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Near-Infrared Spectroscopy (NIRS) allows the recovery of cortical oxy- and deoxyhemoglobin changes asso-
ciated with evoked brain activity. NIRS is a back-reflection measurement making it very sensitive to the su-
perficial layers of the head, i.e. the skin and the skull, where systemic interference occurs. As a result, the NIRS
signal is strongly contaminated with systemic interference of superficial origin. A recent approach to over-
come this problem has been the use of additional short source-detector separation optodes as regressors.
Since these additional measurements are mainly sensitive to superficial layers in adult humans, they
can be used to remove the systemic interference present in longer separation measurements, improving
the recovery of the cortical hemodynamic response function (HRF). One question that remains to answer is
whether or not a short separation measurement is required in close proximity to each long separation NIRS
channel. Here, we show that the systemic interference occurring in the superficial layers of the human
head is inhomogeneous across the surface of the scalp. As a result, the improvement obtained by using
a short separation optode decreases as the relative distance between the short and the long measurement
is increased. NIRS data was acquired on 6 human subjects both at rest and during a motor task consisting of
finger tapping. The effect of distance between the short and the long channel was first quantified by recovering
a synthetic hemodynamic response added over the resting-state data. The effect was also observed in the func-
tional data collected during the finger tapping task. Together, these results suggest that the short separation
measurement must be located as close as 1.5 cm from the standard NIRS channel in order to provide an im-
provement which is of practical use. In this case, the improvement in Contrast-to-Noise Ratio (CNR) compared
to a standard General Linear Model (GLM) procedure without using any small separation optode reached
50% for HbO and 100% for HbR. Using small separations located farther than 2 cm away resulted in mild or
negligible improvements only.
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Introduction

Over the past 15 years, Near-Infrared Spectroscopy (NIRS) (Gibson
et al., 2005; Hillman, 2007; Hoshi, 2007; Obrig and Villringer, 2003;
Villringer et al., 1993) has emerged as a complement to functional
Magnetic Resonance Imaging (fMRI) for mapping the hemodynamic
response associated with cerebral activity. NIRS non-invasively mea-
sures the temporal variations of the two dominant chromophores
in the near-infrared window: oxygenated hemoglobin (HbO) and
deoxygenated or reduced hemoglobin (HbR).

The advantages of NIRS for the investigation of brain activity
include the measurement of both HbO and HbR concentrations, its
low cost, and its portability. The portability of NIRS enables long-
term monitoring of the hemodynamic response associated with, for
instance, epileptic activity at the bedside (Roche-Labarbe et al.,
2008). Disadvantages of NIRS include modest spatial resolution of
the order of one to three centimeters and limited penetration
depth (Boas et al., 2004).

A common problemwith NIRS recordings is the presence of strong
physiology-based systemic interference in the signal which reduces
the accuracy of NIRS for detecting brain activation. This interference
arises from cardiac activity, respiration and other homeostatic pro-
cesses (Diamond et al., 2009; Obrig et al., 2000; Payne et al., 2009;
Tonorov et al., 2000). The contribution of this interference in
the NIRS signal is amplified because the light is both introduced and
collected at the surface of the scalp. This back-reflection geometry
makes NIRS very sensitive to the superficial layers of the head which
contain no brain signal but exhibit strong systemic fluctuations. As
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such, the NIRS signal is often dominated by systemic interference
occurring in the superficial layers of the head including the scalp
and the skull.

Several methods have been described in the literature to remove
the systemic interference from NIRS measurements. Some post-
processing algorithms include low pass filtering (Franceschini et
al., 2003; Jasdzewski et al., 2003), principal component analysis
(Franceschini et al., 2006; Zhang et al., 2005) and wavelet filtering
(Jang et al., 2009; Lina et al., 2008, 2010; Matteau-Pelletier et al.,
2009). Multi-distance NIRS measurements with layered models and
path length weighted methods are also being investigated (Umeyama
and Yamada, 2009a,b; Yamada et al., 2009). Other methods include
the subtraction of a NIRS channel acquired in a non-activated region
of the brain from the signal of interest to reduce the systemic interfer-
ence (Franceschini et al., 2003).

A more refined version of this method is to simultaneously collect
additional NIRS measurements using short source-detector (SD) sep-
aration channels (generally shorter than 1 cm), which are sensitive to
superficial layers only (Saager and Berger, 2005). Assuming that the
signal collected with these additional short separation measurements
is dominated by the same systemic interference present in the longer
SD channels, the small separation signals can be used as regressors to
filter the systemic interference from the longer SD measurements.
Several algorithms have been developed to perform the regression
of the small separation measurements. These include linear minimum
mean square estimation (LMMSE) (Saager and Berger, 2005, 2008;
Gregg et al., 2010; Saager et al., 2011), adaptive filtering (Zhang
et al., 2007a,b, 2009) and state-space modeling with Kalman filter
estimation (Gagnon et al., 2011).

