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Abstract

Multi-scale image enhancement and representation is an important part of bi-
ological and machine early vision systems. The process of constructing this
representation must be both rapid and insensitive to noise, while retaining image
structure at all scales. This is a complex task as small scale structure is difficult to
distinguish from noise, while larger scale structure requires more computational
effort. In both cases good localization can be problematic. Errors can also arise
when conflicting results at different scales require cross-scale arbitration.

Broadly speaking, multi-scale image analysis has historically been accom-
plished using two types of techniques: those which are sensitive to image structure
and those which are not. Algorithms in the latter category typically use a set of
variously sized blurring kernels to produce images each of which retain structure
at a different scale (Marr and Hildreth, 1980; Burt and Adelson, 1983; Koen-
derink, 1984; Hummel, 1986). The kernels used for the blurring are predefined
and independent of the content of the image. Koenderink showed that if the kernels
are Gaussian, then this process is equivalent to the evolution of the linear heat (or
diffusion) equation. He thus transformed the integral equation representing the
convolution process into the solution of a partial differential equation (PDE).

Structure sensitive multi-scale techniques attempt to analyze an image at a
variety of scales within a single image (Klinger, 1971; Perona and Malik, 1987;
Nitzberg and Shiota, 1992). Klinger (Klinger, 1971) proposed the quad tree,
one of the earliest structure-sensitive multi-scale image representations. In this
approach, a tree structure is built by recursively subdividing an fmage based on
pixel variance in subregions. The final tree contains leaves vepresenting image
regions whose variance is small according fo some measure. Recently (Perona
and Malik, 1987; Perona and Malik, 1990), the PDE formalism introduced by
Koenderink has been extended fo allow structure-sensitive multi-scale analysis.
Instead of the uniform blurring of the linear heat equation which destroys sinall
scale structure as time evolves, Perona and Malik use a space-variant conductance
coefficient based on the magnitude of the intensity gradient in the image, giving
rise to a nonlinear PDE. Like the quadtree, the end vesult is a single image
representation whicl contains information af all scales of interest.

The Perona and Malik approach produces impressive results, but the numerical
integration of a nonlinear PDE is a costly and inherently serial process. In this
paper we present a technigue which obtains an approximate solution to the PDE
for a specific time, via the solution of an integral equation which is the nonlinear



analog of convolution. The kernel function of the integral equation plays the same
role that a Green's function does for a linear PDE, allowing the direct solution
of the nonlinear PDE for a specific time without requiring integration through
intermediate times. We then use a learning technigue to approximate the kernel
function for arbitrary input images. The result is an improvement in speed and
noise-sensitivity, as well as providing a means fo parallelize an otherwise serial
algorithm.

1 Introduction.

Multi-scale image enhancement and representation is an important part of
biological and machine early vision systems. The process of constructing
this representation must be both rapid and insensitive to noise, while re-
taining image structure at all scales. Attempts to solve problems of this
type resulted in the so-called “scale-space’ formulation of Witken (Witken,
1983) in which an image is convolved with Gaussian kernels of various
sizes. Edges delineating the boundaries between objects can then be found
ina number of ways, for example by tracing the zero-crossings of the Lapla-
cian through scale-space in much the same way that Marr and Hildreth
had proposed (Marr and Hildreth, 1980). This approach is problematic as
the zeros can change position and disappear as scale-space is traversed. In
this situation it is unclear how to arbitrate between conflicting results at
different scales.

Koenderink (Koenderink, 1984) and Hummel (Hummel, 1986) have
pointed out that the one-parameter family of images comprising scale-
space can equivalently be viewed as snapshots of the time-evolution of the
diffusion (or heat) equation:

I = cAl (1)

Where [ is the intensity image, ¢ is a diffusion constant, [, is the partial
derivative of / with respect to time, and A is the Laplacian operator with
respect to the spatial coordinates. The solution to equation (1) can be writ-
ten in terms of the Green’s * function of the system as

*More accurately, the Green’s function is the Gaussian multiplied by a temporal step
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Where /(2',3/, 0)is the initial image, and the Green’s function G/(, ', , ¥/, 1)
is a Gaussian kernel given by

. i (e Pty —y)?
Gla, 2y, v 1) = A 3
( s s 1y ) m ( )

The Green's function G/(z,2’,y, 3/, 1) is the kernel of the integral operator
which is the inverse of the diffusion operator. Thus, convolution with
larger scale Gaussian kernels is equivalent to the evolution of the diffusion
equation on an infinite domain for longer periods of time, with the original
image as initial conditions.

