a Linux cluster with 128 nodes, each
ith a two quad-core Xeon 5472 CPU (Intel Corporation,
anta Clara CA, USA) and 32 GB of RAM. Processing time
or each MRI scan was approximately 11–14 hours. This
luster allows for the processing of 1,024 MRI scans simul-
aneously and all 324 MRI scans used in the present study
ere processed in one day.
In total, 34 neocortical and non-necortical ROIs were

sed in this study. For all the analyses performed here, the
ean thickness (only neocortical regions) and the volume

only non-neocortical regions) of the right and the left
emispheres, for each ROI, were added together. To ac-

Validation cohort

nverters MCI-converters MCI-nonconverters

58 104
74.95 (7.21) 75.58 (7.22)
40% 32%
26.68 (1.70) 27.04 (1.71)
1.83 (1.05) 1.46 (0.79)

67% 48%
1.50 (0.68) 1.90 (0.62)
-nonco

7 (7.47)

9 (1.73)
3 (0.87)

9 (0.66)
ount for differences in head size, the total volume for each

http://www.loni.ucla.edu/ADNI/Data/index.shtml
http://www.loni.ucla.edu/ADNI/Data/index.shtml
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OI was corrected using a previously validated estimate of
he total intracranial volume (eTIV) (Buckner et al., 2004).

.7. Cerebrospinal fluid measures

From the current ADNI sample, several individuals (total
� 168, training cohort n � 85, validation cohort n � 83)

nderwent lumbar puncture for CSF biomarker evaluation.
ethods for CSF acquisition and biomarker measurement

ave been reported previously for this sample (Shaw et al.,
009). In brief, CSF was collected and stored at �80 °C at
he University of Pennsylvania ADNI Biomarker Core Lab-
ratory. Amyloid beta fibrils from peptides 1–42 (A�1-42),
otal tau (t-tau), and phosphorylated tau (p-tau) were mea-
ured using the multiplex xMAP Luminex platform (Lumi-
ex, Corp, Austin, TX) with Innogenetics (INNOBIA Al-
Bio3, Ghent, Belgium) immunoassay kit–based reagents.

.8. Positron emission tomography measures

From the current ADNI sample, several individuals (total
� 153, training cohort n � 76, validation cohort n � 77)

nderwent PET imaging with the metabolic tracer [18F]
uorodeoxyglucose (FDG-PET). Methods for FDG-PET
ata collection and analysis using ROIs have been reported
reviously for this sample (Jagust et al., 2009). In brief,
DG-PET data were first intensity normalized to a reference
OI that was comprised of the averaged pons and cerebellar
ermis. For the FDG-PET analyses, ROIs were defined
sing coordinates from the Montreal Neurological Institute
tlas. Each individual’s PET scan was then spatially nor-
alized to the SPM5 PET template, and mean FDG counts
ere extracted from each ROI. These ROI mean counts
ere then averaged to form a single “composite” FDG ROI

hat was the variable used in all FDG-PET analyses. For the
urposes of the present study, we used ROIs from bilateral
nferior temporal and angular gyri as well as posterior cin-
ulate and precuneus cortices since prior studies have dem-
nstrated significant differences between AD individuals
nd normal elderly controls in these regions (for details see
agust et al., 2009). All FDG ROI values used in the present
tudy were downloaded from the public ADNI site (www.
oni.ucla.edu/ADNI/Data/index.shtml).

.9. Statistical analysis

Data reduction was conducted on the training cohort ROI
easures using factor analysis. First, a correlation matrix
as generated using Pearson’s r to determine the correlation

oefficient between the individual ROI measures. Those
easures with very strong relationships (r � .80) were

emoved from further analyses (Pett et al., 2003). Next, the
actors along with their loading coefficients and the cumu-
ative variance of the factors were extracted from the anal-
sis. We applied a minimum eigenvalue criterion of 1.0
ogether with the examination of a scree plot to determine
ow many factors to retain and these were rotated (varimax)

o maximize the relationship between variables. The factor fi
oadings derived from the training cohort ROI measures
ere then applied to the validation cohort ROI measures.
The automated MRI-derived factors, along with the PET

nd CSF measures, were further analyzed using Cox pro-
ortional hazards models. These analyses tested whether
pecific predictors (e.g. medial temporal factor) are associ-
ted with time to a diagnosis of AD. In these models, the
azard ratio indicates the change in risk per 1 unit change in
he predictor. For instance, if the hazard ratio is 0.43 for the
edial temporal factor, each 1 SD decrease in the volume

nd thickness of this factor increases risk by 57%.
The primary focus of these survival analyses was time

rom study entry to the endpoint of interest, which was the
iagnosis of AD. All proportional hazards models included
ge, education, gender, and APOE-�4 carrier status as co-
ariates. For the training cohort, we entered the automated
RI-derived factors into a multivariate Cox model to de-

ermine which of these measures best predicted the time to
iagnosis. Then, for the validation cohort, we entered only
hose neuroanatomic factors that were the best predictors in
he training cohort data into a second proportional hazards
odel and compared the respective hazard ratios derived from

he training and validation cohorts for each of these measures.
o determine the prediction accuracy of these neuroanatomic

actors, we calculated the area under the curve (AUC), sensi-
ivity, specificity, positive and negative predictive values, and
ositive and negative likelihood ratios individually for the
raining and validation cohorts.

