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Diffuse optical imaging (DOI) allows the recovery of the hemodynamic response associated with evoked brain
activity. The signal is contaminated with systemic physiological interference which occurs in the superficial
layers of the head as well as in the brain tissue. The back-reflection geometry of the measurement makes the
DOI signal strongly contaminated by systemic interference occurring in the superficial layers. A recent
development has been the use of signals from small source-detector separation (1 cm) optodes as regressors.
Since those additional measurements are mainly sensitive to superficial layers in adult humans, they help in
removing the systemic interference present in longer separation measurements (3 cm). Encouraged by those
findings, we developed a dynamic estimation procedure to remove global interference using small optode
separations and to estimate simultaneously the hemodynamic response. The algorithm was tested by
recovering a simulated synthetic hemodynamic response added over baseline DOI data acquired from6human
subjects at rest. The performance of the algorithm was quantified by the Pearson R2 coefficient and the mean
square error (MSE) between the recovered and the simulated hemodynamic responses. Our dynamic
estimator was also compared with a static estimator and the traditional adaptive filtering method. We
observed a significant improvement (two-tailed paired t-test, pb0.05) in bothHbO andHbR recovery using our
Kalman filter dynamic estimator compared to the traditional adaptive filter, the static estimator and the
standard GLM technique.
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Introduction

Diffuse optical imaging (DOI) is an experimental technique that uses
near-infrared spectroscopy (NIRS) to image biological tissue (Villringer
et al., 1993; Obrig and Villringer, 2003; Gibson et al., 2005; Hillman,
2007; Hoshi, 2007). The dominant chromophores in this spectrum are
the two forms of hemoglobin: oxygenated hemoglobin (HbO) and
reduced hemoglobin (HbR). In the past 15 years, this technique has
been used for the noninvasive measurement of the hemodynamic
changes associated with evoked brain activity (Villringer et al., 1993;
Hoshi, 2007).

Compared with other existing functional imaging methods e.g.,
functional Magnetic Resonance Imaging (fMRI), Positron Emission
Tomography (PET), Electroencephalography (EEG), and Magnetoence-
phalography (MEG), the advantages of DOI for studying brain function
include good temporal resolution of the hemodynamic response,
measurement of both HbO and HbR, nonionizing radiation, portability,
and low cost. Disadvantages include modest spatial resolution and
limited penetration depth.

The sensitivity of NIRS to evoked brain activity is also reduced by
systemic physiological interference arising from cardiac activity,
respiration, and other homeostatic processes (Obrig et al., 2000;
Tonorov et al., 2000; Payne et al., 2009; Diamond et al., 2009). These
sources of interference are called global interference or systemic
interference. Part of the interference occurs both in the superficial
layers of the head (scalp and skull) and in the brain tissue itself.
However, the back-reflection geometry of the measurement makes
NIRS significantly more sensitive to the superficial layers. As such, the
NIRS signal is often dominated by systemic interference occurring in the
skin and the skull.

Different methods have been used in the literature to remove the
systemic interference from DOI measurements. Low pass filtering is
widely used in the literature, as it is highly effective at removing cardiac
oscillations (Franceschini et al., 2003; Jasdzewski et al., 2003). However,
there is a significant overlap between the frequency spectrum of the
hemodynamic response to brain activity and the spectrum of other
physiological variations such as respiration, spontaneous low frequency
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oscillations and very low frequency oscillations. Frequency-based
removal of these sources of interference can therefore result in large
distortion and inaccurate timing for the recovered brain activity signal.
As such, more powerful methods for global noise reduction have been
developed. These include adaptive average waveform subtraction
(Gratton and Corballis, 1995), subtraction of another NIRS source-
detector (SD) channel performed over a non-activated region of the
brain (Franceschini et al., 2003), principal component analysis (Zhang
et al., 2005; Franceschini et al., 2006) and finally wavelet filtering (Lina
et al., 2008, 2010; Matteau-Pelletier et al., 2009; Jang et al., 2009).

A recent development for removing global interference from NIRS
measurements is to use additional optodes in the activated region with
small SD separations that are sensitive to superficial layers only (Saager
and Berger, 2008; Zhang et al., 2007a,b, 2009; Umeyama and Yamada,
2009; Yamada et al., 2009; Gregg et al., 2010). Making the assumption
that the signal collected in the superficial layers is dominated by
systemic physiologywhich is also dominant in the longer SD separation
NIRS channel, those additional measurements can be used as regressors
to filter systemic interference from the longer SD separations. Saager
and Berger (2005) used additional optodes and a linearminimummean
square estimator (LMMSE) to partially remove the systemic interfer-
ence in the signal. In a second step, the evoked hemodynamic response
was estimated using a traditional block-average method over the
different trials. The algorithmwas further refined byZhanget al. (2007a,
b, 2009) to consider the non-stationary behavior of the systemic
interference. They used an adaptive filtering technique together with
additional small separation measurements to filter the systemic
interference from the raw signal and then performed the block-average
technique to estimate the hemodynamic response in a second step.

