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Quantitative evaluation of three cortical surface flattening methods
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During the past decade, several computational approaches have been

proposed for the task of mapping highly convoluted surfaces of the human

brain to simpler geometric objects such as a sphere or a topological disc.

We report the results of a quantitative comparison of FreeSurfer,

CirclePack, and LSCM with respect to measurements of geometric

distortion and computational speed. Our results indicate that FreeSurfer

performs best with respect to a global measurement of metric distortion,

whereas LSCM performs best with respect to angular distortion and best

in all but one case with a local measurement of metric distortion.

FreeSurfer provides more homogeneous distribution of metric distortion

across the whole cortex than CirclePack and LSCM. LSCM is the most

computationally efficient algorithm for generating spherical maps, while

CirclePack is extremely fast for generating planar maps from patches.

D 2005 Elsevier Inc. All rights reserved.
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Introduction

Since the highly convoluted cerebral and cerebellar cortices are

topologically equivalent to a two-dimensional sheet (topological sphere

or disc), surface representations of the cortex should facilitate the

visualization and analysis of functional activation data by preserving

important geometrical and topological relationships. Moreover, surface

representations which can be parameterized using two-dimensional

coordinate systems (i.e., flat maps) may be useful for anatomically

driven inter-subject registration (Van Essen et al., 1998).

Various methods have been proposed to inflate and/or flatten

cortical brain surfaces: CARET (Drury et al., 1996), FreeSurfer

(Fischl et al., 1999), the Laplace–Beltrami operator (Angenent et al.,
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1999), circle packing (via the CirclePack software) (Hurdal et al.,

1999), harmonic energy minimization (Gu and Yau, 2002), and

Least Squares Conformal Mapping (LSCM) (Ju et al., 2004).

Although flattening a cortical surface necessarily introduces metric

distortion due to the non-constant Gaussian curvature of the surface,

it is possible to preserve local angular information (‘‘conformality’’)

(Ahfors, 1996). We call a mapping that keeps conformality of the

surfaces a ‘‘conformal mapping’’. Pioneering work on numerical

implementation of spherical conformal mapping was done by

Brechbuhler et al. (1995) and Szekely et al. (1996) for the purpose

of surface parameterization.

In order to quantify angular and metric distortion using

conformal mapping techniques and non-conformal methods, we

examined the performance of three published, freely available

surface-mapping algorithms: FreeSurfer, CirclePack, and LSCM.

All three methods can flatten user-defined patches and produce two-

dimensional spherical surface maps of cortical hemispheres.

CARETand FreeSurfer are similar in that both algorithms explicitly

minimize metric distortion by solving a large-scale nonlinear

optimization problem. The other four algorithms listed above

produce discrete quasi-conformal maps. The Laplace–Beltrami

operator, harmonic energy minimization, and LSCM are based on

different but equivalent definitions of conformal mapping. They use

both vertex connectivity and metric information, whereas tangency-

based circle packing makes use of metric information from only the

surface boundary, and otherwise depends only on the vertex

connectivity of the surface mesh. All of the algorithms mentioned

above work with the input surface meshes directly, and do not

attempt to either reduce or subdivide the mesh.
Methods

Flattening techniques

Let K be a simply connected triangulated cortical surface

vif gni¼1; T ¼ Ti ¼ vi1 ; vi2 ; vi3ð Þf gmi¼1g
�

where {vi}
n
i=1 is a set of n
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Table 1

Comparison of features of three flattening methods

Feature/Capability FreeSurfer CirclePack LSCM

Flat map premise? Metric Conformal Conformal

What is optimized

directly?

Metric

distortion

Finding a packing Conformal

energy

Geometrically

converges?

No Yes Yes

Mesh information

used?

Metric and

combinatoric

Metric on boundary

and combinatoric

elsewhere

Metric and

combinatoric

Finds global

optimum?

No Yes Yes

Global optimum

unique?

No Up to Möbius Up to Möbius

Spherical map Yes Yes Yes

Planar map:

unspecified shape

Yes Yes Yes

Planar map:

specific shape

No Yes (convex) Yes (convex)

Table 2

Mesh information of the cortical surfaces

Cortical surfaces Cerebral cortex Cerebellar hemisphere

MNI UPENN

Vertices 28,340 191,724 146,922

Triangles 56,676 383,444 293,840
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vertices with n � 3 and T is a set of m triangles consisting of

triples of vertices. Assume that K is consistently oriented. Then

each triangle of T has a uniquely defined normal.

Let U represent the flattening function. Assume that U is linear

on each triangle Ti, implying that the flattening can be uniquely

determined by the mapping of the vertices of K. Let TU
i ¼ U Tið Þ

denote the mapping triangle of Ti. Let A(Ti) and A TU
i

� �
denote the

oriented area of triangle Ti on the cortical surface K and its flat

map U KÞð , respectively. Let di,j and dUi; j denote the geodesic

distances between the vertex vi and vj on the cortical surface K and

its flat map U KÞð , respectively. A modified Dijkstra Algorithm

(Dijkstra, 1959) is employed to compute the geodesic distances on

the polyhedral surface as suggested in Fischl et al. (1999).