An important question which was not addressed in these previous
papers is the impact that the relative location of the short and long
SD channels has on the performance of the short separation method.
If good performance is obtained using a short separation channel
located far away from the standard long SD channel, then a single
short separation channel can be used as a regressor for all longer SD
channels on the probe. On the other hand, the performance of the
short separation method potentially worsens as the relative distance
between the short and the long SD channel increases. In this case
1 cm

source
detector

3 cm
Forehead channel

motor cortex probeA) 

1.4 cm 1.7 cm

4.2 cm 5.2 cm

C) 

Fig. 1. (A) Geometry of the optical probe. Two different SD separations were used: 1 cm and
region. (C) Examples of short and long channel pairs. With this probe arrangement, the possi
4.2, 5.2 and 6.2 cm.
several short separation channels would be required and only those
closest to the long SD channels would be suitable for regression.

The main contribution of this paper is to quantify the performance
of the short separation method as a function of the relative distance
between long SD NIRS channels (3 cm) containing the brain signal
and short separation (1 cm) channels used as regressors. We investi-
gated this relationship with both simulations and real functional data.
NIRSmeasurements including several short separation channels spread
across the probe were acquired on 6 human subjects. The simulations
were performed by adding a synthetic hemodynamic response to
the resting-state NIRS data. NIRS signals were also collected during
a series of finger tapping blocks for each of the 6 subjects. In both
cases, the performance of the short separation regression was charac-
terized for different short SD regressors located at different distances
from the standard 3 cm channel.

Methods

Experimental data

For this study, 6 healthy adult subjects were recruited. The
Massachusetts General Hospital Institutional Review Board approved
the study and all subjects gave written informed consent. Data were
collected using a TechEn CW6 system operating at 690 and 830 nm.
The NIRS probe contained 5 sources and 12 detectors as shown
in Fig. 1A. This source-detector geometry resulted in 14 long SD mea-
surements (3 cm) and 7 short SD measurements (1 cm). A set of
200 μm-core fibers was used for the short separation detector optodes
to avoid saturation of the photodiode. These fibers are illustrated in
orange in Fig. 1. An alternative to avoid photodiode saturation could
be the use of standard NIRS fibers with optical filters at the tip of the
probe to attenuate light intensity. The probe was secured over the left
motor region of each subject as illustrated in Fig. 1B. One of the short
separation measurements was acquired over the forehead. In this
probe, the relative distances center-to-center between the short and
the long channels take the values 1.4, 1.7, 2.4, 3.3, 4.2, 5.2 or 6.2 cm.
Examples are given for each case in Fig. 1C. The forehead short separa-
tion channelwas locatedmore than 10 cm away from any3 cm channel.
B) 

2.5 cm 3.3 cm

6.2 cm

3 cm. (B) Location of the probe on the subjects. The probe was secured over the motor
ble relative distances between the short and the long SD channels were 1.4, 1.7, 2.5, 3.3,



Fig. 2. Overview of the finger tapping protocol. A run consisted of 6 blocks of 30 s
of finger tapping interleaved with 30 s of rest. Each runs started and ended with a
30 second resting period. 3 functional runs were acquired for each of the 6 subjects.

2520 L. Gagnon et al. / NeuroImage 59 (2012) 2518–2528
During the experiment, subjects were sitting in a comfortable
chair in front of a computer screen with a black background. The
functional runs were divided as shown in Fig. 2. Each run lasted
390 s and contained six blocks of 30 s finger tapping interleaved
with 30 s resting blocks. Three functional runs were acquired for
each subject. During the resting blocks, a small 0.5-by-0.5 cm white
square located at the middle of the screen appeared and the subjects
were asked to fixate on this square. During the finger tapping blocks,
the instruction “tap your fingers” was displayed in white characters
on the computer screen using the Psychophysics toolbox in Matlab
(Brainard, 1997). At that time, the subjects were asked to touch
their right thumb with each of the fingers of their right hand alter-
nately at a rate of 3 Hz. Following the three functional runs, three
baseline runs of 5 min each were acquired. During the baseline runs,
the subjects were asked to simply close their eyes and remain still.

Data processing

An overview of the procedure is shown in Fig. 3. Both the short
and long SD measurements were bandpass filtered at 0.01–1.25 Hz.
Even though the data will be further low pass filtered at 0.5 Hz in
Fig. 3. Schematic of the NIRS data analysis. The NIRS data from both the 1 cm and
the 3 cm separation channels were first converted to HbO and HbR time courses
and bandpass filtered. HbO and HbR were analyzed separately. The 1 cm and 3 cm
bandpass time courses were passed to the Kalman algorithm (Gagnon et al., 2011)
and then further lowpass filtered. The HRF was finally estimated using the GLM or a
standard block-average.
the processing stream, it is important to keep the 0.5–1.25 Hz fre-
quency band here, since most of the cardiac oscillations are contained
in this frequency band. These cardiac oscillations are strongly present
in both the short and the long SD measurements and this increases
the baseline correlation between the short and the long separation
channel. These cardiac oscillations guide the dynamic estimation of
the superficial contamination to more accurately estimate the HRF.
As we've shown recently (Gagnon et al., 2011), prefiltering the cardi-
ac oscillations reduces the performance of the dynamic estimation
and results in a poorer estimate of the HRF. For both the simulations
and the real functional data analysis, the Kalman filter algorithm
was used to regress the short separation measurement and recover
the hemodynamic response simultaneously. This algorithm was de-
scribed in detail previously (Gagnon et al., 2011) and only the salient
points are reviewed here.