In an additional set of analyses, we entered the individual
SF biomarkers and FDG-ROIs into separate Cox models

o determine if these measures predicted time to diagnosis.
iven the small number of combined available measure-
ent for the CSF and PET measures (total MCI � 78,
CI-Converters � 30, MCI-Nonconverters � 48), we

ooled together data from the training and validation co-
orts for these proportional hazards analyses. Prediction
ccuracies for the combined CSF and PET measures that
est predicted time to event were calculated as described
bove. Individual CSF and PET measures significant at the �
.05 alpha level were combined with those automated MRI-
erived factors that best predicted time to event and entered
nto a final Cox model to determine which individual mea-
ures, in combination, best predicted time to AD diagnosis. For
ach of the multivariate Cox models, we descriptively evalu-
ted the proportional hazards assumption by checking whether
he negative log of survival probabilities associated with higher
evels of each independent variable were constant multiples of
hose of the lower levels, across the entire range of event time.
n addition we tested interaction terms that included the log of
ime to further verify the assumption of proportional hazards.

. Results

The factor analysis on the training cohort ROI measures

rst revealed that none of the measures demonstrated a

http://www.loni.ucla.edu/ADNI/Data/index.shtml
http://www.loni.ucla.edu/ADNI/Data/index.shtml
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earson’s r of greater than 0.8 and therefore all ROI mea-
ures were included for further analyses. Four factors were
xtracted after rotation and confirmed using scree plots. The
otal explained variance for these factors was 73.11%.
hese four factors included: 1) the medial temporal factor,
onsisting primarily of the amygdala (Factor Loading (FL) �
.84), hippocampus (FL � 0.78), entorhinal cortex (FL �
.76), temporal pole (FL � 0.68), and parahippocampal gyrus
FL � 0.62), 2) the fronto-parietoccipital factor, consisting
rimarily of the superior parietal gyrus (FL � 0.87), cuneus
ortex (FL � 0.77), caudal middle frontal gyrus (FL � 0.77),
nferior parietal cortex (FL � 0.73) and lateral occipital cortex
FL � 0.73), 3) the fronto-cingulate factor, consisting primarily
f the rostral anterior (FL � 0.78) and caudal anterior (FL �
.74) portions of the cingulate cortex and the medial (FL �
.73) and lateral (FL � 0.66) portions of the orbital frontal
ortex, and 4) the lateral temporal factor, consisting primarily

ig. 1. Multivariate Cox model results for the four neuroanatomic factors
emisphere is shown) in (a) lateral and (b) medial views, and (c) in the c
emporal factor (individual ROIs illustrated in red), 2) fronto-parietocc
individual ROIs illustrated in bright yellow), and 4) fronto-cingulate fac
llustrates the magnitude of risk (hazard ratio) associated with progressing
ed indicating regions with the highest risk (please see text for specific ha
f the middle temporal gyrus (FL � 0.69), inferior temporal 8
yrus (FL � 0.69), banks of the superior temporal sulcus
FL � 0.62) and superior temporal gyrus (FL � 0.54). Figures
and 2 anatomically illustrate the factors used in this study.
For the training cohort, the multivariate proportional

azards model for the automated MRI-derived factors dem-
nstrated significant effects for the medial temporal factor
Hazards Ratio (HR) � 0.43{95% confidence interval (CI),
.32–0.55}, p � 0.0001], the fronto-parietoccipital factor
HR � 0.59 {95% CI, 0.48–0.80}, p � 0.001], and the
ateral temporal factor [HR � 0.67 {95% CI, 0.52–0.87},
� 0.01]. For the validation cohort, the multivariate propor-

ional hazards model showed significant effects for the me-
ial temporal factor [HR � 0.44 {0.32–0.61}, p � 0.001]
nd lateral temporal factor [HR � 0.49 {0.38–0.62}, p �
.001]. The prediction accuracy for the training cohort was
UC � 0.82, sensitivity � 74%, specificity � 84%, posi-

ive predictive value � 77%, negative predictive value �

from the training cohort displayed on the gray matter surface (only one
view of a T1-weighted MRI image. These factors include the 1) medial
ctor (individual ROIs illustrated in orange), 3) lateral temporal factor
ividual ROIs illustrated in faded yellow). The color scale at the bottom
CI to AD, with faded yellow indicating regions with the lowest risk and

tios for each of the factors).
derived
oronal

ipital fa
tor (ind
from M
2%, positive likelihood ratio � 4.65, negative likelihood
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atio � 0.30. The prediction accuracy for the validation
ohort was AUC � 0.84, sensitivity � 87%, specificity �
6%, positive predictive value � 60%, negative predictive
alue � 82%, positive likelihood ratio � 2.53, negative
ikelihood ratio � 0.39.