Although there are some more accurate algorithms (Kanai and

Suzuki, 2001; Mitchell et al., 1987), they are either computation-

ally infeasible for large meshes or else prohibitively difficult to

implement.

A conformal map preserves angles and angle direction. In

order to conformally map a discrete surface embedded in R
3 to

a surface of constant curvature such as the plane, C (if K is a

topological disc), or a sphere, S2 (if K is a topological sphere),

the mapping should preserve discrete angle market share at

each vertex (Hurdal et al., 1999; Hurdal and Stephenson, 2004).

The spherical conformal maps of K are not unique since the

sphere S2 has a rich group of automorphisms, i.e., one-to-one

conformal maps from S2 to itself. The automorphism group of

S2, Aut ðS2Þ is the group of all Möbius transformations of S2,

i.e.,

AutðS2Þ ¼ wjw : z ! azþ b

czþ d
;a;b;c;d aC; ad 
 bc m 0

� �
:

Choosing three points, such as anatomical landmarks, is one

way to specify the Möbius transformation.

Since conformal maps are synonymous with angle preservation,

they make no attempt to minimize metric distortion. The flexibility

in choosing a Möbius transformation enables us to choose such a

transformation that minimizes metric distortion within the group of

automorphisms. Therefore, for the purposes of comparing metric

distortion between conformal maps and metric-based methods, we

have added a final step to the conformal mapping algorithms. The
spherical conformal map U is normalized by finding a Möbius

transformation wa Aut S2ð Þ that minimizes the metric distortion

among the automorphism group. This is a small-scale nonlinear

optimization problem which can be quickly solved by Powell’s

Method (Powell, 1964).

FreeSurfer

FreeSurfer is a very popular software package for cortical

surface inflation and flattening that explicitly minimizes the

metric distortion of the flattened cortical surface. It inflates a

surface by attempting to minimize the following mean-squared

energy functional:

Jd ¼
1

4n

Xn
i ¼ 1

X
j a N ið Þ

dUi;j 
 di;j

� �2

where N(i) denotes the index set of vertices which are pre-

defined neighbors of vertex i, and distances are approximations

of geodesic distance computed by the same method cited above.

Since it is not feasible to unfold a large cortical surface by

simply minimizing the distance term, another functional related

to oriented area is added:

Ja ¼
1

2m

Xm
i¼1

P A TU
i

� �� �
A TU

i

� �

 A Tið Þ

� �2

where P A TU
i

� �� �
¼ 1 if A TU

i

� �
> 0, otherwise P A TU

i

� �� �
¼ 0.

Then, the complete functional becomes

J ¼ kdJd þ kaJa ð1Þ

where ka and kd define the relative importance of unfolding versus

the minimization of metric distortion. Initially ka takes much larger

values than kd and gradually decreases over time as the surface is

successfully unfolded. A Multi-scale Line Minimization (Press

et al., 1994) scheme is used to solve this nonlinear optimization

problem (Eq. (1)). FreeSurfer is not guaranteed to find the global

minimum of this function. Due to the fact that it uses a modified

Dijkstra (graphbased) algorithm to compute distances between

vertices, FreeSurfer’s results may be affected by retriangulations of

the surface mesh which do not change the 3D spatial position of

the mesh, because the retriangulation would affect both the set of

vertices available for distance computations and the estimated

geodesic distances between them.

A spherical map is generated through projecting the inflated

cortical surface onto the sphere by moving each vertex to the

closest point on the sphere. The energy functional is again

minimized to reduce the metric distortion and remove any folds

introduced by the projection process.



Table 3

Mesh information and percentage of hemispheral area of the cerebral lobar

patches

Cerebral

lobar patches

Vertices Triangles Boundary

vertices

Percentage of

hemispheral area

Frontal lobe MNI 59,319 117,944 692 31.04

UPENN 48,311 95,776 844 32.92

Occipital lobe MNI 27,649 54,796 500 14.34

UPENN 17,102 33,823 379 11.46

Parietal lobe MNI 37,884 74,921 845 19.74

UPENN 28,812 56,915 707 19.66

Temporal lobe MNI 42,631 84,568 692 21.80

UPENN 33,971 67,365 575 22.03

Table 4

CPU time and angular and metric distortion (I and II) of spherical maps of

the MNI cerebellar cortex produced by FreeSurfer, CirclePack, and LSCM

Spherical map of cerebellar cortex FreeSurfer CirclePack LSCM

CPU time (min) 35.3 53.73 0.9

Angular distortion (-) Mean 15.25 15.03 1.91

SD 14.55 15.86 2.56

Metric distortion I (%) Mean 19.35 35.57 36.58

SD 10.27 20.02 21.94

Metric distortion II (%) Mean 14.34 14.98 10.71

SD 6.33 8.19 5.38
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CirclePack

CirclePack is a discrete conformal flattening method that

preserves angular proportions locally. Its simplest implementation

uses tangency circle packing which depends solely on the mesh

vertex connectivity when there is no surface boundary. Thus, it

does not take into account metric information about the relative

edge lengths of the original cortical surface unless the surface has a

boundary.