The hemodynamic response was modeled by

h n½ � ¼ ∑
Nw

i¼1
wibi n½ �: ð1Þ

where bi[n] are normalized Gaussian functions with a standard devi-
ation of 0.5 s and their means separated by 0.5 s. Nw is the number
of Gaussian functions used to model the hemodynamic response
and was set to 15 for our simulations (Section Simulations) and 79
for our finger tapping data to recover the HRF over 0–8 s and 0–40 s
respectively. The signal in the 3 cm separation channel y3[n] was
modeled by a linear combination of the 1 cm separation signal y1[n]
and the brain response yb[n]. The expression for the 3 cm signal is
given by

y3 n½ � ¼ yb n½ � þ a y1 n½ � ð2Þ

with

yb n½ � ¼ ∑
∞

k¼−∞
h k½ �u n−k½ �: ð3Þ

and where u[n] is the onset vector which is a binary vector taking
the value 1 when n corresponds to a time when the stimulus was
presented and 0 otherwise. It is to note that u[n] is equal to 1 only
at the onset of the stimulus and not throughout the duration of
the stimulus.

The variable a is the dynamic weight used to model the superficial
signal in the 3 cm separation channel as a linear combination of the
short separation signal. Only a single time delay was taken from the
short separation channel to model the superficial signal in the 3 cm
channel since this has been shown to result in a better performance
in our previous paper (Gagnon et al., 2011). The states to be estimated
by the Kalman filter were the weight of the superficial contribution
a and the weights of the temporal bases wi. All these weights were
assumed to be time-varying. Eqs. (1), (2) and (3) can be re-written
in state-space form:

x nþ 1½ � ¼ Ix n½ � þw n½ � ð4Þ

y3 n½ � ¼ C n½ �x n½ � þ v n½ � ð5Þ

where w[n] and v[n] are the process and the measurement noise
respectively. x[n] is the nth instance of x given by

x ¼ w1 … wNw
a

� �T
: ð6Þ

The quantity I is an Nw+1 by Nw+1 identity matrix and C[n] is
a 1 by Nw+1 vector given by

C n½ � ¼ u � b1 n½ � ⋯ u � bNw
n½ � y1 n½ �� �

: ð7Þ
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where “⁎” denotes the convolution operator. The estimate x̂ n½ � at each
sample n is then computed using the Kalman filter (Kalman, 1960)
followed by the Rauch–Tung–Striebel smoother (Rauch et al., 1965).

The convergence of the Kalman filter depends on the initial esti-
mate of the state vector x̂ 0½ �. To overcome this problem, x̂ 0½ � was
set to the values obtained using a static least-squares estimator as
in Gagnon et al. (2011) to ensure a fast convergence. Moreover, to
overcome the problem of selecting a good initial guess for the state
covariance estimate Pˆ 0½ �, the Kalman filter algorithm was run twice
and the initial covariance estimate for the second run was set to
the final covariance estimate of the first run. This process makes the
performance of the filter almost insensitive to the initial covariance
estimate. For the first pass of the Kalman filter, we set Pˆ 0½ � to an iden-
tity matrix with diagonal entries of 1×10−1 for the temporal basis
states and 5×10−4 for the superficial contribution state. The process
noise covariance Q only contained nonzero terms on the diagonal el-
ements. Those diagonal terms were set to 2.5×10−6 for the temporal
basis states and 5×10−6 for the superficial contribution state. The
measurement noise covariance R was set to an identity matrix scaled
by 5×10−2. These values were extensively studied in our previous
paper (Gagnon et al., 2011) and multiplying or dividing these values
by factor of 10 did not significantly affect the performance of
our method. The Kalman filter algorithm was then processed with
the following prediction–correction recursion (Gelb, 1974):

x̂ n n−1j � ¼ x̂ n−1 n−1j �½� ð8Þ

Pˆ½n n−1j � ¼ Pˆ n−1 n−1j � þQ :½ ð9Þ

K n½ � ¼ Pˆ ½n n−1j �C n½ �T C n½ �Pˆ ½n n−1j �C n½ �T þ R
� �−1 ð10Þ

x̂ n nj � ¼ x̂ n n−1j � þ Kn y3 n½ �−C n½ �x̂ n n−1j �½ Þ��� ð11Þ

Pˆ½n nj � ¼ I−K n½ �C n½ �ð ÞPˆ n n−1j �:½ ð12Þ

After the Kalman algorithm was applied twice, the Rauch–Tung–
Striebel smoother was applied in the backward direction (Haykin,
2001):