The additional CSF and FDG-ROI multivariate propor-
ional hazards models demonstrated significant effects for
�1-42 [HR � 0.99 {95% CI, 0.98–0.99}, p � 0.05] and
etabolic measurements from the inferior temporal cortex

HR � 0.002 {95% CI, 0.00–0.19}, p � 0.01. The predic-
ion accuracy of these two measures was AUC � 0.70,
ensitivity � 93%, specificity � 48%, positive predictive
alue � 53%, negative predictive value � 92%, positive
ikelihood ratio � 1.78, negative likelihood ratio � 0.13.
he final multivariate Cox model demonstrated that only the
edial temporal factor [HR � 0.53 {95% CI, 0.34–0.81},
� 0.001] represented the best measure to predict time to

rogress from MCI to AD. The lateral temporal factor [HR �
.83 {95% CI, 0.47–1.40}, p � 0.1], A�1-42 [HR � 0.99

ig. 2. T1-weighted MRI images in the coronal view showing marked
ntorhinal cortex thickness, for a representative (a) MCI-Converter and (b)
verlay shows the gray/white matter boundary and the distance between t
95% CI, 0.98–1.00}, p � 0.1] and metabolic measure- n
ents from the inferior temporal cortex [HR � 0.24 {95%
I, 0.00–35.2}, p � 0.1] did not demonstrate significant
ffects. The addition of the neuroanatomic factors signifi-
antly improved (p � 0.001) the prediction accuracy com-
ared with CSF and FDG-ROI measures alone (AUC �
.83, sensitivity � 90%, specificity � 69%, positive pre-
ictive value � 64%, negative predictive value � 92%,
ositive likelihood ratio � 2.90, negative likelihood ratio �
.32). To ensure that the results presented here were not
ubject to sample size related issues, we evaluated the four
euroanatomic factors as predictors in an independent Cox
odel using only those MCI individuals with CSF and PET
easures (total MCI � 78, MCI-Converters � 30, MCI-
onconverters � 48) and found that for this smaller sub-

ample, the medial temporal factor continued to demon-
trate significant effects [HR � 0.40 {95% CI, 0.19–0.58},
� 0.01].
The probability of progressing from MCI to AD based on

he value of the medial temporal factor (volume and thick-

ces in the medial temporal lobe, specifically hippocampal volume and
onconverter. The red overlay shows the gray/CSF boundary and the white
rfaces represents the cortical thickness.
differen
MCI-N
ess), derived from the training and validation cohorts, is
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llustrated using predicted survival plots based on the mul-
ivariate Cox models (Figure 3). Based on these models, by

years from baseline, an MCI individual with a medial
emporal factor value at the MCI average has a 44% to 52%
robability of progressing to AD. In comparison, by 3 years
rom baseline, an MCI individual with a medial temporal
actor value 1 SD below the MCI average has a 74% to 85%
robability of progressing to AD and an MCI individual
ith a medial temporal factor value 1 SD above the MCI

verage has a 22% to 28% probability of progressing to AD.

. Discussion

These results demonstrate that automated MRI measure-

ig. 3. Predicted survival plots estimating the probability of progressing fr
he medial temporal factor (volume and thickness), shown at the mean (red lin
ents of medial temporal cortex thickness and volume g
uccessfully predict the time to progress from MCI to AD,
emonstrate robust reliability and consistency across mul-
iple cohorts, and outperform CSF and PET measures as
redictors of clinical disease progression. Taken together,
hese findings indicate the importance of using automated

RI-based software tools as a predictive marker for Alz-
eimer’s disease.

Automated MRI measures can successfully quantify the
isk associated with progressing to AD. Among MCI indi-
iduals, atrophy of the medial temporal factor regions (con-
isting primarily of entorhinal cortex thickness, hippocam-
al volume, amygdala volume, temporal pole thickness, and
arahippocampal gyrus thickness) was associated with a

I to AD in the training (a) and validation (b) cohorts based on the value of
one standard deviation above (green lines) and below (blue lines) the mean.
om MC
reater than 50% risk increase in the training and validation
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ohorts. Based on these multivariate models, by 3 years
rom baseline, MCI individuals with significant atrophy of
he medial temporal factor regions (1 SD below the MCI
verage) are three times as likely to progress to AD, com-
ared with MCI individuals with preserved medial temporal
actor regions (1 SD above the MCI average). These time to
rogress risk assessments are consistent with prior structural
RI studies of MCI progression using the hippocampus and

ntorhinal cortex (Apostolova et al., 2006; Desikan et al.,
009a; Devanand et al., 2007; Jack et al., 1999; Kantarci et
l., 2009) and demonstrate that limbic and pro-isocortical
egions, such as the amygdala and temporal pole, are addi-
ionally important as predictors for the earliest stages of AD.