A tangency circle packing can be described as follows: a

collection of circles CK ¼ C við Þf gni¼1 in the plane, one circle for

each vertex vi, has the property that C(vi) and C(vj) are tangent

whenever vi and vj form an edge of K. The Circle Packing

Theorem states that given any triangulation of a topological disc,

K, and any assignment of positive numbers r1, r2, . . ., rnb
to the

boundary vertices v1, v2, . . ., vnb
of K, there is a unique (up to a

Euclidean isometry) tangency circle packing in the plane with

boundary circle C(vi) having radius ri (Rodin and Sullivan, 1987).

In general, r1, r2, . . ., rnb
can be set to be proportional to the lengths

of the corresponding boundary edges in K as we did in our

numerical experiments. It is noted that if K consists only of

equilateral triangles, then its circle packing will be conformal.

The packing pattern for Euclidean or Hyperbolic map (i.e., K is

a topological disc) is found by an iterative method (Collins and

Stephenson, 2003) and regarded as the resulting flat map U. If K is

a topological sphere, first an arbitrary vertex v* chosen from

{vi}
n
i=1 and all edges containing it are removed from the input

triangulated mesh K, clearly, the pruned mesh KV becomes a

topological disc. Then, spherical maps are generated by stereo-

graphic projection of the circle radii from the Hyperbolic map of

KV computed using CirclePack and mapping v* to the north pole.

The spherical map is finally normalized by finding a Möbius

transformation that minimizes the metric distortion among the

automorphism group.

In our experiments, we tested CirclePack on a general mesh

featuring non-equilateral triangles. Although it would seem that

CirclePack should be sensitive to the triangulation obtained from

the MRI images, preliminary numerical experiments have shown
Fig. 1. From left to right: the MNI cerebellar cortex and spherical map
that this is not the case. This could be attributed to the fact that a

given triangulation encodes angular and curvature information

from the surface and so the triangulation is not arbitrary. The

CirclePack maps do not seem to change significantly if a

triangulation is changed or decimated as long as the main curvature

features are maintained.

LSCM

LSCM (least squares conformal mapping) was originally

conceived as a planar conformal parameterization method based

on a least-squares approximation of the Cauchy–Riemann equa-

tion (Levy et al., 2002). Suppose that K is a topological disc and

consider a smooth map U : K ! R
2. When restricting U on one of

the triangles of T , say T, the Cauchy–Riemann equation states that

U is conformal on T if and only if @U
@x þ i @U@y ¼ 0 holds true

everywhere on T . This conformal criterion generally cannot be

strictly satisfied on the whole triangulated surface K embedded in

R
3. Violations of this condition are minimized in order to construct

a quasi-conformal map in the least squares sense:

min
U

C Kð Þ ¼
X

T a T

Z
T







@U
@x

þ i
@U
@y







2

dA¼
X
T a T







@U
@x

þ i
@U
@y







2

A Tð Þ:

Suppose that ui ¼ U við Þ for i = 1, . . ., n, then C Kð Þ can be

written in quadratic form such as:

min
U

C Kð Þ ¼ u4M4Mu ð2Þ

where u = (u1, . . ., un) and M is an m � n complex matrix and

* represents matrix conjugate transpose. To make the minimization

problem (Eq. (2)) have a unique and non-trivial solution, some of

the uiVs must be pre-defined. Let us re-arrange the vector u such

that u = (uf, up) where uf consists of n –q free coordinates and up
consists of q pinned coordinates. Then, Eq. (2) can be rewritten as

CK ¼ jjMf uf þMpupjj2 where M = (Mf, Mp) such that Mf is a

m � (n –q) matrix and Mf, is a m � q matrix.

A minimization problem (Eq. (2)) of least squares type can be

efficiently solved using Conjugate Gradient Method (Press et al.,
s produced by FreeSurfer, CirclePack, and LSCM, respectively.



Fig. 2. Frequency histograms illustrating the angular and metric distortion (I and II) of spherical maps of the MNI cerebellar cortex generated by FreeSurfer

(left), CirclePack (middle), and LSCM (right).
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1994) and it has a unique solution when q � 2. In order to obtain

the planar map with the least conformal distortion, q should be set

to 2 (Levy et al., 2002). In our experiments, we set q = 2 and the

two vertices maximizing the length of the shortest path between

them were chosen to be pinned. Once again, if K is a topological

sphere, the spherical map is obtained by stereographic projection

using the same trick as CirclePack and normalized by finding a

Möbius transformation that minimizes the metric distortion among

the automorphism group.