Although these methods greatly reduced global interference in NIRS
data, the filtering of the systemic interference and the estimation of the
hemodynamic response were performed in two steps, which might not
be optimal. Previous studies have shown that the simultaneous
estimation of the hemodynamic response and removal of the systemic
interference using temporal basis functions (Kolehmainen et al., 2003;
Prince et al., 2003) or auxiliary systemic measurements (Diamond et al.,
2006) was possible using state-space modeling. Moreover, Diamond et
al. proposed a way to quantify the accuracy of such filtering methods.
Real NIRS data collected over the head of human subjects at rest were
used to generate realistic noise. A synthetic hemodynamic responsewas
added over the realNIRS baseline time course and the responsewas then
recovered from this noisy data set. The recovered response was then
compared with the synthetic one used to generate the time course. This
method for evaluating reconstruction algorithms has been reproduced
by other groups (Lina et al., 2008, 2010; Matteau-Pelletier et al., 2009).

In the present study, we combined small separation measurements
and state-space modeling for the estimation of the hemodynamic
Fig. 1. a) Position of the probe over the head of the subjects b) Geometry of the optical probe.
analysis are shown in red.
response and simultaneous global interference cancellation. We
developed both a static and a dynamic estimator. We evaluated the
performance of our algorithms using baseline data taken from 6 human
subjects at rest and by adding a synthetic hemodynamic response over
the baseline measurements. We finally compared our new methods
with the adaptive filter (Zhang et al., 2007a) and the standard method
using no small SD separation measurement.

Methods

Experimental data

For this study, 6 healthy adult subjects were recruited. The
Massachusetts General Hospital Institutional Review Board approved
the study and all subjects gavewritten informed consent. Subjects were
instructed to rest while simultaneous BOLD-fMRI and NIRS data were
collected. Three 6-min long runs were collected for each subject. Only
theNIRS datawere used in this study. The localization and the geometry
of the NIRS probe used are shown in Fig. 1a and b respectively. Only the
two 1 cm SD separation channels and the 8 closest neighbor (3 cm SD
separation) channels were used in the analysis.

Changes in optical density for each SD pair were converted to
changes in hemoglobin concentrations using the Beer–Lambert rela-
tionship (Cope andDeply, 1998;Deply et al., 1988; Boas et al., 2004) and
the SD distances illustrated in Fig. 1b. A pathlength correction factor of 6
and a partial volume correction factor of 50 were used for all SD pairs
(Huppert et al., 2006a,b).

Synthetic hemodynamic response

To compare the performance of our two algorithms with existing
algorithms, a synthetic hemodynamic response was generated using a
modified version of a three compartment biomechanical model
(Huppert et al., 2007, 2009; Huppert, 2007). Each parameter of the
model was set to the middle of its physiological range (Huppert et al.,
2007)which results in anHbO increase of 15μMand anHbR decrease of
7μM. The amplitude of this synthetic responsewas of the same order as
real motor responses on humans using NIRS and those specific
pathlength and partial volume correction factors (Huppert et al.,
2006b). These synthetic HbO and HbR responses were then added to
the unfiltered concentration data with an inter-stimulus interval taken
randomly fromauniformdistribution (10–35 s) for each individual trial.
Over the 6-min data series, we added either 10, 30 or 60 individual
evoked responses. The resulting HbO and HbR time courses were then
highpass filtered at 0.01 Hz to remove any drifts and lowpass filtered at
1.25 Hz to remove the instrument noise. The filter used was a 3rd order
Butterworth-type filter.
Two different SD separations were used: 1 cm and 3 cm. The NIRS channels used for the
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Four different methods were then used to recover the simulated
hemodynamic response added to our baseline data. The first two were
taken directly from literature and consisted of the standard General
Linear Model (GLM) without using a small SD separation measurement
and the adaptive filtering (AF) method developed by Zhang et al.
(2007a). The third one was a simultaneous static deconvolution and
regression andwill be called the static estimator (SE) here for simplicity.
The last one was a dynamic Kalman filter estimator (KF).

Signal modeling

For all the methods used in this study, the discrete-time
hemodynamic response h at sample time n was reconstructed with
a set of temporal basis functions

h n½ � = ∑
Nw

i=1
wibi n½ � ð1Þ

where bi[n] are normalized Gaussian functionswith a standard deviation
of 0.5 s and their means separated by 0.5 s over the regression time as
shown in Fig. 2a. Nw is the number of Gaussian functions used to model
the hemodynamic response andwas set to 15 in ourwork. Using this set,
the noise-free simulated HbO response was fit with a Pearson R2 of 1.00
and a mean square error (MSE) of 9.2×10−5 and the noise-free
simulated HbR response was fit with an R2 of 1.00 and an MSE of
2.1×10−5. TheMSEwas lower forHbRonly because the amplitudeof the
simulated HbR response was lower. These fits are shown in Fig. 2b. The
weights for the temporal baseswiwere estimatedusing the four different
methods described in the following sections.

For the standard block average estimator, we modeled the
concentration signal in the 3 cm separation channel y3[n] by

y3 n½ � = ∑
∞

k=−∞
h k½ �u n−k½ �: ð2Þ

u[n] is called the onset vector and is a binary vector taking the value 1
when n corresponds to a time where the stimulation starts and 0
otherwise.