x̂½n Ntj � ¼ x̂½n nj � þ Pˆ ½n nj �Pˆ ½nþ 1 nj �−1 x̂ nþ 1 Ntj �−x̂ nþ 1 nj �½ Þ�� ð13Þ

with Nt the number of time points in the data. The complete time
course of the filtered brain signal ŷb n½ � containing the estimated he-
modynamic response hˆ n½ � was then reconstructed for each sample
time n using the first Nw final state estimates x̂b ¼ w1 ⋯ wNw

h iT
and

the temporal basis set contained in C n½ �

ŷb n½ � ¼ C n½ �x̂b n Ntj �:½ ð14Þ

This reconstructed filtered brain signal time course ŷb n½ � was fur-
ther low pass filtered at 0.5 Hz to remove any cardiac fluctuations
potentially present in the time course and the final estimate of the
hemodynamic response hˆ n½ � was obtained either by applying a stan-
dard General Linear Model (GLM) procedure (without any cosine
bases or short separation regressor) containing the same temporal
basis function as in Eq. (1) or by block-averaging ŷb n½ �. More details
can be found in our previous paper (Gagnon et al., 2011).

Simulations

For each baseline measurement, the changes in optical density
were converted to changes in hemoglobin concentrations using the
modified Beer-Lambert relationship (Boas et al., 2004; Cope and
Deply, 1998; Deply et al., 1988). A pathlength correction factor of 6
and a partial volume correction factor of 50 were applied (Huppert
et al., 2006a,b). The variance in all 252 (6 subjects×3 runs×14
pairs) baseline HbO and HbR time courses from the 3 cm measure-
ments was then computed. To ensure a uniform distribution of the
noise in our simulations, only the time courses showing a variance
below 25 μM2 were kept in the analysis, corresponding to 28.2% of
the data (71 of the 252 baseline time courses). We have also tested
and confirmed that our method was working for higher levels of
noise. Due to the non uniform level of noise across the probe, this
threshold of 25 μM2 was required in order to compare all distances
on equal footing.

Ten individual evoked responses were added over all 71 selected
3 cm baseline measurements at random onset times with an inter-
stimulus interval taken randomly from a uniform distribution (10–
30 s). This procedure was repeated 30 times for each baseline mea-
surement to create 30 simulated time courses with 30 different
onset times and ensure reproducible averaged results. The duration
of the synthetic response was 8 s. The HbO time course increased by
15 μM at the peak while the HbR time course decreased by 7 μM.
The synthetic hemodynamic response was the same used in our pre-
vious paper (Gagnon et al., 2011). The resulting 2130 time courses
(71 time courses×30 simulated runs) were then bandpass filtered
(0.01–1.25 Hz) and passed to the Kalman filter algorithm (Fig. 3)
using each of the seven short separation (1 cm) measurements avail-
able as a regressor. The HRF was also recovered using a standard
GLM with a set of cosine basis with 64 s period cutoff (Friston et al.,
2000) for comparison (no short separation used). This resulted in
17,040 estimated HRFs (2130 time courses×8 regressors (7 short sep-
arations+1 standard GLM with cosine basis set)). The HbO and HbR
responses were recovered independently. For each 1 cm–3 cm combi-
nation, the baseline R2 coefficient before adding the synthetic HRF
to the 3 cm channel was computed.

For each short separation used, the relative center-to-center
distance between the 3 cm and the short-separation channel was
computed. With the probe shown in Fig. 1A, the possible relative
distances were 1.4, 1.7, 2.4, 3.3, 4.2, 5.2 or 6.2 cm as well as
N10 cm for the forehead channel and are illustrated in Fig. 1C.

The quality of each recovered HRF was quantified by three differ-
ent metrics: (1) the Pearson correlation coefficient R2 between
the true synthetic HRF (tHRF) and the recovered HRF (rHRF),
(2) the mean square error (MSE) between tHRF and rHRF and
(3) the Contrast-to-noise ratio (CNR) defined as the amplitude of
rHRF divided by the root-mean-square (RMS) of the residual of
tHRF and rHRF

CNR ¼ max rHRFð Þ
RMS rHRF−tHRFð Þ : ð15Þ

The average for each of these threemetrics across all the recovered
HRFs for each specific relative distance was computed and the results
were compared to the corresponding averaged metrics obtained from
the HRFs recovered with the standard GLM (no short separation)
using a two-tailed paired t-test. As in our previous paper (Gagnon
et al., 2011), we used a paired t-test to resolve for small systematic
differences. For the Pearson R2 metric, the average was taken after
applying a Fisher transformation and the resulting average was
then back transformed. This comparison was performed for all 8 rela-
tive distances (1.4, 1.7, 2.4, 3.3, 4.2, 5.2, 6.2 cm and forehead).