When the size of the surface is very large and that of the

boundary is relatively quite small, numerical conformal maps

contain metric distortion that is often much greater in regions

close the surface boundary than that of interior regions. The

Adaptive Weighted LSCM approach was developed to solve this

problem:

min
U

C Kð Þ ¼
X

T a T
aT







@U
@x

þ i
@U
@y







2

A Tð Þ ð3Þ

where aT > 0 is the weight for the triangle T. The weights are

adaptively adjusted to penalize the unequal distribution of the
Fig. 3. From left to right: the MNI left cerebral hemisphere cortex (in radiologica

LSCM, respectively.
areal distortion among the mesh triangles until some stopping

criterion is satisfied. In our experiments, the following simple

algorithm was used:

Algorithm

1. Initialize aT = 1 for all T Z T and set k = 1.

2. Solve the minimization problem (Eq. (3)) to obtain the current

mapping U.
3. Compute the areal distortion on each triangle ADTf gTaT of the

flat map U KÞð after normalization. Then, calculate the

corresponding standard deviation STk over all triangles.

4. If STk > STk 
 1 or k � 8, then stop; otherwise,

set aT ¼ aT 1þ ADT

1þk2

��
for each T Z T .

5. Normalize the weights aTf gTaT by their average and set k =

k + 1, then go to step 1.

Maps produced using the adaptive LSCM have larger con-

formal distortion but reduced metric distortion compared to non-

adaptive LSCM. Note that Adapative Weighted LSCM was only

used in flattening cortical patches and not for generating spherical

maps in our experiments.
l orientation) and spherical maps produced by FreeSurfer, CirclePack, and



Table 5

CPU time and angular and metric distortion (I and II) of spherical maps of

left cerebral hemisphere cortices produced by FreeSurfer, CirclePack, and

LSCM

Spherical map of cerebral hemisphere FreeSurfer CirclePack LSCM

MNI CPU time (min) 630.5 2489.9 9.8

Angular distortion (-) Mean 18.75 16.55 4.63

SD 15.83 15.18 4.57

Metric distortion I (%) Mean 26.06 37.86 33.70

SD 12.37 22.48 20.10

Metric distortion II (%) Mean 18.88 20.84 11.79

SD 7.49 13.84 7.06

UPENN CPU time (min) 384.3 1265.6 19.2

Angular distortion (-) Mean 18.76 16.33 7.21

SD 16.01 14.95 11.01

Metric distortion I (%) Mean 21.57 39.81 34.33

SD 10.02 24.36 24.39

Metric distortion II (%) Mean 16.16 18.95 14.94

SD 7.61 13.88 11.85
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Comparison of features/capabilities

Features and capabilities of the above three flattening methods

are summarized in Table 1. We comment on these distinctions as

follows.

Flattening premise?—FreeSurfer is based on reducing metric

distortion; LSCM and CirclePack are based on producing quasi-

conformal maps that attempt to minimize or reduce conformal

distortion.

What is optimized directly?—As described above, FreeSurfer

iteratively reduces an approximate measure of metric distortion

on local neighborhoods; CirclePack finds a packing (by

iteratively minimizing the departure from local packing con-
Fig. 4. Frequency histograms illustrating the angular and metric distortion (I an

FreeSurfer, (left), CirclePack (middle), and LSCM (right).
straints around each mesh vertex) and implicitly assumes that

the departure from conformality caused by the use of non-

equilateral triangles is acceptable; LSCM directly minimizes a

cost measure of departure from discrete conformality.

Geometrically converges?—Does the chosen cost function of

each algorithm and the resulting flat map theoretically converge

as the mesh granularity shrinks or is refined?

Mesh information used?—FreeSurfer andLSCMusebothmetric

and connectivity information from themesh,while theCirclePack

implementationonlyemploysmetric informationon theboundary

and elsewhere only uses connectivity information.

Finds global optimum (of cost function)?—Because it depends

on an iterative nonlinear optimization, FreeSurfer is not

guaranteed to find a global minimum of its cost function and,

in general, cannot know how far the local minimum that it does

find is from the global maximum of the cost function; an

algorithm that always converges to a circle packing is

described by Collins and Stephenson; LSCM is a least squares

problem which produces a linear system and can be efficiently

solved by conjugate gradient method, so global convergence is

guaranteed.