The diffusion equation provides a mathematical framework with which
to analyze the scale-space formalism, but it does not address the issue of
cross-scale comparison. While Koenderink restricted his analysis to the
isotropic diffusion characterized by the linear heat equation, Perona and
Malik {Perona and Malik, 1987; Perona and Malik, 1990) suggested that a
nonlinear anisotropic version of the heat equation could remedy some of
the difficulties encountered in the use of linear scale-space. They proposed
the following equation in which the conduction coefficient is not constant
in space, but is rather a function of the magnitude of the intensity gradient
of the image:

Iy =V (] VI[)V1) (4)

In this way, the amount of diffusion at each point in space is modulated
by the function ¢({V/]), and the image gradient at that point. They choose
to make ¢(-) a decreasing function of the image gradient magnitude, so
that regions of high contrast undergo less diffusion, and are therefore
preserved over time. This is in contrast to the linear heat equation which
blurs uniformly, destroying small scale structure as time evolves. Systems
such as equation (4) are intended to yield a single intensity image which

function (Barton, 1991)



retains edge information at all scales of interest, thus obviating the need
for any type of cross-scale arbitration.

The Perona-Malik equation (4) is a nonlinear partial differential equa-
tion of a type which is difficult to analyze. It has been pointed out (Nitzberg
and Shiota, 1992) that (4) is unstable for some parameter regimes, although
this is still a point of contention (Perona et al., 1994). Furthermore, it can
amplify small scale noise which gives rise to high gradient magnitudes.
Many variants of the Perona and Malik scheme have been proposed to
improve its sensitivity to noise, its instability, and its equilibrium behavior
(Alvarez et al., 1992; Alvarez and Mazorra, 1994; Catte et al., 1992; Cottet
and Germain, 1993; Dang et al., 1994; El-Fallah and Ford, 1994; Engquist
et al., 1989; lllner and Neunzert, 1993; Li and Chen, 1994; Nitzberg and
Shiota, 1992; Nordstrom, 1990; Osher and Rudin, 1990; Pauwels et al.,
1993; Price et al., 1990; Whitaker and Pizer, 1991; Whitaker, 1993: Kacur
and Mikula, 1995).

The diffusion paradigm, while impressive in the quality of the images
it produces, suffers from a number of drawbacks. The most prominent
of these is the computational cost of the algorithms, coupled with their
inherently serial nature. This makes them implausible from a biological
standpoint, as well as impractical for use in real-time machine vision ap-
plications. The biological implausibility stems from the relatively rapid
nature of perception relative to neural conduction delays and peak firing
rates (<= 200Hz). Psychophysical and neurophysiclogical experiments in-
dicate that perception can occur as rapidly as 100-150 msec (Thorpe and
Imbert, 1989; Oram and Perrett, 1992) which is comparable to the latency
of cells in primary visual cortex (Vogels and Orban, 1991). Using this
figure, Thorpe and Imbert (Thorpe and Imbert, 1989) argue that the num-
ber of synaptic connections (assumed to be equivalent to the number of
serial steps) used by the visual system in rapid identification tasks is some-
where between 10 and 50, although probably closer to the lower bound.
Thus, while complex processing is possible, it is almost certainly parallel
in nature.

In this paper we propose a method to directly learn the input-output
mapping of the diffusion process. This has a number of advantages. Most
importantly it parallelizes the inherently serial process of numerical in-
tegration. In addition, it obviates the need for regularization of (4) to
preserve image structure at equilibrium, as an appropriate time constant
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is implicitly imbedded in the system. Further, it is an order of magnitude
faster than the full diffusion process, even when run on serial machines.
The end result is an approximation of the kernel function in equation (2) for
arbitrary input images, which we call a Green’s Function Approximation
(GFA) filter. While we present the algorithm in the context of anisotropic
diffusion, the technique is applicable to a much wider range of image
enhancements/modifications.