For our static simultaneous estimator and our dynamic Kalman filter
simultaneous estimator, we modeled the signal in the 3 cm separation
a b

Fig. 2. a) Temporal basis set used in the analysis. The finite impulse response (FIR) of the te
b) Noise-free simulated responses (dotted lines) overlapped with the responses recovered w
of the fit are indicated for both HbO and HbR.
channel y3[n] by a linear combination of the 1 cmseparation signal y1[n]
and the hemodynamic response h[n] by

y3 n½ � = ∑
∞

k=−∞
h k½ �u n−k½ � + ∑

Na

i=1
ai y1 n + 1−i½ �: ð3Þ

Na is the number of time points taken from the 1 cm separation
channel tomodel the superficial signal in the 3 cm separation channel.
This value was set to 1 in our work for all three estimators using short
SD separation measurements but could be any integer in principle.
The ai's are the weights used to model the superficial signal in the
3 cm separation channel from the linear combination of the 1 cm
separation signal. The states to be estimated by the static and the
Kalman filter estimators were the weights for the superficial
contribution ai and the weights for the temporal bases wi. All those
weights were assumed stationary in the case of the static estimator,
and time-varying in the case of the Kalman filter estimator.

The motivation for Eq. (3) is that the residual between the 3 cm
channel and the 1 cm channel corresponds to the hemodynamic
response of the brain. This is well justified when the brain activation
is detected only in the 3 cm separation channel and when the systemic
physiologypollutesboth the1 cmand the3 cmseparation channels. It is
a reasonable assumption for cognitive NIRS measurements performed
on an adult head. In this case, the hemodynamic response is expected to
occur only in the brain tissue and the 1 cm separation channel does not
reach the cerebral cortex, making the 1 cm measurement sensitive to
scalp and skull fluctuations only. This would also be justified for
cognitive measurements on babies by reducing the separation of the
1 cm signal to ensure that this channel remains insensitive to brain
hemodynamics. However, our assumptionwouldbeviolated for specific
stimuli (e.g. the Valsalva maneuver) for which the hemodynamic
response occurs more globally across the head. Other scenarios that
could be troublesomewould be if the systemic physiology occurs only in
thebrain tissue (e.g. an activation-like oscillation a fewseconds after the
true stimulus response) or if the interference is phase-locked with the
stimulus. In this case, the systemic physiology could potentially be
modeled by our temporal basis set (overfitting).

Standard General Linear Model

For this first method, and only for this one, the 1 cm SD separation
channels were not used. The pre-filtered concentrations from the 3 cm
mporal basis functions ranged from 0 to 8 s after the onset of the simulated response.
ith a least-square fit (continuous lines) using the temporal basis set. The R2 and the MSE

image of Fig.�2
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SD separation were further lowpass filtered at 0.5 Hz using a 3rd order
Butterworth filter. Re-expressing Eq. (2) in matrix form, we get

y3 = Uw ð4Þ

where y3 is simply the length Nt time course vector y3[n]

y3 = y3 1½ � … y3 Nt½ �½ �T : ð5Þ

The columns ofU are the linear convolution of the onset vector u[n]
with each temporal basis function bi[n]

U = u⁎b1 n½ � ⋯ u⁎bNw
n½ �� � ð6Þ

and w is the vector containing the weights for the temporal basis wi

w = w1 … wNw

� �T
: ð7Þ

The estimates of the weights ŵ are found by inverting Eq. (4) using
the Moore-Penrose pseudoinverse

ŵ = UTU
� �−1

UTy3 ð8Þ

and the hemodynamic response is finally reconstructed with the
estimates of the temporal basis weights ŵi obtained from ŵ.

When the GLM was used without any other estimator (i.e. not as
the last step of the adaptive filter or the Kalman filter), we included a
3rd order polynomial drift as a regressor. This procedure is used
regularly in fMRI analysis. In this case, the matrix U is expanded

G = U D�½ ð9Þ

where D is an Nt by 4 drift matrix given in the 6. The estimates of the
weights ŵ are found by inverting

ŵ = GTGÞ−1
GTy3:

�
ð10Þ

Adaptive filtering

The adaptive filtering technique was taken directly from (Zhang
et al., 2007a). Only the salient points are outlined here. The HbO and
the HbR responses were recovered independently and the adaptive
filter was used for both. The two pre-filtered concentration signals at
1 cm (y1) and 3 cm (y3) were first normalized with respect to their
respective standard deviation. This was to ensure that the standard
deviation of the two signals used in the computation were close 1 to
accelerate the convergence of the algorithm (Zhang et al., 2007a). The
output of the filter, e[n], is then given by

e n½ � = y3 n½ �− ∑
Na

k=0
wk;ny1 n−k½ � ð11Þ

where the coefficient of the filter, wk,n, is updated via the Widrow–

Hoff least mean square algorithm (Haykin, 2001a):

wk;n = wk;n−1 + 2μe n−1½ �y1 n−k½ �: ð12Þ

In our study,wwas initialized atwk, 1=[1 0 0…]T and μwas set to
1×10−4 as in (Zhang et al., 2007a). After trying different values forNa,
we identified Na=1 as the value minimizing the MSE between our
simulated and recovered hemodynamic responses. The output e[n]
was then multiplied by the original standard deviation of y3 to rescale
it back to its original scale. The output of the filter was then further
lowpass filtered at 0.5 Hz and the hemodynamic response was finally
estimated using the standard GLM method (with no drift) by
substituting y3 by e in Eq. (8)

ŵ = UTUÞ−1
UTe

�
ð13Þ

where e is simply the length Nt time course vector e[n]

e = e 1½ � … e Nt½ �½ �T ð14Þ

and again the hemodynamic response is finally reconstructedwith the
estimates of the temporal basis weights ŵi obtained from ŵ.