The results presented here indicate that unbiased dimen-
ion reduction approaches, such as factor analyses, can be
sed on a large number of automated MRI measures to
erive a set of neuroanatomic factors that can successfully
redict the time to progress from MCI to AD. The fact that
he regions of the 1) medial temporal, 2) frontal parietal, 3)
ateral temporal, and 4) frontal cingulate cortices combined
ogether to form individual factors is consistent with the
ierarchical pathology of AD (Arnold et al., 1991; Braak
nd Braak, 1991; Kemper, 1994) and suggests the potential
f using automated MRI measures for the in vivo staging of
lzheimer’s pathology. As disease predictors, though the
alue of the hazard ratios were comparable in magnitude,
he narrow confidence intervals for the individual neuroana-
omic factors, compared with the wide confidence intervals
or the individual ROIs (data not presented), indicates that
actor based automated MRI assessments are more precise
han individual ROIs for quantifying the risk associated
ith disease progression.
The results from the multivariate proportional hazards

odels further illustrate that the training cohort derived
edial temporal factor loadings are highly consistent and

eproducible. In predicting the time to progress from MCI to
D, the hazard ratio for the medial temporal factor was

imilar across the training and validation cohorts indicating
he reliability of this measure across multiple MCI cohorts.
n contrast, the hazard ratio for the lateral temporal factor
as different across the training and validation cohorts

uggesting that for disease prediction this measure is not as
eliable as the medial temporal factor. Furthermore, when
he medial temporal factor regions were used for estimating
urvival, a similar number of MCI individuals from the
raining and validation cohorts progressed to AD at 1, 2, and

years from baseline. This shows that the training cohort
erived medial temporal factor loading values are clinically
pplicable and can be used for predicting disease progres-
ion in populations other than that from which the training
ohort were drawn.

As a predictor of clinical disease progression, atrophy of
he medial temporal cortex outperforms cellular measures of
athology and metabolic assessments of the cerebral cortex.

hough CSF-based A�1-42 and PET-based metabolic mea- s
urements from the inferior temporal cortex individually
redicted progression to AD, when combined with the neu-
oanatomic factors, these measures could not predict clini-
al decline as successfully as the medial temporal factor.
hese findings are in accordance with prior MCI studies
emonstrating better disease prediction with structural neu-
oimaging markers than either CSF (Vemuri et al., 2009) or
ET measures (Walhovd et al., 2009), although a recent
eta-analysis did find that PET is a slightly better disease

redictor than MRI (Yuan et al., 2009). Given the high
egative predictive value of 92% and the low negative
ikelihood ratio of 0.13, these findings suggest the potential
or using CSF and PET measures as a potential screening
ool. However, given the comparable AUC and positive
redictive value for the combined CSF, PET and MRI
easures compared with the MRI measures alone (both for

he training and validation cohorts), our results suggest that
urther studies are needed to determine whether the diag-
ostic benefits of using multiple modalities outweigh the
osts.

Why do morphometric measures of atrophy better pre-
ict disease progression than cellular or metabolic markers
f pathology? One explanation may involve the temporal
volution of the AD disease process where A� and meta-
olic changes precede gray matter disturbances (Frisoni et
l., 2010; Jack et al., 2010). Recent studies have shown that
myloid deposition is present before the onset of cognitive
ecline (Sperling et al., 2009) and potentially contributes to
etabolic and network-wide disruptions within cerebral

ortical regions (Buckner et al., 2005, 2009; Hedden et al.,
009). As such, A� and FDG-PET measures are likely more
seful earlier in the disease process, possibly as a screening
ool, than as a late predictive marker of MCI progression.
nother explanation could be that automated MRI-based
easures are a more stable indicator of long-term neuronal

njury than CSF or FDG-PET markers. Structural MRI
easures are not subject to diurnal variation, unlike proteins
easured from the cerebrospinal fluid (De Leon et al.,

002) and likely reflect neuronal loss better than metabolic
easures, which largely indicate fluctuations in synaptic

ctivity and action potential propagation (Attwell and
aughlin, 2001).

The methods described here can be implemented in a
linical setting as a predictive marker for AD. Using these
oftware tools a single volumetric baseline T1-weighted
RI scan can be completely processed, with minimal man-

al intervention. The factor loadings presented here can then
e applied to the final output values of entorhinal cortex
hickness, hippocampal volume, amygdala volume, tempo-
al pole thickness, and parahippocampal gyrus thickness to
uantify the 1, 2, and 3 year probability of a single individ-
al progressing from MCI to AD.