The remainder of this paper is organized as follows. Section 2 analyzes
the task of approximating the input/output mapping of the nonlinear dif-
fusion process and outlines the form the solution will take. Section 3
discusses the numerical implementation of a nonlinear anisotropic diffu-
sion equation such as (4). Section 4 details the procedure for constructing
the kernel function by monitoring the evolution of the diffusion process,
while section 5 specifies the algorithm used to estimate the kernels for a
novel image. In section 6 we present results of applying the algorithm
to approximate two different diffusion processes, while section 7 is the
conclusion.

2 Diffusion approximation.

The evolution of the diffusion process of equation (4) yields a three dimen-
sional solution surface (two spatial and one temporal) when applied to an
input image. From a machine vision standpoint, we are not concerned with
the entire surface. Rather, we are interested in a cross-section of the surface
{i.e. animage) within some temporal neighborhood which is in some sense
desirable, such as one which produces sharp, noise-free edge maps. Given
this restriction, it is reasonable to ask whether it is necessary to traverse
the portion of the solution surface outside of our region of interest. That s,
can we construct a mapping that takes an input image directly into some
neighborhood of the target region? For the linear heat equation this is
exactly the role that a Green’s function plays. It is the kernel of the integral
operator which yields an output image at any time without traversing the
images at intervening times. Thus, we reformulate our question to be: can
we find the kernel function G2, 2',y,y’) of an integral operator such that:
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We subscript the kernel function G(z,2',y,y’) with ¢ to emphasize the
fact that different kernel functions exist for different evolution times. For
computational reasons, the region of integration must be limited to a subset
of the image centered around each (z,y). Equation (5) is an ill-posed
problem, as an infinite number of kernel functions (-} exist which satisfy
it. We are not interested in arbitrary solutions of (5), but only those for
which the output is continuously dependent on the input. In order to
resolve these issues, we reconsider the heat equation.

The heat equation (4) can be derived using two assumptions. The first
of these is the conservation principle that the time rate of change of the
temperature in a given region is proportional to the divergence of the
flux in that region. The second is the experimentally motivated Fourier’s
law of heat conduction (called Fick’s law in a diffusion context) which
states that the flux is proportional to the spatial temperature gradient.
In the machine vision domain, the conservation law leads us to make
the following observation. If we assume that image intensity /(x,y) is a
conserved quantity, it is possible to trace the diffusion path of each initial
value in the image through space and time. This process, when carried
out for each point in the image at time ¢, yields exactly the kernel function
of the integral operator which we are seeking. The function Gy (z, 2/, v, %'}
takes the form of a set of space-variant kernels, one for each point in
the image. We defer further discussion of the details of the construction of
Gy, 2/, y, y') until section 4, as it is dependent on the form of the numerical
implementation of equation (4).

Given that the kernel function has been constructed, we are capable of
exactly mirroring the diffusion process for an image which has already been
subject to diffusion (actually, if the support of the kernels is not the entire
image, the equality in equation (5) is only approximate). By itself this is not
particularly useful. In order to be a general purpose tool for use in early
vision, we must be capable of approximating the kernel function for an
arbitrary input image. This is a difficult problem, whose solution requires
a number of steps. Even using kernels with limited support, we are still
left with the task of approximating a high dimensional nonlinear mapping



from image intensity profile to kernel function. We are free to choose any
image-based feature set as the domain of the mapping, while the range
must allow us to reconstruct an approximate kernel function. In order to
alleviate the curse of dimensionality (i.e. the exponential increase required
in training set size with increasing dimension (Duda and Hart, 1973}) we
employ principal components analysis (PCA} and limit ourselves to the
components which account for a large (= 90%) percentage of the variance.
The range of the nonlinear mapping then becomes the coefficients of the
PCA, whose dimensionality is typically between one and two orders of
magnitude smaller than that of the full kernels.

3 Numerical Implementation of Anisotropic Dif-
fusion.

The form the kernel function construction algorithm takes is dependent

on the form of the numerical implementation of the anisotropic diffusion

equation (4). For that reason, we first outline the simple implementation

we use.