Static estimator

Our static estimator is an improved version of the linear minimum
mean square estimator (LMMSE) developed by Saager and Berger
(2005, 2008). In their work, they used the small separation signal and
an LMMSE to estimate the contribution of the superficial signal in the
large separation signal. This superficial contamination was then
removed from the large separation signal and the hemodynamic
response was then estimated from the residual (large separation
signal without the superficial contamination). In our study, we
simultaneously removed the contribution of the superficial signal in
the 3 cm separation signal and estimated the hemodynamic response.

Eqs. (3) and (1) can be re-expressed in matrix form

y3 = Ax ð15Þ

where y3 is the vector representing the signal in the 3 cm channel and
is given by Eq. (5), x is the concatenation of the wi's and ai's

x = w1 … wNw
a1 … aNa

� �T ð16Þ

and A is the concatenation of the Nt by Nw matrix U given by Eq. (6)
and the Nt by Na matrix Y

A = U Y�½ ð17Þ

where

Y =
y1 1½ � 0 …
y1 2½ � y1 1½ � 0
⋮ ⋮ ⋱

2
4

3
5 ð18Þ

The first Nw columns of A are the linear convolution of the onset
vector u[n] with each temporal basis function bi[n] and the last Na

columns of A are simply the signal from the 1 cm separation channel
y1[n] delayed by one more sample in each column. In order to
compare the different estimators on the same footing, Na was set to 1
for all three estimators using short SD separations. A more explicit
expression for A is given in 6. The estimates of the weights x̂ are found
by inverting Eq. (15) using the Moore-Penrose pseudoinverse

x̂ = ATAÞ−1
ATy3

�
ð19Þ

and the hemodynamic response is finally reconstructed with the
estimates of the temporal basis weights ŵi obtained from x̂. This
reconstructed response was further lowpass filtered at 0.5 Hz.

Kalman filter estimator

For our dynamic Kalman filter estimator, Eqs. (3) and (1) need to
be re-express in state-space form:

x n + 1½ � = Ix n½ � + w n½ � ð20Þ
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y3 n½ � = C n½ �x n½ � + v n½ � ð21Þ

where w n½ � and v n½ � are the process and the measurement noise
respectively. x n½ � is the sample n of x given by Eq. (16), I is an Nw+Na

by Nw+Na identity matrix and C n½ � is an Nw+Na by 1 vector whose
entries correspond to the nth row of A in Eq. (17). The estimate x̂ n½ � at
each sample n is then computed using the Kalman filter (Kalman,
1960) followed by the Rauch–Tung–Striebel smoother (Rauch et al.,
1965). The Kalman filter recursions require initialization of the state
vector estimate x̂ 0½ � and estimated state covariance P 0½ �. In our study,
the initial state vector estimate x̂ 0½ � was set to the values obtained
using our static estimator and the initial state covariance estimate P 0½ �
was set to an identity matrix with diagonal entries of 1×10−1 for the
temporal basis states and 5×10−4 for the superficial contribution
state. The Kalman filter algorithm was run a first time to estimate the
initial state covariance and then run a second time. The initial
covariance estimate for the second run was set to the final covariance
estimate of the first run. Running the filter twice makes the method
less sensitive to the initial guess P 0½ �. Statistical covariance priorsmust
also be specified for the state process noise cov wÞ = Qð and the
measurement noise cov vÞ = Rð . The process noise determines how
big the states are allowed to vary at each time step. If this value is
small, the estimator will approach the static estimator. If it is large, the
state will be allowed to vary significantly over time. In this work, the
process noise covariance only contained nonzero terms on the
diagonal elements. Those diagonal terms were set to 2.5×10−6 for
the temporal basis state and 5×10−6 for the superficial contribution
states. This imbalance in state update noise was also used by Diamond
et al. (2006) and caused the functional responsemodel to evolvemore
slowly than the superficial contribution model. Practically, the
measurement noise determines how well we trust the measurements
during the recovery procedure. In our study, the measurement noise
covariance was set to an identity matrix scaled by 5×10−2. Different
values have been tried for the process noise and the measurement
noise covariances. Changing the value of Q and R over two orders of
magnitude did not result in notable performance changes and we
could have drawn all the same conclusions presented in this paper
using these alternative Q and R values. The values for Q and R
presented above were empirically determined to minimize the MSE
between the recovered and the simulated hemodynamic response.
The algorithm was then processed with the following prediction-
correction recursion (Gelb, 1974).

Since the state update matrix is the identity matrix in Eq. (20), the
state vector x and state covariance P are predicted with

x̂ n jn−1½ � = x̂ n−1 jn−1½ � ð22Þ

P̂ n jn−1½ � = P̂ n−1 jn−1½ � + Q : ð23Þ

The Kalman gain K is then computed

K n½ � = P n jn−1½ �C n½ �T C n½ �P n jn−1½ �C n½ �T + R
� �−1 ð24Þ

and the state vector x and state covariance P predictions are corrected
with the most recent measurements y3[n]

x̂ n jn½ � = x̂ n jn−1½ � + Kn y3 n½ �−C n½ �x̂ n jn−1½ �� � ð25Þ

P n jn½ � = I−K n½ �C n½ �ð ÞP n jn−1½ �: ð26Þ

After the Kalman algorithm was applied twice, the Rauch–Tung–
Striebel smoother was applied in the backward direction. With the
identity matrix as the state-update matrix in Eq. (20), the algorithm is
given by Haykin (2001b):

x̂ n jNt½ � = x̂ n jn½ � + P n jn½ �P n + 1 jn½ �−1 x̂ n + 1 jNt½ �−x̂ n + 1 jn½ �� �
:

ð27Þ

The complete time course of the estimated hemodynamic
response ĥ n½ � was then reconstructed for each sample time n using
the final state estimates x̂ n jNt½ � and the temporal basis set contained
in C n½ �

ĥ n½ � = C n½ �x̂ n jNt½ �: ð28Þ

This reconstructed hemodynamic response time course ĥ n½ � was
further lowpass filtered at 0.5 Hz and the standard GLM estimator
(with no polynomial drift) was then applied

ŵ = UTUÞ−1
UT ĥ

�
ð29Þ

where U is the matrix defined in Eq. (6) and

ĥ = ĥ 1½ � … ĥ Nt½ �
h iT ð30Þ

to obtain the final weights ŵi used to reconstructed the final estimate
of the hemodynamic response. We observed that these last filtering
and averaging steps further improved the estimate of the hemody-
namic response compared to reconstructing the hemodynamic
response from the final state estimates of the smoother.

Statistical analysis

Only specific channels based on the following criteria were kept in
theanalysis. The rawhemoglobin concentrationswerebandpassfiltered
with a 3rd order Butterworth-type filter between 0.01 Hz and 1.25 Hz
(Zhang et al., 2007b). The Pearson correlation coefficient R2 between
each 1 cm HbO channel and its 4 closest neighbor 3 cm HbO channels
(before adding the synthetic hemodynamic response) were then
computed and the SD pairs for which R2b0.1 were discarded for the
analysis. ThemeanR2 across the selected channelswas 0.47 forHbO and
0.22 forHbR.We also computed the Pearson correlation coefficient after
adding the synthetic hemodynamic response and similar results were
obtained. The mean differences between the R2's computed before and
after adding the synthetic responsewas 0.01 for HbO and 0.003 for HbR,
with the highest value obtained before adding the synthetic response to
the real data. Those small differences emphasize the fact that the signals
were dominated by systemic physiology in our simulations. This result
also suggests that no resting statemeasurement is required to select the
channels which would benefit from the small separation measurement
since the correlation can be estimated from the time course containing
brain activation. Zhang et al. (2009) showed that the adaptive filter
method was working well when the correlation between the short and
the long separation channel forHbOwasgreater than0.6.Weused0.1 in
this work to includemore channels in the analysis and to show that our
state-space method was working well when the initial correlation was
lower than 0.5. Using this criterion, 94 out of the 144 possible channels
(6 subjects×3 runs×8 channels) were kept for further analysis. This
represented 65% of the original data set. The numbers of channels kept
for each of the subjects were 16, 14, 13, 17, 19 and 15 respectively. The
signal to noise ratio (SNR) for each channel was computed as the
amplitude of the simulated hemodynamic response divided by the
standard deviation of the time course of the signal. Themean SNRacross
the selected channels was 0.45 for HbO and 0.38 for HbR.

We used two different metrics to compare the performance of the
different algorithms. The first one was the Pearson correlation
coefficient R2 between the true synthetic hemodynamic response
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and the recovered response given by each algorithm. This metric was
used to access the level of oscillation in the recovered hemodynamic
response created by the global interference not removed by the
algorithms and still contaminating the signal. Since the R2 coefficient
is scale invariant, it could not give any information about the accuracy
of the amplitude of the recovered hemodynamic response. To
overcome this problem, we also used the mean square error (MSE)
as a metric to compare the performance of the different algorithms.

Since the random position of the trials across the same time course
can greatly affect the accuracy of the recovered hemodynamic
response, we repeated the procedure 30 times with 30 different
random onset time instances for each of the 94 selected channels. The
mean and the standard deviation of the 2820 R2 coefficients (94
channels×30 instances) for each algorithmwere then computed after
applying the Fisher transformation

z = tanh−1 R2
� �

ð31Þ

and the results were then inverse transformed. The mean and the
standard deviation of the 2820 MSEs were also computed. This
procedure was repeated independently for 10, 30 and 60 trials in each
6-min data series. The different algorithms were compared together by
computing two-tailed paired t-tests on their MSEs and Fisher
transformed R2 coefficients.
a

c

e

f

Fig. 3. (a to d) Typical time courses of the recovered hemodynamic responses overlapped with
and 0.81 for HbR. R2 coefficients and MSEs between the recovered (circles) and the simulated (
c) Adaptive filter d) Standard GLM with 3rd order drift. e) HbO and f) HbR time courses of th
positions of the onset time are also shown and the correlation coefficients between the 1 cm a
Results

Typical time courses of the recovered hemodynamic response
overlapped with the true simulated response are shown in Fig. 3a to d
for the four algorithms tested. The SNR for this particular simulationwas
0.33 for HbO and 0.81 for HbR. The R2's and the MSEs for HbO and HbR
are shown in the legend of each individual panel. Those individual
results were obtained from a single simulation with 10 trials. The time
courses for this specific simulation are shown in panel e) for HbO and
f) forHbR. Both the initial 1 cmchannel and the3 cmchannel containing
the added synthetic hemodynamic responses are shown as well as the
position of the 10 individual onset times. TheR2 between the initial 1 cm
channel and the initial 3 cm channel (no response added) is also shown
in the legend of panel e) and f) for HbO and HbR respectively. All
concentrations are expressed in micromolar (μM) units.