Is global optimum unique?—It is possible for the global

optimum of FreeSurfer’s cost function to be achieved by two or

more significantly different mapping layouts; a circle packing is

unique, and the linear equations generated by LSCM have a

single basin of attraction. However, a conformal map is unique

up to Möbius transformations so the final step of both LSCM

and CirclePack depends on choosing an appropriate Möbius

transformation. In order to compare the three methods, an

optimized Möbius transformation that minimizes a metric

distortion criterion is used, and it is theoretically possible for

the global minimum value of this optimization to be achieved

by two or more different Möbius transformations.
d II) of spherical maps of the MNI left hemispheral cortex generated by



Table 6

Percentage of spherical area and angular and metric distortion (I and II) of

spherical maps of left cerebral hemisphere cortices produced by FreeSurfer,

CirclePack, and LSCM on lobar patches

Spherical map of cerebral hemisphere

Cerebral lobe FreeSurfer CirclePack LSCM

MNI Frontal

lobe

Percentage of

spherical area

30.54 24.72 23.57

Angular distortion (-) 15.88 23.72 4.37

Metric distortion I (%) 22.76 58.73 32.90

Metric distortion II

(%)

16.35 33.02 10.53

Occipital

lobe

Percentage of

spherical area

11.12 11.72 5.76

Angular distortion (-) 18.69 11.96 4.47

Metric distortion I (%) 25.61 25.22 40.78

Metric distortion II

(%)

18.71 13.81 11.84

Parietal

lobe

Percentage of

spherical area

20.06 21.08 23.03

Angular distortion (-) 18.75 12.81 4.19

Metric distortion I (%) 24.73 22.84 22.18

Metric distortion II

(%)

19.93 14.14 9.65

Temporal

lobe

Percentage of

spherical area

22.75 29.53 24.16

Angular distortion (-) 19.07 13.26 4.70

Metric distortion I (%) 27.98 29.40 33.21

Metric distortion II

(%)

19.55 15.63 13.14

UPENN Frontal

lobe

Percentage of

spherical area

33.73 48.37 33.33

Angular distortion (-) 17.63 17.93 7.56

Metric distortion I (%) 18.67 42.91 31.50

Metric distortion II

(%)

15.13 20.71 14.00

Occipital

lobe

Percentage of

spherical area

9.09 4.38 4.20

Angular distortion (-) 16.87 14.60 5.75

Metric distortion I (%) 20.39 38.67 45.63

Metric distortion II

(%)

15.54 14.94 13.15

Parietal

lobe

Percentage of

spherical area

21.53 16.79 18.75

Angular distortion (-) 17.27 14.73 5.52

Metric distortion I (%) 18.74 30.80 28.12

Metric distortion II

(%)

14.84 17.53 14.57

Temporal

lobe

Percentage of

spherical area

23.12 18.28 23.93

Angular distortion (-) 18.48 13.96 5.83

Metric distortion I (%) 20.64 34.47 31.41

Metric distortion II

(%)

16.09 14.99 12.91
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Spherical map—All of the methods can be used to map a mesh

that is a topological sphere to a geometric sphere with the

particular mapping determined by their respective criteria.

Planar map—All of the algorithms can map a mesh that is a

topological disc to a planar region; however, the FreeSurfer

software does not implement a method for mapping to a

specific shape. Numerically, CirclePack and LSCM can map

the mesh into any specific planar region, but theoretically the

injectivity only can be guaranteed when the region is

convex.

Measurements of distortion

We applied each algorithm to a number of cortical brain surface

meshes and evaluated performance with respect to three different

quantitative measures of geometric distortion defined below.

Angular distortion

Angular distortion is defined to reflect the difference between

corresponding angles of the cortical surface K and its flat map

U KÞð :

F angðU KÞð Þ¼ 1

3m

X
Tijk 2 Face Kð Þ

j�U
ijk
�ijk jþj�U

jki
�jkij þ j�U
kij
�kijj

� �

ð4Þ

where Tijk denotes the triangle formed by the vertices vi, vj, vk, hijk

denotes the angle !vivjvk on K; and hU
ijk denotes the angle

!U við ÞU vj
� �

U vkð Þ on U KÞð . All interior angles on the cortical

surface are normalized using the so-called market share of

angles at vertices; in other words, the numbers used for each

angle are proportional to the fraction of that angle in the sum of

the angles around the vertex (this sum is always 2p radians on

a flat mesh). The angular distortion of a discrete conformal

map should theoretically go to zero as the granularity of the

discrete mesh goes to zero and the mesh approximates a smooth

surface.

Metric distortion

For each vertex, we label each of its nearest neighbors as a

1-neighbor, then we label each neighbor of a 1-neighbor that is not

already labeled as a 2-neighbor. Repeating this process, we define

k-neighbors for each vertex.

The first measure of metric distortion reflecting the global

information (metric distortion I) is defined as follows:

Fmet
IðU KÞð Þ ¼ min
s2R

þ

1

n

Xn
i ¼ 1

1

N


X
j2N ið Þ

js:d U
i; j 
 di; jj
di; j

1
A

0
@ ð5Þ

where N(i) is the pre-determined index set of neighbor vertices of

the vertex vi using the above definition of neighbors and Ñ =

Card(N(i)) [the cardinality of N(i)]. This metric measure is similar

to the ones chosen in Fishcl et al. (1999) and Schwartz and Merker

(1986) but with some obvious differences. Here, s > 0 is a scaling

parameter used with the minimization process to avoid the

influence of similarity transformations (in other words, the flat-

mapping algorithm is not penalized for making the resulting

flattened meshes have coordinates with a different absolute size

scale than the original mesh). It is easy to see that Fmet
I is the
mean value of metric distortion of all vertices which is given by
1
Ñ
~jaN ið Þ js:dUi;j 
 di;jj=di;j for any vertex vi.