The present study has limitations. This study was con-
ucted on a carefully examined cohort of MCI individuals

elected using criteria for inclusion in clinical trials. As
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uch, these results need to be validated on a larger, com-
unity-based, volunteer cohort that would be more repre-

entative of a clinical setting. A second limitation is the
elatively short follow-up times, which could have resulted
n including individuals with a greater degree of impairment
hus increasing the likelihood of finding significant differ-
nces. Prior work from our group has shown that MRI
easures can successfully predict progression to AD in
ilder MCI individuals with longer follow-up times

greater than 5 years) (Desikan et al., 2009a). Considered
ogether, these results suggest that MRI measures have
ignificant value as a predictive marker both in the early and
ater stages of disease progression. Another concern is that
he smaller sample size of MCI individuals with PET and
SF measures may contribute to decreased power and non-

ignificant effects for these two measures compared with the
edial temporal factor. In an independent Cox model using

nly those MCI individuals with PET and CSF measures,
he medial temporal factor continued to demonstrate a sig-
ificant effect, comparable in magnitude (Hazards Ratio of
.40) to the risk noted in the larger training (Hazards Ratio
f 0.43) and validation cohorts (Hazards Ratio of 0.44)
ndicating that the main findings from this study are likely
ot subject to sample size related issues.

The early identification and prediction of those cogni-
ively impaired individuals destined to develop Alzheimer’s
isease is of significant importance as therapies for altering
he course of the illness or delaying dementia onset are
eveloped. The results from this study demonstrates that
utomated MRI-based neuroanatomic measures can identify
ndividuals in the earliest stages of the disease process and
ave promise in the clinical setting as a biomarker for
racking Alzheimer’s disease progression.

isclosure statement

The authors have no actual or potential conflicts of in-
erest.

cknowledgements

The authors thank Reisa Sperling for her insightful com-
ents on this manuscript. This work was supported by

rants from the National Center for Research Resources
P41-RR14075, R01 RR 16594-01A1 and the NCRR Birn

orphometric Project BIRN002, U24 RR021382), the Na-
ional Institute for Biomedical Imaging and Bioengineering
R01 EB001550), the Mental Illness and Neuroscience Dis-
overy (MIND) Institute, and the National Institute on Ag-
ng (P50 AG05681, P01 AG03991, and AG021910). Data
ollection and sharing for this project was funded by the
lzheimer’s disease Neuroimaging Initiative (Alzheimer’s
isease Neuroimaging initiative (ADNI); Principal Investi-
ator: Michael Weiner; NIH grant U01 AG024904). ADNI

s funded by the National Institute on Aging, the National
nstitute of Biomedical Imaging and Bioengineering (NIBIB),
nd through generous contributions from the following: Pfizer,
nc., Wyeth Research, Bristol-Myers Squibb, Eli Lilly and
ompany, GlaxoSmithKline, Merck & Co., Inc., AstraZeneca
B, Novartis Pharmaceuticals Corporation, Alzheimer’s
ssociation, Eisai Global Clinical Development, Elan Cor-
oration, plc, Forest Laboratories, and the Institute for the
tudy of Aging, with participation from the US Food and
rug Administration. Industry partnerships are coordinated

hrough the Foundation for the National Institutes of Health.
he grantee organization is the Northern California Institute

or Research and Education, and the study is coordinated by
he Alzheimer’s Disease Cooperative Study at the Univer-
ity of California, San Diego. ADNI data are disseminated
y the Laboratory of Neuro Imaging at the University of
alifornia, Los Angeles.

eferences

postolova, L.G., Dutton, R.A., Dinov, I.D., Hayashi, K.M., Toga, A.W.,
Cummings, J.L., Thompson, P.M., 2006. Conversion of mild cognitive
impairment to Alzheimer disease predicted by hippocampal atrophy
maps. Arch Neurol 63, 693–699.

rnold, S.E., Hyman, B.T., Flory, J., Damasio, A.R., Van Hoesen, G.W.,
1991. The topographical and neuroanatomical distribution of neurofi-
brillary tangles and neuritic plaques in the cerebral cortex of patients
with Alzheimer’s disease. Cereb Cortex 1, 103–116.

ttwell, D., Laughlin, S.B., 2001. An energy budget for signaling in the
grey matter of the brain. J Cereb Blood Flow Metab 21, 1133–1145.

akkour, A., Morris, J.C., Dickerson, B.C., 2009. The cortical signature of
prodromal AD: regional thinning predicts mild AD dementia. Neurol-
ogy 72, 1048–1055.

raak, H., Braak, E., 1991. Neuropathological staging of Alzheimer-re-
lated changes. Acta Neuropathol (Berlin) 82, 239–259.