The summary R2 statistics over all subjects, all channels and all
instances are shown in a bar graph in Fig. 4 for both HbO and HbR.
These values represent the Pearson R2 coefficients computed between
the recovered and the simulated hemodynamic responses. The bars
represent the mean and the error bars represent the standard
deviation. Both the mean and the standard deviation were computed
on the Fisher transformed values and then inverse transformed. Two-
tailed paired t-tests on the Fisher transformed values were performed
between all the different estimators and statistical significance at the
level pb0.05 is illustrated by a black line over the bars for which a
b

d

the simulated hemodynamic response. For these specific traces, the SNRwas 0.33 for HbO
dashed) response are shown in the legends. a) Kalman filter estimator b) Static estimator
e 3 cm channel (with synthetic responses added) overlapped with the 1 cm channel. The
nd the 3 cm channels (before adding synthetic responses) are indicated in parenthesis.



Fig. 4. Pearson R2 coefficients between simulated and recovered hemodynamic
responses. The bars represent the means and the error bars represent standard
deviations computed across all subjects, all channels and all instances. The means and
the standard deviation were computed in the Fisher space and then inverse
transformed. Two-tailed paired t-tests were performed on the Fisher transformed
R2's. Statistical differences (pb0.05) between the four algorithms are indicated by black
horizontal lines over the corresponding bars.

Fig. 5. Mean squared errors (MSE) between simulated and recovered hemodynamic
responses. The bars represent the means and the error bars represent the standard
deviations computed across all subjects, all channels and all instances. Two-tailed
paired t-tests were performed between the four estimators and statistical differences at
the level pb0.05 are indicated by black horizontal lines over the corresponding bars.

Table 1
Cross-comparison of the different algorithms. p-Values for the two-tailed paired t-tests
across all subjects, all channels and all instances are shown. For the R2 coefficients, the
tests were performed on the Fisher transformed values. Bold face indicates significant
difference at the pb0.05 level. KF: Kalman filter estimator, SE: Static estimator, AF:
Adaptive filter, GLM: Standard GLM with 3rd order drift.

10 trials 30 trials 60 trials

KF SE AF KF SE AF KF SE AF

R2 HbO
SE 6e-02 – – 3e-03 – – 2e-07 – –

AF 2e-07 6e-06 – 1e-03 5e-01 – 4e-04 2e-03 –

GLM 3e-15 2e-13 4e-07 8e-16 2e-12 4e-13 6e-15 1e-10 5e-14

R2 HbR
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significant difference was observed. In our three simulations using 10,
30 and 60 trials respectively, the R2's for HbO and HbR obtained using
our Kalman filter dynamic estimator were significantly higher
(pb0.05) than the ones obtained using the adaptive filter. Moreover,
the R2's obtained were higher with the Kalman filter than with the
static estimator. These differences were significant (pb0.05) except in
our 10 trial simulation for HbO.

Similarly, the summary MSE statistics over all subjects, all channels
and all instances are shown in Fig. 5. These values represent the mean
square error computed between the recovered and the simulated
hemodynamic responses. The bars represent the mean while the error
bars represent the standard deviation. Two-tailed paired t-tests were
performed between all the different estimators and statistical signifi-
cance at the level pb0.05 is illustrated by a black line over the bars for
which a significant differencewas observed. TheMSEs obtained for HbO
and HbR in our three simulations (10, 30 and 60 trials) were
significantly lower (pb0.05) with our Kalman filter estimator than
with the adaptive filter. Furthermore, the MSEs obtained with the
Kalman filter were also lower (pb0.05) than the ones obtainedwith the
static estimator for both HbO and HbR in our three simulations.

Table 1 summarizes the statistical analysis over all the subjects, all
the channels and all the instances for both HbO and HbR and for the
simulations with 10, 30 and 60 trials. Each algorithmwas compared to
every other. The values shown are the p-values obtained from a two-
tailed paired t-test. Statistical differences at the level pb0.05 are
indicated with bold script. These p-values were computed from the
data summarized in the bar graphs shown in Figs. 4 and 5.
SE 5e-05 – – 2e-09 – – 1e-08 – –

AF 2e-07 2e-03 – 3e-05 5e-03 – 4e-02 6e-10 –

GLM 5e-04 2e-01 4e-01 7e-04 3e-01 4e-02 1e-04 6e-01 7e-04

MSE HbO
SE 4e-06 – – 3e-05 – – 4e-06 – –

AF 2e-05 7e-03 – 1e-06 7e-01 – 2e-05 6e-02 –

GLM 2e-12 2e-09 5e-05 1e-13 7e-11 1e-11 4e-10 3e-08 2e-09

MSE HbR
SE 2e-05 – – 4e-05 – – 1e-04 – –

AF 3e-05 2e-01 – 2e-04 4e-03 – 7e-03 7e-05 –

GLM 6e-08 3e-02 1e-02 3e-07 9e-01 9e-02 4e-06 1e+00 5e-04
Discussion

Simultaneous filtering and estimation

One of the salient features of our Kalman filter estimator is that it
filters the global interference and simultaneously estimates the
hemodynamic response. This feature resulted in a more accurate
recovery of thehemodynamic responsewithourKalmanfilter estimator
compared to the adaptive filter, for which the filtering and the
estimation were performed in two distinct steps. Independent regres-
sion of the small separation channel potentially removes contributions
of the hemodynamic response in the signal which lead to an
underestimation of the hemodynamic response thereafter. Our Kalman
filter estimator avoids this pitfall. Compared to the adaptive filter, our
Kalmanfilter estimator showed significant improvements at the pb0.05
level in both HbO and HbR recoveries for our 10, 30 and 60 trial
simulations. Those improvementswere observed inbothPearsonR2 and
MSE metrics.
Dynamic versus static estimation