Since it would be computationally prohibitive on large meshes

to compute the value of our measure for all vertices using all

choices of k, we performed a restricted subset of this measure.

Specially, we set N(i) to be the index set of all k-neighbors of vi
for k � K for some K > 0. Then, vj

� �
jai?N ið Þ in fact forms a

sub-mesh/subregion around vi of the cortical surface. The larger

K is (i.e., the more mutual metric information is used), the more
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the measure of metric distortion is reasonable and accurate. In our

numerical experiments, K was set to be 15 (representing roughly

circular patches of brain surface with a geodesic diameter of

roughly 30 mm in our experiments), and consequently, Ñ

becomes quite a large number. In order to efficiently calculate

Fmet
I, we approximate some computations: we randomly sample

4 vertices from N(i) at each level of neighbors and use this set of

vertices as the new neighborhood N(i) of vi for the calculation of

Fmet
I.

A second measure of metric distortion, reflecting local

metric proportionality (metric distortion II) is measured as

follows:

Fmet
IIðUðKÞÞ ¼ 1

n

Xn
i ¼ 1

1

Ñ
min
si aR

þ

X
jaN ið Þ

jsi:d U
i; j 
 di; jj
di; j

1
A

0
@ ð6Þ

Here, we move the minimization process inside the first

summation, i.e., the minimization process is done independently

on its sub-mesh N(i) for each vertex vi. There are n minimization

processes in Eq. (6) but the complexity of each of them is much

smaller than the one done in Eq. (5). The same neighborhood N(i)

defined above was used again for the computation of Fmet
II.
Fig. 5. From left to right: lobar patches cut from the MNI left hemisphere (in

CirclePack, and LSCM, respectively. From top to bottom (row): frontal, occipital
It is easy to see that Fmet
I and Fmet
II will be the same if si = s

for i = 1, . . ., n, which means that the subregion formed by

vj
� �

jai?N ið Þ associated with each vertex vi is uniformly scaled in

the flat map. We note that the Fmet
II of a discrete conformal map

should theoretically go to zero as the granularity of the discrete

mesh goes to zero and mesh neighborhoods of every finite size

approximate a smooth surface.

Cortical surfaces

Cortical surfaces of an isolated cerebellum and two left

cerebral hemispheres were extracted from high-resolution T1-

weighted MRI brain volumes obtained from the Montreal Neuro-

logical Institute (MNI) (Holmes and Hoge, 1996) and the

University of Pennsylvania (UPENN). Triangular surface meshes

(topological spheres) of the cortices were produced by an in-house

region-growing algorithm (SurfMan) based on Marching Cubes

(Lorensen and Cline, 1987), smoothed using a Gaussian kernel,

and checked for topological correctness. In addition, frontal,

occipital, parietal, and temporal lobar patches (topological discs)

were cut out from both the MNI and PENN hemisphere surfaces

using SnipMan, an in-house program that extracts a topological

disc from a cortical surface. Descriptions of the cortical and lobar-

patch meshes are presented in Tables 2 and 3. Cortical surfaces
radiological orientation) and their planar maps generated by FreeSurfer,

, parietal, and temporal patches.



Table 9

CPU time and angular and metric distortion (I and II) of planar maps of the

parietal lobar patches produced by FreeSurfer, CirclePack, and LSCM

Planar map of parietal lobar patch FreeSurfer CirclePack LSCM

MNI CPU time (min) 173.50 0.82 40.90

Angular distortion (-) Mean 7.30 11.50 4.05

SD 7.05 9.72 6.69

Metric distortion I (%) Mean 8.93 18.21 14.64

SD 3.30 8.28 9.48

Metric distortion II (%) Mean 7.70 12.27 8.51

SD 2.59 3.46 3.39

UPENN CPU time (min) 132.40 0.36 55.50

Angular distortion (-) Mean 13.37 11.06 4.54

SD 13.58 10.29 5.73

Metric distortion I (%) Mean 15.07 23.65 26.93

SD 9.83 14.79 17.99

Metric distortion II (%) Mean 12.30 14.17 13.89

SD 7.04 8.13 10.19

Table 7

CPU time and angular and metric distortion (I and II) of planar maps of the

frontal lobar patches produced by FreeSurfer, CirclePack, and LSCM

Planar map of frontal lobar patch FreeSurfer CirclePack LSCM

MNI CPU time (min) 276.50 2.10 56.80

Angular distortion (-) Mean 11.37 11.40 4.85

SD 10.54 10.70 6.49

Metric distortion I (%) Mean 14.25 30.19 26.00

SD 8.13 16.37 15.56

Metric distortion II (%) Mean 11.16 13.09 10.57

SD 4.75 5.78 4.72

UPENN CPU time (min) 279.40 1.25 61.40

Angular distortion (-) Mean 15.11 12.11 5.67

SD 15.14 11.02 8.70

Metric distortion I (%) Mean 17.54 28.25 24.62

SD 11.12 16.29 16.37

Metric distortion II (%) Mean 14.15 14.89 13.31

SD 7.70 9.85 9.16
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and lobar patches were then flattened using FreeSurfer, Circle-