This entire procedurewas then repeated after introducing a time-lag
in the short separation channel. For each 1 cm–3 cm combination, the
cross-correlation function between the two channels before adding
the synthetic HRF was also computed and a time-lag corresponding to
the maximum of the cross-correlation function was applied to the
short separation measurement. This time-lag could be any number in
the interval {−Nt,Nt} with Nt the number of time point in the NIRS
time course but typical values obtained from our data ranged from
−4 to 4 s for both HbO and HbR. The values for R2, MSE and CNR
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obtained by introducing a time-lag were also compared with the zero-
lag values with a two-tailed paired t-test.

The cross-correlation function used to identify the optimal time-
lag was normalized such that the zero-lag value corresponded to
the Pearson R2 coefficient

Ry1y3
m½ � ¼ Ry1y3

m½ �
σy1

σy3

ð16Þ

with σy3 the standard deviation of y3[n]. The maximum of this nor-
malized cross-correlation function is the equivalent to shifting one
of the channels by the optimal time-lag before computing the stan-
dard correlation and thus we will refer to this value as the optimal
time-lag correlation for the rest of the text. To avoid any confusion,
we will refer to the standard R2 correlation as the zero-lag correla-
tion. The zero-lag and the optimal time-lag correlations were also
compared using a two-tailed paired t-test of their Fisher transformed
values.

Functional data

The functional data were analyzed in the same way as above with
the Kalman filter, but the HRFs were recovered from 0 to 40 s after the
stimulus onsets. Each 3 cm channel was analyzed using each of the
seven short separation channels available and also with a standard
block-average for comparison.
A)

C)

Fig. 4. Effect of the relative distance on the initial baseline correlation between the chann
correlation was computed. The values labeled “optimal time-lag” were computed by takin
time-lag” values are the standard Pearson R2 coefficient. Statistical differences at the pb0.0
test is pairwise such that a small but constant difference across the sample is marked as sign
of the relative distance between them. (C)–(D) Initial baseline R2 between two short separa
Results

Baseline correlation

The correlation (Pearson R2) between the baseline NIRS time
courses is shown in Fig. 4. In panels (A) and (B), the correlation be-
tween the 3 cm separation and the short separation channels are
plotted as a function of their relative distance on the probe. These
values are identified by the label “no time-lag” in the legends. The op-
timal time-lag correlation values are also plotted and identified by the
label “optimum time-lag” in the legends. We observed a fast decay of
both the zero-lag and the optimal time-lag correlations as the dis-
tance between the two channels went from 1.4 to 2.4 cm and the cor-
relation then plateaued from 2.4 to 6.2 cm. This trend was observed
for both HbO and HbR. The optimal time-lag correlation values
obtained were slightly higher (but significant at the pb0.05 level,
two-tailed paired t-test) than the zero-lag correlation for all relative
distances on the probe. It is good to re-emphasize that the statistical
test is pairwise such that a small but constant difference across the
sample is marked as significant. The optimal time-lags obtained in-
creased with increasing relative distances indicating that this slight
improvement in correlation was real and not due to potential artifact
in the processing. Finally, the increases in correlation obtained by in-
troducing time-lag were slightly more prominent for HbR than HbO.

In panels (C) and (D) of Fig. 4, both the zero-lag and the optimal
time-lag correlations between two short separation channels are
B)

D)

els. The baseline data were bandpass filtered between 0.01 and 1.25 Hz before the R2

g the maximum of the normalized cross-correlation function (Eq. (16)) while the “no
5 level are indicated with horizontal black lines (two-tail paired t-test). The statistical
ificant. (A)–(B) Initial baseline R2 between the long and the short channels as a function
tion channels as a function of the relative distance between them.
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plotted as a function of their relative distance on the probe. A similar
fast decay was observed as the relative distance between the two
channels increased from 1 to 2 cm on the probe and then the correla-
tion plateaued for longer distances. The values for the optimal-time
lag correlations in this case were significantly higher (pb0.05, two-
tailed paired t-test) compared to the zero-lag correlations.

Simulation results

The results for the synthetic HRF simulations are shown in Figs. 5–7
for the R2, MSE and CNR metric respectively. On panels (A) and (B)
of all three figures, the three metrics are plotted as a function of the
relative distance between the 3 cm separation and the short separa-
tion channel used as a regressor. Values obtained by introducing a
time-lag in the short separation channel are also shown as well
as the corresponding values obtained using a standard GLM. We
observed a fast decrease of the improvement obtained by the Kalman
filter as the relative distance between the 3 cm and the short separa-
tion channel was increased from 1.4 to 2.4 cm. The performance then
plateaued for longer relative distances. Both the R2 (Fig. 5) and
the CNR (Fig. 7) decreased as the relative distance between the
long- and short separation channels was increased, while the MSE
(Fig. 6) increased. Using a short separation channel located 1.4 cm
away from the channel containing the synthetic HRF resulted in a
mean increase in CNR of 50% for HbO and 100% for HbR relative to
A)

C)

Fig. 5. Effect of the relative distance on the correlation between the recovered HRF and the tr
short and the long NIRS channel. Panels (C)–(D) show the recovered R2 as a function of the
standard GLM with no small separation is also shown for comparison. Statistical differences
statistical test is pairwise such that a small but constant difference across the sample is ma
the GLM method. Using a short separation channel located farther
than 2 cm away from the channel containing the synthetic HRF
resulted in significant (pb0.05, two-tailed paired t-test) but negligi-
ble improvements of the order of a few percent compared to the
standard GLM procedure. Again, we re-emphasize that the statistical
test is pairwise such that a small but constant difference across
the sample is marked as significant. However the magnitude of the
difference is small.