The systemic interference present in NIRS data is non-stationary.
This has been nicely shown by Lina et al. (2008) who performed a
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detailed wavelet analysis of resting NIRS data with blood pressure,
respiratory and heart rate data acquired simultaneously on awake
human subjects. The amplitude of the systemic physiologymeasured by
the 1 cm and the 3 cm channel depends on the respective pathlength of
the light for each channel. Systemic physiology could alter the optical
properties of the tissue over time. As a result, a sustained change in
absorption could modify the pathlength of the light independently in
the 1 cm and the 3 cm channel, modifying at the same time the relative
amplitude of the systemic physiology detected in each channel. This
feature of the systemic interference explains why our Kalman filter,
which is a dynamic estimator, performed better than the static
estimator. Using our Kalman filter estimator, improvements in the
HbO and HbR recovery were observed in both the Pearson R2 and the
MSE metrics compared to the static estimator. All these improvements
were significant at the pb0.05 level except for the HbO Pearson R2

improvement which was not significant in our 10 trial simulation.

HbO versus HbR

In their wavelet analysis, Lina et al. (2008) also showed that the
HbO time courses were more contaminated by global interference
than the HbR time courses. As such, the correlation between the 1 cm
and 3 cm channel should be higher for HbO than HbR, and filtering
methods using 1 cm SD separations should work better for HbO than
for HbR. In our data, the mean initial Pearson R2 correlation between
the 1 cm and 3 cm signals were higher for HbO than HbR (0.47 vs
0.22). Comparing our Kalman filter estimator with the standard block
average estimator, the p-values obtained in the t-tests performed on
the Fisher transformed Pearson R2's and the MSEs were at least five
orders of magnitude lower for HbO than HbR. This indicates that the
improvements observed with our Kalman filter were more prominent
for HbO than HbR. This better performance in the recovery of HbO
over HbR using a small separationmethodwas also reported by Zhang
et al. (2009) using their adaptive filter.

Impact of initial correlation

In the case where the systemic physiology present in the 3 cm
separation did not correlatewith the systemic physiology present in the
1 cm channel, the performance of the Kalman filter was similar to the
standardGLM. In this case, themodel cannot reproduce thedata and the
ai coefficients in Eq. (3) converge to zero. As such, thewi's estimated by
the Kalman filter are very close to the ones obtained using the GLM. An
important point is that in the case of low initial R2 coefficients
(0.1bR2b0.2), taking into account the 1 cm channel with the Kalman
filter did not decrease the performance of the recovery compared to the
GLM. On the other hand, the performance of the adaptive filter for
(0.1b initial R2b0.2)wasworst than theGLM. This counter-performance
of the adaptivefilter for poor initial correlationbetween the short and the
long channel was also reported by Zhang et al. (2009). These findings
suggest that theKalmanfilter canbe used even if the correlationbetween
the 1 cm and the 3 cm channel is low as opposed to the adaptive filter. In
the worst case, the Kalman filter will be as good as the standard GLM.
However, the higher the initial correlation between the 1 cm and the
3 cm channel is, the more significant is the improvement using a small
separation measurement. This is illustrated by the larger improvement
obtained for HbO thanHbRwhen using a small separationmeasurement
together with our Kalman filter.

Technical notes

The MSEs obtained in our simulations and presented in Fig. 5 were
lower for HbR than HbO. This occurred because the amplitude of the
simulated HbR response was lower than the simulated HbO response
which resulted in lower MSEs for HbR. This is illustrated for noise-free
data in Fig. 2b.
For all the results presented in this paper, a single time point was
taken from the 1 cm channel to regress the 3 cm channel. In practice,
this value couldbe any integer. A simple phase shift (delay) between the
3 cm and 1 cm channel would be taken into account by using multiple
time points from the 1 cm. In this case, all the a's in Eq. (3) would
converge to zero except for one a at the value of i corresponding to the
shift between the two signals in terms of number of sample points.
Different values for Na were tested during our simulations. With the
adaptivefilter,we obtained better results using a single point than using
100 points as in Zhang et al. (2007a). Using 100 points results in
overfitting the signal which removes more of the hemodynamic
response contribution than using a single point. This is another pitfall
of the non-simultaneous recovery and filtering feature of the adaptive
filterwhich is avoidedwith ourKalmanfilter. Finally,wedid not observe
any improvement when using multiple points with our Kalman filter,
suggesting that no delays were present in our data between the 1 cm
and the 3 cm channel.

The Gaussian temporal basis functions used in this work allow us to
model different hemodynamic responses with different shapes and
components. This includes a potential initial dip and post-stimulus
undershoot, responseswith a double bump and negative responses. It is
also easy to use additional Gaussian functions to extend this method for
longer stimuli, making the temporal basis set used in the present work
very general and less restrictive. However, as stated in Signal modeling,
the drawback for using a more general set is the potential overfitting of
phase-locked systemic physiology. This could be avoided using a more
restrictive temporal basis set such as a gamma-variant function and its
derivatives (Huppert et al., 2008; Abdelnour and Huppert, 2009; Hu
et al., 2010;Glover, 1999), and at the same timecould potentially reduce
the number of parameters to estimate.