uckner, R.L., Head, D., Parker, J., Fotenos, A.F., Marcus, D., Morris,
J.C., Snyder, A.Z., 2004. A unified approach for morphometric and
functional data analysis in young, old, and demented adults using
automated atlas-based head size normalization: reliability and valida-
tion against manual measurement of total intracranial volume. Neuro-
image 23, 724–738.

uckner, R.L., Snyder, A.Z., Shannon, B.J., laRossa, G., Sachs, R., Fote-
nos, A.F., Sheline, Y.I., Klunk, W.E., Mathis, C.A., Morris, J.C.,
Mintun, M.A., 2005. Molecular, structural, and functional character-
ization of Alzheimer’s disease: evidence for a relationship between
default activity, amyloid, and memory. J Neurosci 25, 7709–7717.

uckner, R.L., Sepulcre, J., Talukdar, T., Krienen, F.M., Liu, H., Hedden,
T., Andrews-Hanna, J.R., Sperling, R.A., Johnson, K.A., 2009. Cortical
hubs revealed by intrinsic functional connectivity: mapping, assess-
ment of stability, and relation to Alzheimer’s disease. J Neurosci 29,
1860–1873.

ale, A.M., Fischl, B., Sereno, M.I., 1999. Cortical surface-based analysis.
I. Segmentation and surface reconstruction. Neuroimage 9, 179–194.

e Leon, M.J., Segal, S., Tarshish, C.Y., DeSanti, S., Zinkowski, R.,
Mehta, P.D., Convit, A., Caraos, C., Rusinek, H., Tsui, W., Saint Louis,
L.A., deBernardis, J., Kerkman, D., Qadri, F., Gary, A., Lesbre, P.,
Wisniewski, T., Poirier, J., Davies, P., 2002. Longitudinal cerebrospi-
nal fluid tau load increases in mild cognitive impairment. Neurosci Lett
333, 183–186.

esikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C.,
Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T.,

Albert, M.S., Killiany, R.J., 2006. An automated labeling system for



D

D

D

F

F

F

F

F

F

F

F

H

H

J

J

J

J

K

K

K

M

M

M

P
P

Q

R

S

S

S

V

W

10 R.S. Desikan et al. / Neurobiology of Aging xx (2010) xxx

ARTICLE IN PRESS
subdividing the human cerebral cortex on MRI scans into gyral based
regions of interest. Neuroimage 31, 968–980.

esikan, R.S., Cabral, H.J., Fischl, B., Guttmann, C.R., Blacker, D.,
Hyman, B.T., Albert, M.S., Killiany, R.J., 2009a. Temporoparietal MR
Imaging measures of atrophy in subjects with mild cognitive impair-
ment that predict subsequent diagnosis of Alzheimer’s disease. AJNR
Am J Neuroradiol 30, 532–538.

esikan, R.S., Cabral, H.J., Hess, C.P., Dillon, W.P., Glastonbury, C.M.,
Weiner, M.W., Schmansky, N.J., Greve, D.N., Salat, D.H., Buckner,
R.L., Fischl, B., 2009b. Automated MRI measures identify individuals
with mild cognitive impairment and Alzheimer’s disease. Brain 132,
2048–2057.

evanand, D.P., Pradhaban, G., Liu, X., Khandji, A., De Santi, S., Segal,
S., Rusinek, H., Pelton, G.H., Honig, L.S., Mayeux, R., Stern, Y.,
Tabert, M.H., de Leon, M.J., 2007. Hippocampal and entorhinal atro-
phy in mild cognitive impairment: prediction of Alzheimer disease.
Neurology 68, 828–836.

ennema-Notestine, C., Gamst, A.C., Quinn, B.T., Pacheco, J., Jernigan,
T.L., Thal, L., Buckner, R., Killiany, R., Blacker, D., Dale, A.M.,
Fischl, B., Dickerson, B., Gollub, R.L., 2007. Feasibility of multi-site
clinical structural neuroimaging studies of aging using legacy data.
Neuroinformatics 5, 235–245.

ischl, B., Sereno, M.I., Dale, A.M., 1999a. Cortical surface-based anal-
ysis. II: Inflation, flattening, and a surface-based coordinate system.
Neuroimage 9, 195–207.

ischl, B., Sereno, M.I., Tootell, R.B., Dale, A.M., 1999b. High-resolution
intersubject averaging and a coordinate system for the cortical surface.
Hum Brain Map 8, 272–284.

ischl, B., Dale, A.M., 2000. Measuring the thickness of the human
cerebral cortex from magnetic resonance images. Proc Natl Acad Sci
USA 97, 11050–11055.

ischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C.,
van der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo,
A., Makris, N., Rosen, B., Dale, A.M., 2002. Whole brain segmenta-
tion: automated labeling of neuroanatomical structures in the human
brain. Neuron 33, 341–355.