On panels (C) and (D) of Figs. 5–7, the same R2, MSE and CNR
results are plotted as a function of the baseline zero-lag correlation
(Pearson R2) between the 3 cm and the short separation channels.
Results obtained by introducing a time-lag in the short separation
channel are also plotted as a function of the baseline optimal
time-lag correlation. We observed a linear relationship between
the improvement obtained with the Kalman filter and both the base-
line zero-lag correlations and optimal time-lag correlations between
the two channels. A baseline correlation greater than 0.8 resulted
in a mean improvement in CNR of 50% and 100% compared to the
standard GLM for HbO and HbR respectively.

Functional data results

Each run of finger tapping was analyzed independently for each
subject. The SD pair showing the strongest functional response was
selected manually for each subject. To avoid any bias toward the
B)

D)

ue HRF. Panels (A)–(B) show the recovered R2 as a function of the distance between the
baseline R2 between the short and the long NIRS channel. The value recovered using a
at the pb0.05 level are indicated with horizontal black lines (two-tail paired t-test). The
rked as significant.



A) B)

C) D)

Fig. 6. Effect of the relative distance on the MSE between the recovered HRF and the true HRF. Panels (A)–(B) show the MSE as a function of the distance between the short and the
long NIRS channel. Panels (C)–(D) show the MSE as a function of the baseline R2 between the short and the long NIRS channel. The value recovered using a standard GLM with
no small separation is also shown for comparison. Statistical differences at the pb0.05 level are indicated with horizontal black lines (two-tail paired t-test). The statistical test
is pairwise such that a small but constant difference across the sample is marked as significant.
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Kalman filter method, both the Kalman filter and the standard block-
average results were taken into account independently. The criteria
for selecting the responses were a sustained increase in HbO and
a sustained decrease in HbR (Cui et al., 2010), as well as a sustained
increase in HbT to avoid pial vein washout contamination. Based
on these criteria, the selected channel from the block-average
matched the one selected from the Kalman filter result for each sub-
ject, although the HRF recovered with the block-average showed
weak activation for three of the six subjects. For each individual
subject, the HRFs recovered from the selected channel are shown
for the first run in Fig. 8. Results from a single run are presented
to illustrate the power of our method and the high CNR achieved
with only 6 individual finger tapping blocks. Results from the sec-
ond and the third run were very similar. Columns 1–4 illustrate
the corresponding HRFs (same 3 cm channels) recovered using:
(1) a block-average with no small-separation channel, (2) the Kalman
filter with the small-separation channel located in the forehead
as a regressor, (3) the Kalman filter with the short separation
channel located 2.4 cm away as a regressor and (4) the Kalman filter
with the closest short separation channel (located 1.4 cm away) as
a regressor.

For subjects 1, 4 and 6, the HRFs recovered without using the
closest short separation channel (columns 1–3) showed weak activa-
tion patterns only. However, the activation became clear on the same
channels using the Kalman filter together with the closest short
separation channel (column 4). For subjects 2, 3 and 5, a clear activa-
tion was present whether the Kalman filter was used or not. For sub-
jects 2, 3 and 4, a strong artifact present between 15 and 30 s was
removed using the Kalman filter with the closest short separation
channel. Removing this artifact made the HRFs more constant dur-
ing the duration of the stimulus (0–30 s).

Discussion

Systemic interference measured by NIRS is inhomogeneous across the
scalp

Systemic interference measured in NIRS has been termed “global”
interference previously in the literature (Saager and Berger, 2005;
Saager et al., 2011; Umeyama and Yamada, 2009a; Zhang et al.,
2007a,b). In contradiction, our present results indicate that systemic
interference is actually inhomogeneous across the surface of the
scalp, that is, the correlation between systemic interference measured
at two different locations decreases with the increasing relative dis-
tance between the two measurements. Although the short separation
channel measurements might contain some cortical signal, Monte
Carlo simulations have shown that this contribution is negligible for
a SD distance of 1 cm (Zhang et al., 2007a). As such, panels (C) and
(D) of Fig. 4 indicate that the origin of this decorrelation is located
in the superficial layers of the head and therefore, is not due to
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Fig. 7. Effect of the relative distance on the Contrast-to-noise ratio (CNR) defined in Eq. (15). Panels (A)–(B) show the CNR as a function of the distance between the short and the
long NIRS channel. Panels (C)–(D) show the CNR as a function of the baseline R2 between the short and the long NIRS channel. The value recovered using a standard GLM with
no small separation is also shown for comparison. Statistical differences at the pb0.05 level are indicated with horizontal black lines (two-tail paired t-test). The statistical test
is pairwise such that a small but constant difference across the sample is marked as significant.
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autoregulation mechanisms occurring in the brain tissue (Payne et al.,
2009).