In two spatial dimensions, the anisotropic diffusion equation is given

by:

fi(a, y,t) = (el y, O ((2, y, ) -+ (elesy, D, 0, 1)), (6)

Where the 2, y and 1 subscripts denote partial differentiation with respect
to the subscripted variable. A Taylor series expansion of J around { = 1 is
given by:

T,y o+ AL) = [{a,y, to) + AT(@,y, to) + ... (7)

Using equations (6) and (7) we then have the first order approximation:

Tla,y, o+ A &2 T,y Loy + A (ela,y, O (2, v, ) + (clayy, O1, (e, 0, O)y)
(8)

The derivatives in (8) can also be approximated using a Taylor series ex-
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pansion:
Tl + Av )= fla,y)

Az
(9)

fla+ Av,y) = fle,y) + Aafole,y) = fole,y) ~

fla,y) — fle — Aw,y)

Jle = Awyy) = fla,y) = Dafola,y) = fola,y) = Ax

(10)

Adding (9) and (10) yields the centered difference approximation of the
derivative:

Jlo+Aw,y) = fla = Da,y)
20

./‘ar(-?:ay) ~ (11)
Using a discrete lattice with Az = Ay = 1, and considering the central
pixel (o,ye), and its four connected neighbors (@, 1), (z0. 11), (21, o),
and (x4, yo) we can apply equation (11) to approximate the derivatives in
(8). Labelling these pixels with superscripts 0, N, S, W,  respectively, we
have:

FUNIE () = M (1)1 (1)

((:0(_')','[]).l-r:g(i())):r = 2

(12)

o EUNIE(te) — N IN
(1) 12(t0)), v e (L0 5 o)l (o) (13)

We use both backwards (equation (10)) and forwards (equation (9)) dif-
ferences to approximate the partial derivatives with respect to the spatial
variables so as to limit the domain of our numerical implementation to the
four nearest neighbors of the central pixel:

L (to) = 1°(to) = 1™ (ko) 17 (to) = 1" (o) = (ko)
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IV (o) = 1°ta) — IV (1), I5(t0) = I(to) — 1%{1g) (14)

Finally, substituting (12), (13) and (14) into (8) we arrive at:

Pto -+ Aty a2 I20t)(1 = 0.5A0Y " ') + 0.5AL Y e (10)Fi(ty)  (15)
0 i#0

Equation (15) can equivalently be written as the correlation of the image
with a set of space and time varying masks:

H{a,y, tg+ At) ZZ K2y (a4 2y + 4/, ko) (16)

Where the mask weights are given by:

Ad 0 ‘ (/0) O

Koy == | M) & - (sz’:ﬂ c{tn)) ¢¥(to) (17)
0 ( to) 0

In 2 dimensions the two components of the spatial gradient used in the

computation of the conductance function are calculated using a Sobel op-

erator:

~0.25 0 0.25]
Lo,y 0) = f{z,y,6)» | =050 0 050
[ -0.25 0 0.25 ]
~0.25-0.50 —~0.25
T(e,y, ) = Ha,y, 1) { 0 0 0 (18)
0.25 0.50 0.25

Where » indicates correlation. Bounds on Al can be computed using
Fourier-von Neumann stability analysis. The numerical implementation
will be stable if (Haberman, 1987):

(Ax)?

C

At < (19)
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If we choose ¢(-) to be in the range (0,1] and let Aa = 1, we then have
At <= 0.25. Note that we are not free to choose both At and Az in this
type of explicit scheme as is sometimes assumed (El-Fallah and Ford, 1994)
without sacrificing stability.

In addition to stability, we require that the numerical scheme satisfy the
maximum (minimum) principle. That is, the only local extrema allowable
in the image are on the hyperboundary of the space-time domain defined
by the evolving image. Thisisequivalent to what Koenderink (Koenderink,
1984) terms causality, as it implies that no new local spatiotemporal extrema
can be created as time evolves. This is important as it insures that intensity
values in the evolving image are constrained by the initial image values,
and will therefore not grow without bound.