leisher, A.S., Sun, S., Taylor, C., Ward, C.P., Gamst, A.C., Petersen,
R.C., Jack, C.R., Jr, Aisen, P.S., Thal, L.J., 2008. Volumetric MRI vs
clinical predictors of Alzheimer disease in mild cognitive impairment.
Neurology 70, 191–199.

olstein, M., Folstein, S., McHugh, P., 1975. Mini-Mental State. A prac-
tical method for grading the cognitive state of patients for the clinician.
J Psychiatr Res 12, 189–198.

risoni, G.B., Fox, N.C., Jack, C.R., Jr, Scheltens, P., Thompson, P.M.,
2010. The clinical use of structural MRI in Alzheimer disease. Nat Rev
Neurol 6, 67–77.

an, X., Jovicich, J., Salat, D., van der Kouwe, A., Quinn, B., Czanner, S.,
Busa, E., Pacheco, J., Albert, M., Killiany, R., Maguire, P., Rosas, D.,
Makris, N., Dale, A., Dickerson, B., Fischl, B., 2006. Reliability of
MRI-derived measurements of human cerebral cortical thickness: the
effects of field strength, scanner upgrade and manufacturer. Neuroim-
age 32, 180–194.

edden, T., Van Dijk, K.R., Becker, J.A., Mehta, A., Sperling, R.A.,
Johnson, K.A., Buckner, R.L., 2009. Disruption of functional connec-
tivity in clinically normal older adults harboring amyloid burden.
J Neurosci 29, 12686–12694.

ack, C.R., Jr, Petersen, R.C., Xu, Y.C., O’Brien, P.C., Smith, G.E., Ivnik,
R.J., Boeve, B.F., Waring, S.C., Tangalos, E.G., Kokmen, E., 1999.
Prediction of AD with MRI-based hippocampal volume in mild cog-
nitive impairment. Neurology 52, 1397–1403.

ack, C.R., Jr, Knopman, D.S., Jagust, W.J., Shaw, L.M., Aisen, P.S.,
Weiner, M.W., Petersen, R.C., Trojanowski, J.Q., 2010. Hypothetical
model of dynamic biomarkers of the Alzheimer’s pathological cascade.
Lancet Neurol 9, 119–128.

agust, W.J., Landau, S.M., Shaw, L.M., Trojanowski, J.Q., Koeppe, R.A.,

Reiman, E.M., Foster, N.L., Petersen, R.C., Weiner, M.W., Price, J.C.,
Mathis, C.A. Alzheimer’s Disease Neuroimaging Initiative, 2009.
Relationships between biomarkers in aging and dementia. Neurology
73, 1193–1199.

ovicich, J., Czanner, S., Han, X., Salat, D., van der Kouwe, A., Quinn, B.,
Pacheco, J., Albert, M., Killiany, R., Blacker, D., Maguire, P., Rosas,
D., Makris, N., Gollub, R., Dale, A., Dickerson, B., Fischl, B., 2009.
MRI-derived measurements of human subcortical, ventricular and in-
tracranial brain volumes: Reliability effects of scan sessions, acquisi-
tion sequences, data analyses, scanner upgrade, scanner vendors and
field strengths. Neuroimage 46, 177–192.

aras, G., Sluimer, J., Goekoop, R., van der Flier, W., Rombouts, S.A.,
Vrenken, H., Scheltens, P., Fox, N., Barkhof, F., 2008. Amnestic mild
cognitive impairment: structural MR imaging findings predictive of
conversion to Alzheimer disease. AJNR Am J Neuroradiol 29, 944–
949.

emper, T.L., 1994. Neuroanatomical and neuropathological changes in
normal aging and in dementia In: Albert, M. Knoefel, editors. J.
Clinical Neurology of Aging. Oxford University Press, New York.

illiany, R.J., Hyman, B.T., Gomez-Isla, T., Moss, M.B., Kikinis, R., Jolesz,
F., Tanzi, R., Jones, K., Albert, M.S., 2002. MRI measures of entorhinal
cortex vs hippocampus in preclinical. Adv Neurol 58, 1188–1196.

cKhann, G., Drachman, D., Folstein, M.F., Katzman, R., Price, D.,
Stadlan, E., 1984. Clinical diagnosis of Alzheimer’s disease: Report
of the NINCDS-ADRDA Work Group under the auspices of De-
partment of Health and Human Services Task Force. Neurology 34,
939 –944.

isra, C., Fan, Y., Davatzikos, C., 2009. Baseline and longitudinal patterns
of brain atrophy in MCI patients, and their use in prediction of short-
term conversion to AD: results from ADNI. Neuroimage 44, 1415–
1422.

orris, J.C., 1993. The Clinical Dementia Rating (CDR): current version
and scoring rules. Neurology 43, 2412–2414.