Although introducing a time-lag re-established one third of the
correlation between the two short separation measurements, the
other two thirds of the R2 correlation was still lost after introducing
time delays. This finding indicates that only part of the correlation
decay can be explained by simple transit time effects across different
locations on the scalp. The systemic interferences measured in NIRS
are oscillatory processes containing three dominant components
(Lina et al., 2008). These are the cardiac pulsations around 1 Hz, respi-
ratory oscillations around 0.4 Hz and other low frequency oscillations
(including Mayer waves (Julien, 2007)) around 0.1 Hz. Analyses
similar to the one presented in Fig. 4 were performed with the
NIRS data bandpass filtered at 0.01–0.2 Hz, 0.2–0.5 Hz and at 0.5–
3 Hz (see Supplementary Figs. 9, 10 and 11). These frequency bands
correspond to the low frequency, respiratory and cardiac oscillations
respectively. These analyses revealed a decay in correlation with in-
creasing relative distances in all these three frequency bands. Al-
though the correlation decayed, it never reached zero even for low
frequency oscillations, which is in agreement with recent findings by
Tong and deB Frederick (2010). Up to 3/4 and 1/2 of the correlation
lost in the 0.2–0.5 Hz band and the 0.5–3 Hz band respectively could
be re-established by introducing a time-lag. However, introducing a
time-lag in the 0.01–0.2 Hz frequency band resulted in only negligible
improvements in correlation. These findings are in agreement with a
recent paper from Tian et al. (2011) indicating that cardiac fluctua-
tions (~1 Hz) are more global while low frequency oscillations
(~0.1 Hz) are less spatially coherent.

From our results, one can conclude that (1) slow oscillations are
inhomogeneous across the surface of the scalp and (2) a significant
proportion of the correlation decay in the higher frequency bands
(cardiac and respiration) is attributed to transit time effects across
different spatial regions. These phase mismatches of the cardiac
and respiratory pulsation over different locations arise potentially
from spatial heterogeneity of the vasculature such as blood vessel
length, orientation, size, depth and dilation (Zhang et al., 2007a,
2009). However, 1/4 and 1/2 of the correlation lost in the respiration
and cardiac frequency band respectively could not be re-established
by introducing a time-lag and future studies will be required to inves-
tigate the origin of this correlation decay.

Impact on the short separation method

This fast decrease in correlation with increasing relative distance
has an important impact on the performance of the short separation
method. Panels (C) and (D) of Figs. 5–7 illustrate that all three metrics
used (R2, MSE and CNR) varied linearly with the baseline correlation,
whether a time-lag was used or not. Since the baseline correlation
decreased with the relative distance as shown in Fig. 4, we expected
the performance of the short separation method assessed with these



Fig. 8. Finger tapping results from a single run containing 6 individual blocks. For each subject, the trace from the channel containing the strongest functional response is shown.
(1) Standard block-average (2) Kalman filter with the forehead short separation channel. (3) Kalman filter with the short separation channel located at 2.4 cm. (4) Kalman filter
with the short separation channel located at 1.4 cm.
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three metrics to decrease with the relative distance. This expectation
was confirmed by our simulations and is shown in panels (A) and (B)
of Figs. 5–7. For relative distances larger than 2 cm, only mild im-
provements were obtained using our short separation approach com-
pared to the standard GLM method. No decrease in performance
was observed using our Kalman filter with any of the available
short separation. This is consistent with our previous findings
(Gagnon et al., 2011) that the Kalman filter improves or doesn't
change recovery of the hemodynamic response. At worst, the recovered
response will be the same as the one recovered with a standard GLM
with no small separation used. To obtain larger improvements that
are useful in practice, the short separation channel must be located
no more than 1.5 cm from the 3 cm channel from which the HRF is to
be recovered.

For large NIRS probes containing several long SD measurements
spread over several centimeters, our results indicate that multiple
short separation channels are required in order to combine each
long-separation measurement with a short separation channel within
a 1.5 cm radius. In this case, our simulations indicate that the im-
provement in CNR using the short separation method is of the order
of 50% for HbO and 100% for HbR, as shown respectively in panels
(A) and (B) of Fig. 7. As in our previous paper (Gagnon et al., 2011),
we observed an improvement for both HbO and HbR, in contradiction
with Zhang et al. (2009) where no improvement was observed for
HbR using an adaptive filter method. In the simulations of our previ-
ous paper (Gagnon et al., 2011), we also observed a decrease in perfor-
mance for HbR using an adaptive filter. As we showed, our Kalman
filter approach overcomes this pitfall by regressing the short separa-
tion measurement and simultaneously estimating the hemodynamic
response.