Defining 1™ = maz(1%(te), IV (to), I*(to), 1% (i0), IV (1)), we have:

1°(t) = 1)1 = 0.5AD (L)) + 0.5AL S ¢ (ko) I (1) (20)
1£0 i)
<IN ((1 = 0.5A8Y ¢ (Lg)) + 0.5AL Y ¢i(tg)) = 17 (1)
0 i£0

Similarly, it is easy to show that /™"(iy) < [%), and that thus both
maximum and minimum principles hold.

The actual implementation of the diffusion equation on a discrete lattice
is therefore accomplished by the iterative correlation of the initial data with
a set of space-variant masks, the shapes of which are determined by the
local values of the conductance function. To complete the specification,
we use homogenous Neumann boundary conditions (i.e. zero flux across
the border of the image). While this implementation is a simple one (for
example, the use of only four points violates rotational invariance, biasing
the equation towards nw/2 angles, n = 0,1,2,3 (Niessen et al., 1994)), i
is sufficient for our purposes as an exampie of the proposed bChLD’l& In
principle, any numerical implementation can be modified to include the
kernel growth described below.
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4 Kernel Function Construction.

In this section we define the algorithm used to construct the kernel function
Gh(w, @', y, ') of equation (5). The function will consist of an array of two
dimensional kernels, which we term diffusion kernels, one for each point
in the image. We denote the diffusion kernel at image point (x,y) by
C»y. The value of this kernel at image location (@ -+ ¢,y + j) is C, (¢, 7).
Similarly, we term the value of the mask associated with the image point
(@,y) at location (x + ¢,y + j) by K,,(7,7), as in section 3. Since the
four dimensional nature of these objects causes unnecessary notational
clutter, we will proceed in one spatial dimension. The generalization to
two dimensions is straightforward.

Before commencing with the details of the algorithm it is worth com-
menting on the different roles the masks and kernels play. The mask /%(z)
relates the image value at time { at position « + 7 to the image value at time
¢ -+ 1 at position z.

(2,+1 Z RV (44,8 (21}

Conversely, the kernel entry C%{7) prescribes the contribution of the initial
image value at position 2 4 j to the image value at position = at time { (see
figure (4)). That is:

ll)mL('f (2 7,0) (22)

Equation (22) is a discrete statement of the Green’s function property of the
diffusion kernels we are seeking, analogous to equation (2), while equation
(21) reiterates the role of the masks in the numerical integration of the PDE,

In order to construct the diffusion kernels CL(2) which parallelize the
diffusion, we proceed inductively. For each pomt @ in the image, we create
a kernel C; and initialize it using a Kronecker delta function:

0 _[1i=0
ctiy=i={ 5 120 23)
The application of this set of kernels to the initial image leaves it unchanged,
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and therefore equation (22) hold for ¢ = 0. We now seek a recursive update
rule that will construct the diffusion kernel at time ¢ + 1 assuming we have
already built the kernels at time {. Combining equations (22) and (21) we
find the relationship between the initial image and the image at time ¢ 4 1:

(2,641 Z KU CLLGM (e +14+4,0) (24)

b

If we are seeking C2*(n), the kernel element at some arbitrary position
n, then we are only interested in the coefficients of (24) which multiply
IHa +n,0). Examining (24) for values of j such that 7 4 j = n, we arrive at
the recursive update law:

CHi(n Z KLHCE i(n i) (25)

Equation (25} can be understood in the following way. The kernel value
(/3 4i(n i) represents the contribution of the initial intensity value at pixel
a + n to the pixel at « 4 ¢ at time {. This can be seen by noting that for
v = i, wehave Cpy (n i) = Cl(n—1i). KL(:) then gives the proportion
of thc total intensity at location « at time ¢ -+ 1 which comes from position
w -+ 1. By summing over all i, we account for all possible paths the intensity
value /{2 + n,0) can diffuse through and arrive at position  at time 1 + 1.

1(0) 1) I(t+1)

Figure 1: Hlustration of the meaning of ¢!, ,(5), K%(:) and C%(5) shown
i two spatial dimensions. The composition of the two dLSCl ibe the con-
tribution of an initial intensity value (far left) to one at the next time step
{far right).