Pack, and LSCM.
Results and discussions

All three methods were run on a PC Linux workstation (1.67

GHz AMD Athlon XP CPU, 1.0 GB main memory) at the

University of Minnesota. The default settings of the software were

used. For the metric distortion computations, the sub-mesh

associated with each vertex in the original mesh consisted of

approximately 900 vertices with K = 15.

Cerebellar cortex

The parcellated surface of the MNI cerebellum and the

spherical maps generated by FreeSurfer, CirclePack, and LSCM

are illustrated in Fig. 1. Cortical regions defined by lobes and

fissures were colored for identification purposes according to the

criteria set by Schmahmann and his colleagues (Schmahmann et

al., 2000). CPU time and measurements of angular and metric

distortion (I and II) are reported in Table 4; corresponding
Table 8

CPU time and angular and metric distortion (I and II) of planar maps of the

occipital lobar patches produced by FreeSurfer, CirclePack, and LSCM

Planar map of occipital lobar patch FreeSurfer CirclePack LSCM

MNI CPU time (min) 157.50 0.35 14.30

Angular distortion (-) Mean 11.79 11.33 5.56

SD 10.91 9.76 6.93

Metric distortion I (%) Mean 14.06 25.75 22.51

SD 6.78 12.94 11.63

Metric distortion II (%) Mean 11.64 13.52 10.59

SD 4.70 4.72 4.87

UPENN CPU time (min) 247.40 0.30 7.80

Angular distortion (-) Mean 14.09 10.79 3.94

SD 14.65 10.53 7.44

Metric distortion I (%) Mean 17.14 30.18 26.69

SD 11.50 17.94 18.20

Metric distortion II (%) Mean 13.51 14.29 12.61

SD 8.19 11.72 14.39
frequency histograms are presented in Fig. 2. The least angular

distortion (1.91-) and the least metric distortion II (10.71%) were

produced by LSCM while the least metric distortion I (19.35%)

was produced by FreeSurfer. CirclePack performed almost as same

as LSCM on the metric distortion I and as FreeSurfer on the

angular distortion. From Fig. 1, we could see that the Lobe III

(green) seems much enlarged by CirclePack relative to other two

methods and so does the Lobe IX (dark yellow) by LSCM. From

Table 4, it also shows that LSCM ran much faster than FreeSurfer

and CirclePack as expected.

Cerebral hemispheres

The parcellated surface of the MNI left cerebral hemisphere

and the spherical maps generated by FreeSurfer, CirclePack, and

LSCM are illustrated in Fig. 3. CPU time and measurements of

angular and metric distortion (I and II) for spherical maps of

both the MNI and UPENN cerebral hemispheres are reported in

Table 5; corresponding frequency histograms for the MNI

hemisphere are presented in Fig. 4. The least angular distortion

(4.63- for MNI data and 7.21- for UPENN data) and metric

distortion II (11.79% for MNI data and 14.94% for UPENN
Table 10

CPU time and angular and metric distortion (I and II) of planar maps of the

temporal lobar patches produced by FreeSurfer, CirclePack, and LSCM

Planar map of temporal lobar patch FreeSurfer CirclePack LSCM

MNI CPU time (min) 282.50 1.36 18.70

Angular distortion (-) Mean 17.37 11.26 5.56

SD 16.15 9.71 6.61

Metric distortion I (%) Mean 20.92 33.81 33.28

SD 13.35 18.78 20.12

Metric distortion II (%) Mean 15.74 14.93 13.45

SD 9.29 9.64 8.82

UPENN CPU time (min) 229.40 1.10 61.10

Angular distortion (-) Mean 22.61 11.39 5.42

SD 20.01 10.27 8.08

Metric distortion I (%) Mean 23.77 37.45 34.20

SD 15.87 20.03 22.83

Metric distortion II (%) Mean 19.31 14.52 12.39

SD 11.73 9.27 10.79



Fig. 6. Frequency histograms illustrating the angular and metric distortion (I and II) of planar maps of the MNI frontal lobar patch generated by FreeSurfer

(left), CirclePack (middle), and LSCM (right).
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data) were again produced by LSCM while the least metric

distortion I (26.06% for MNI data and 21.57% for UPENN

data) was again produced by FreeSurfer. CirclePack did not

perform well in preserving angular information and also did

worse than LSCM on the metric distortion I. Again, LSCM ran
Fig. 7. Frequency histograms illustrating the angular and metric distortion (I and I

(left), CirclePack (middle), and LSCM (right).
more than 20 times faster than FreeSurfer for both cerebral

hemispheres.