The necessity of using several short separation channels on the
probe was also confirmed by our finger tapping experiment. Using
the short separation channel located at 2.4 cm from the 3 cm SD mea-
surement, the HRF obtained from subjects 1, 4 and 6 showed a weak
activation pattern only, as shown in Fig. 8. On the other hand, the
activation became very clear on these same channels using the
short separation channel located 1.4 cm away. The baseline correlations
between the short separation and the long-separation channels were
around 0.3 for the short separation channel located 2.4 cm away and
around 0.5 for the short separation channel located 1.4 cm away. This
re-emphasizes the fact that the initial baseline correlation between
the short separation and the 3 cm channel is an important factor in de-
termining the performance of the Kalman filter algorithm. In practice,
this baseline correlation can be computed to predict the impact of
using short optode separations. In our previous paper (Gagnon et al.,
2011), we showed that the presence of a hemodynamic response
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in the 3 cm channel does not impact the baseline initial correlation
between the short separation and the 3 cmchannel. This occurs because
the contribution of systemic interference in NIRS largely dominates
the contribution of the hemodynamic response. This was confirmed
here with our real functional data.

How many regressors should be used?

In all the simulations presented in this paper, we used a single
regressor at a time. We also ran simulations using multiple regressors
simultaneously but all of them resulted in a significantly higher MSE
and lower CNR compared to using the single short separation channel.
This is explained by a potential overfitting of the data. When more
than one regressor is used at the same time, we start fitting noise in
the datawhich introduces errors in the estimation of the hemodynam-
ic response. The same thing occurred in our previous paper (Gagnon
et al., 2011)when a single regressorwas used butmultiple time delays
from this regressor were used in the regression. To avoid overfitting
the data and to obtain the maximum power from the short separation
method, we have found that on average a single regressor performs
better than two or more.

Alternatives for modeling the physiological interference

Alternative methods for modeling the physiological interference
have been proposed in the literature. Prince et al. (2003) used a set
of sine and cosine functions to model the oscillatory behavior of the
systemic physiology. The linear coefficients of these temporal bases
were included as additional states in the state-space model. Alterna-
tively, Abdelnour and Huppert (2009) used a set of sine functions
only but included the phase as an additional state. These methods
were implemented and compared with the short separation method.
In both cases, the short separation approach performed better com-
pared to these modeling techniques. These models contain a higher
number of degrees of freedom (i.e. larger number of state) which po-
tentially introduces crosstalk between the state corresponding to the
hemodynamic response and the state corresponding to the systemic
physiology. This phenomenon degrades the estimation of the hemo-
dynamic response. The short separation method reduces the number
of degrees of freedom and reduces crosstalk by measuring directly
the systemic interference in the superficial layers of the head and
therefore, results in a more accurate estimation of the hemodynamic
response.

Future studies

In this work, a small detector fiber was placed in proximity of each
source fiber, resulting in a single small separation channel for every
long SD channel. An interesting question is whether or not an addi-
tional short separation channel located in proximity of the detector
fiber would further improve the recovery of the hemodynamic re-
sponse. Doing sowouldmaximize the overlap between the pathlength
of the small separation channels and the longer SD channel, andmight
result in a further improvement of the small separationmethod. How-
ever, care must be taken to ensure that the additional source fibers
do not inadvertently saturate the detectors and to ensure that the
fiber optic probe remains flexible for efficient coupling with the
scalp. We have begun to investigate the improvement of additional
short separation measurements on the long separation source and
long separation detector simultaneously. Our preliminary evidence
indicates that as expected the results get better. For sure, we can
still use a single short separation regressor but choose the one which
has a higher correlation with the long separation measurement;
either the short separation coincident with the long separation
source, or the long separation detector. When we use both short sep-
aration regressors we have to ensure that we are not over fitting the
data. Sometimes using both short separation regressors will actually
degrade our estimate of the HRF, and thus statistical model testing
needs to be implemented to determine if one or two regressors should
be used.

Conclusion

In this study, we have determined that the position of the short
separation NIRS channel relative to the long-separation channel
impacts the performance of the short separation regression method
to improve the recovery of the hemodynamic response in NIRS. We
showed that the relative distance between the channel of interest and
the regressor must be less than 1.5 cm to have a meaningful impact
on the recovery of the hemodynamic response. In this case, improve-
ments in CNR were of the order of 50% for HbO and 100% for HbR com-
pared to the standard GLM approach. When a short separation channel
located farther than 2 cm was used as regressor, only minor improve-
ments were obtained compared to the standard GLM method, which
are of little practical use. This decrease in performance for longer rela-
tive distances results from a decrease in the baseline correlation
between the channel of interest and the regressor. Our results indi-
cate that this correlation decay is due to spatially inhomogeneous
hemodynamics in the superficial layers of the head.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.neuroimage.2011.08.095.
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