etersen, R., 2004. Mild cognitive impairment. J Intern Med 256, 183–194.
ett, M.A., Lackey, N.R., Sullivan, J.J., 2003. Making Sense of Factor

Analysis: The Use of Factor Analysis for Instrument Development in
Health Care Research. Sage, Thousand Oaks, CA.

uerbes, O., Aubry, F., Pariente, J., Lotterie, J.A., Démonet, J.F., Duret, V.,
Puel, M., Berry, I., Fort, J.C., Celsis, P. Alzheimer’s Disease Neuroimag-
ing Initiative, 2009. Early diagnosis of Alzheimer’s disease using cortical
thickness: impact of cognitive reserve. Brain 132, 2036–2047.

osas, H.D., Liu, A.K., Hersch, S., Glessner, M., Ferrante, R.J., Salat,
D.H., van der Kouwe, A., Jenkins, B.G., Dale, A.M., Fischl, B., 2002.
Regional and progressive thinning of the cortical ribbon in Hunting-
ton’s disease. Neurology 58, 695–701.

alat, D.H., Buckner, R.L., Snyder, A.Z., Greve, D.N., Desikan, R.S.,
Busa, E., Morris, J.C., Dale, A.M., Fischl, B., 2004. Thinning of the
cerebral cortex in aging. Cereb Cortex 14, 721–730.

haw, L.M., Vanderstichele, H., Knapik-Czajka, M., Clark, C.M., Aisen,
P.S., Petersen, R.C., Blennow, K., Soares, H., Simon, A., Lewczuk, P.,
Dean, R., Siemers, E., Potter, W., Lee, V.M., Trojanowski, J.Q.. Alz-
heimer’s Disease Neuroimaging Initiative, 2009. Cerebrospinal fluid
biomarker signature in Alzheimer’s disease neuroimaging initiative
subjects. Ann Neurol 65, 403–413.

perling, R.A., Laviolette, P.S., O’Keefe, K., O’Brien, J., Rentz, D.M.,
Pihlajamaki, M., Marshall, G., Hyman, B.T., Selkoe, D.J., Hedden, T.,
Buckner, R.L., Becker, J.A., Johnson, K.A., 2009. Amyloid deposition
is associated with impaired default network function in older persons
without dementia. Neuron 63, 178–188.

emuri, P., Wiste, H.J., Weigand, S.D., Shaw, L.M., Trojanowski, J.Q.,
Weiner, M.W., Knopman, D.S., Petersen, R.C., Jack, C.R., Jr. Alzhei-
mer’s Disease Neuroimaging Initiative, 2009. MRI and CSF biomark-
ers in normal, MCI, and AD subjects: predicting future clinical change.
Neurology 73, 294–301.

alhovd, K.B., Fjell, A.M., Amlien, I., Grambaite, R., Stenset, V., Bjørn-

erud, A., Reinvang, I., Gjerstad, L., Cappelen, T., Due-Tønnessen, P.,



W

W

W

Y

11R.S. Desikan et al. / Neurobiology of Aging xx (2010) xxx

ARTICLE IN PRESS
Fladby, T., 2009. Multimodal imaging in mild cognitive impairment:
Metabolism, morphometry and diffusion of the temporal-parietal
memory network. Neuroimage 45, 215–223.

echsler, D., 1987. Wechsler Memory Scale-Revised. The Psychological
Corporation, San Antonio.

hitwell, J.L., Przybelski, S.A., Weigand, S.D., Knopman, D.S., Boeve,
B.F., Petersen, R.C., Jack, C.R., Jr, 2007. 3D maps from multiple MRI
illustrate changing atrophy patterns as subjects progress from mild

cognitive impairment to Alzheimer’s disease. Brain 130, 1777–1786.
hitwell, J.L., Shiung, M.M., Przybelski, S.A., Weigand, S.D., Knopman,
D.S., Boeve, B.F., Petersen, R.C., Jack, C.R., Jr, 2008. MRI patterns of
atrophy associated with progression to AD in amnestic mild cognitive
impairment. Neurology 70, 512–520.

uan, Y., Gu, Z.X., Wei, W.S., 2009. Fluorodeoxyglucose-positron-emis-
sion tomography, single-photon emission tomography, and structural
MR imaging for prediction of rapid conversion to Alzheimer disease in
patients with mild cognitive impairment: a meta-analysis. AJNR Am J

Neuroradiol 30, 404–410.


	Automated MRI measures predict progression to Alzheimer's disease
	Methods
	Overview
	Clinical Assessments and Group Characteristics
	Cohort 1 – training cohort
	Cohort 2 – validation cohort
	MRI image acquisition
	Automated image analysis procedures
	Cerebrospinal fluid measures
	Positron emission tomography measures
	Statistical analysis

	Results
	Discussion
	Disclosure statement
	Acknowledgements
	References