In order to show how the distortion is spatially distributed

across the cerebral hemisphere, we also report the results of

corresponding percentage of spherical area, angular and metric
I) of planar maps of the MNI occipital lobar patch generated by FreeSurfer



Fig. 8. Frequency histograms illustrating the angular and metric distortion (I and II) of planar maps of the MNI parietal lobar patch generated by FreeSurfer

(left), CirclePack (middle), and LSCM.
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distortion (I and II) of spherical maps of the left cerebral

hemispheres on all lobar patches—frontal (green), occipital

(pink), parietal (light blue), and temporal (purple) in Table 6.

These data show that FreeSurfer exhibits more homogeneous

distribution of metric distortion I across the whole cortex than

CirclePack and LSCM for both the MNI and UPENN left
Fig. 9. Frequency histograms illustrating the angular and metric distortion (I and I

(left), CirclePack (middle), and LSCM (right).
cerebral hemispheres. FreeSurfer and LSCM both did better than

CirclePack in uniformly distributing the angular distortion and

metric distortion II. The temporal lobe of MNI data (percentage

of area: 21.80% vs. 29.53%) and frontal lobe of UPENN data

(percentage of area: 32.92% vs. 48.37%) are expanded by

CirclePack relative to their original sizes; the occipital lobe
I) of planar maps of the MNI temporal lobar patch generated by FreeSurfer
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(percentage of area: 14.34% vs. 5.76% for MNI data and

11.46% vs. 4.20%) for UPENN data is contracted by LSCM for

both MNI and UPENN data sets.

Lobar patches

Lobar patches (frontal, occipital, parietal, and temporal lobes,

respectively) cut from the MNI left hemisphere and their planar

maps generated by FreeSurfer, CirclePack, and LSCM are

illustrated in Fig. 5. CPU time and measurements of angular and

metric distortion (I and II) for both the MNI and UPENN patches

are reported in Tables 7–10; corresponding frequency histograms

for the MNI lobar patches are presented in Figs. 6–9. In each case,

the least angular distortion (4.85-, 5.56-, 4.05-, 5.56- for MNI

lobar patches, respectively, and 5.67-, 3.94-, 4.54-, 5.42- for

UPENN lobar patches, respectively) was produced by LSCM

whereas the least metric distortion I (14.25%, 14.06%, 8.93%,

20.29% for MNI lobar patches, respectively, and 15.11%, 17.14%,

15.07%, 23.77% for UPENN lobar patches, respectively) was

produced by FreeSurfer, but all three methods performed similarly

with regards to metric distortion II. LSCM performed slightly

better than CirclePack on metric distortion I. LSCM still ran faster

than FreeSurfer even though the adaptive weighted approach was

used. CirclePack’s computations were extremely fast for all

patches.

From the inspection of Fig. 5 (especially the sizes of sulci), it is

easy to see that there is a substantial difference in the way the

metric distortion is distributed across the lobar patches. The two

conformal methods CirclePack and LSCM tend to produce more

inhomogeneous distribution of metric distortion, where the central

regions of each lobar patch are contracted and the regions close to

the boundary of the patch are expanded. This phenomenon is

typical of conformal flattening methods for highly convoluted

cerebral patches having relatively small boundaries.
Conclusions

LSCM preserved local angular information (shape) during

flattening whereas CirclePack did not perform as well as expected

due to the fact that the triangles of the cortical meshes were not

equilateral. Adjustments to the default (tangency) circle packing

approach such as non-tangency circle packings which preserve

hyperbolic inversive distance (Bowers and Hurdal, 2003) may

improve these results; inversive distance can be computed as a

function of metric data from the triangle mesh. For all of the lobar

patches, CirclePack ran extremely fast, which may be attributed to

the increased number of boundary vertices. FreeSurfer outper-

formed both conformal methods with regard to the preservation of

metric information I on the lobar patches and resulted in the most

spatially homogeneous distribution of metric distortion; however,

for the cerebral hemispheres, LSCM performed nearly as well as

FreeSurfer and was clearly superior to FreeSurfer and CirclePack

with regard to the preservation of angular information (shape

information), metric information II, and computational efficiency.

Whereas FreeSurfer required 631 min to produce a spherical

surface map of the MNI hemisphere with angular and metric

distortion of 18.75-, 26.06% (metric distortion I) and 18.88%

(metric distortion II), respectively, LSCM required only 10 min to

produce a similar map from the same mesh with angular and metric

distortion of 4.63-, 33.70% and 11.79%; similar results were
obtained for the UPENN hemisphere (Table 5). Compared to the

other two algorithms, LSCM benefits from a more numerically

robust optimization method.
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