We tested different values for the separation between the basis
and also different values for the width of the Gaussians. The values of
0.5 second for both the separation and the width presented in this
paper resulted in the lowest MSEs between the recovered and the
simulated responses and highest R2's. The separation between our
temporal basis Gaussians and their widths was three times lower than
the values used by Diamond et al. (2006).

In order to compare the fourmethods used in this work on the same
footing, we used temporal basis functions for each estimator. For the
standard GLM estimator, the adaptive filter and the Kalman filter, we
have also tried to replace thefinal step of using theGLMwith a temporal
basis set bya simpleblockaveragewithoutusingany temporal prior. For
all these three estimators, using temporal basis functions in the final
step further improved the recovery of both HbO and HbR. The MSEs
between the recovered and the simulated hemodynamic responsewere
lowerwhen temporal basiswereused thanwhena simple blockaverage
without temporal basis was applied. Similarly, the R2's computed
between the recovered and the simulated responses were higher when
temporal basis were used in the final block average step. This result
raises the importance of using temporal priors to reduce the
dimensionality of the estimation problem.

As stated in Kalman filter estimator section, changing the state
process noise and the measurement noise priors over two orders of
magnitudedid not affect the performance of our Kalman estimator. For
HbO, no differences could be observed (two-tailed paired t-test,
pb0.05) between the MSEs recovered using values for the process
noise or the measurement noise ten times lower or higher than the
ones presented in Kalman filter estimator section. For HbR, small
differences in theMSEswere observed but these results did not change
any conclusions drawn in this paper. The MSEs recovered with our
Kalman filter in this case were still the lowest of the four estimators.

Future directions

As mentioned in Zhang et al. (2009), an important question is
whether an additional short separation optode is required for each
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longer separation optode or whether a single one is sufficient.
Although the systemic interference is thought to be global in the
brain, it might be reflected differently in the NIRS data collected over
different regions of the head. Sources of variation include blood vessel
size which might affect the amplitude of the recovered response but
also blood vessel length and geometry which might give rise to phase
mismatches between different NIRS channels. Studies using multiple
small SD separation optodes at different locations over the head
should be performed in the future to address this question.

Conclusion

In summary, we filtered the global interference present in NIRS data
by using additional small separation optodes and we simultaneously
estimated the hemodynamic response using a dynamic algorithm. Our
dynamic Kalman filter performed better than the traditional adaptive
filter, the static estimator and the standard block average estimator for
both HbO andHbR recovery. These results were consistentwith the fact
that dynamic estimation better captures the non-stationary behavior of
the systemic interferences in NIRS and that the simultaneous filtering
and estimation prevents underestimation of the hemodynamic re-
sponse. The algorithm is easily implementable and suitable for a wide
range of NIRS studies.

Acknowledgments

This work was supported by NIH grants P41-RR14075 and R01-
EB006385. L. Gagnon was supported by the Fonds Quebecois sur la
Nature et les Technologies and by the IDEA-squaredprogramatMIT.We
acknowledge fruitful discussions with Sol Diamond, Emery Brown,
Patrick Purdon, Lino Becerra and Dana Brooks. We would also like to
thank Michele Desjardins for critical reading of the manuscript.

Appendix A

The explicit expression for D in Eq. (9) is given by

D =

1 1=Nt 12
=N2

t 13
=N3

t

1 2=Nt 22
=N2

t 23
=N3

t

1 3=Nt 32
=N2

t 33
=N3

t

⋮ ⋮ ⋮ ⋮
1 Nt =Nt N2
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2
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3
t

2
666666664

3
777777775
:

The dimension of the matrix D is Nr by 4. Each column is
normalized by its highest value to keep the matrix Gwell conditioned
and to avoid numerical errors during the inversion in Eq. (10).

The explicit expression for A in Eq. (17) is given by

A =

b1 1½ � b2 1½ � … bNw
1½ � y1 1½ � 0 … 0

b1 2½ � b2 2½ � … bNw
2½ � y1 2½ � y1 1½ � 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
b1 Nb½ � b2 Nb½ � … bNw

Nb½ � ⋮ ⋮ y1 1½ �
0 0 0 ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋮ ⋮ ⋮

b1 1½ � b2 1½ � … bNw
1½ � ⋮ ⋮ ⋮

b1 2½ � b2 2½ � … bNw
2½ � ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
b1 Nb½ � b2 Nb½ � … bNw

Nb½ � ⋮ ⋮ ⋮
0 0 0 ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ y1 Nt½ � y1 Nt−1½ � … y1 Nt−Na + 1½ �

2
666666666666666666666664

3
777777777777777777777775

:

Nb is the length of each temporal basis function and was 80 in our
work due to the 10 Hz temporal resolution and 8 s FIR for our temporal
basis functions. The vertical dimension of matrix A corresponds to Nt,
the total number of time points in the entire time course. The number of
copies of the temporal basis functions corresponds to the number of
trials (or stimuli) in the specific time course (i.e. if the run contained 10
trials, then 10 copies of the temporal basis set will appear in the
corresponding A matrix).
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