The limited support of the diffusion kernels ’, requires one additional
modification to the algorithm. The value C,.(;) can be thought of as the
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percentage contribution of the initial image intensity at = + j to the final
image value at . Given that the (U, are an array of percentages, their sum
must be unity. If the support of the C’, is the entire image, this occurs
naturally. However, when a more limited support is imposed, each C,
must be explicitly normalized after every time step in order to preserve
the conservation of image intensity.

5 Kernel estimation.

Given the capability of constructing a kernel function using the process
described in section 4, we are now faced with the problem of approximating
an appropriate kernel function for an arbitrary image®. That is, given a
novel input image, we want to estimate a set of kernels which will yield
an image that is perceptually similar to the one that would have been
obtained by integrating the diffusion equation. This process involves a
number of steps. Even limiting the support of the kernels, the output of
the estimation process is relatively high dimensional. Since the amount
of data required to fit an »-dimensional function increases exponentially
with the dimensionality (Duda and Hart, 1973), we must compress the
kernel representation considerably. To accomplish this, we use principal
components analysis (PCA). The result of the PCA is a set of principal
components which we use as basis functions for kernel construction on
an arbitrary image, and the coefficients of the expansion which must be
estimated for each specific image.

5.1 Principal components analysis.

In the image processing literature principal components analysis is some-
times referred to as the Hoftelling or discrete Karhunen-Loeve transforma-
tion. It is accomplished as follows (Gonzalez and Wintz, 1987). Given a set
of kernels ', (%, 7), we consider each n x n dimensional kernel to be one
observation of n? random variables represented as a column vector ¢. The
covariance matrix of these vectors is given by

*More precisely we assume the approximation is a function of the first order derivatives
of image intensity, so the estimated function is of the form G{x, 2", y, 3/, I, 1)
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Ye = EB{{c—m){c—m)"} (26)

Where I2{} is the expectation operator, m, = E{c} is the mean vector, and
the superscript 7" indicates transposition. The eigenvectors vj of Y, are
the principal components we are seeking, while the eigenvalues of ¥, re-
flect the amount of variance accounted for by the associated eigenvector.
Since the covariance matrix is symmetric and positive definite, it is always
possible to find a set of orthonormal eigenvectors (Anderson, 1971). The
Hotelling transform consists of constructing a matrix A, the rows of which
are the eigenvectors v, and multiplying it by the centralized image vectors:

y =A(c—m,) (27)

Using the orthogonality of the rows of A, we can solve for the original
image given the coefficient vector y, and the mean vector mg:

c= Ay +m, (28)

Furthermore, if we construct 4 from the eigenvectors associated with the
k largest eigenvalues (k < n}), the reconstruction:

¢= ALy +m, (29)

is optimal in the mean-squared sense (in fact the error is given by the
sum of the unused eigenvalues). The k-dimensional vectors y consist of
the coefficients of the linear combination of principal components which
optimally estimate the desired kernels.

In practice, noisy images tend to produce noisy diffusion kernels with
correspondingly noisy principal components. This is due to the fact that the
diffusion process fits the kernels to the exact noise present in the image. The
number of principal components necessary for an accurate reconstruction
can be dramatically reduced by first smoothing the diffusion kernels (we
use a 7x7 Gaussian mask with a standard deviation of two pixels, although
in practice almost any reasonable smoothing kernel works). The resulting
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kernels yield images which are almost perceptually identical to the image
derived using the unsmoothed diffusion kernels. The smoothing process
also reduces the difficulty of the function approximation, as small errors in
coefficient estimation do not produce dramatic differences in the derived
images. An example of an image created by filtering with reconstructed
kernels together with the components of the reconstruction is given in
figure (2).

. . 1. 55.6% of pc2: 341%of pc3: 3.72% of
original reconstruction variance variance variance

Figure 2: From left to right: the original image, the image filtered using
a kernel function reconstructed from the Ist three principal components,
as well as the first three principle components of the smoothed diffusion
kernels, which account for a2 90% of the variance.

5.2 Feature extraction.

The coefficients y; discussed in the previous section constitute the targets
of the function approximator. We now address the issue of its inputs.
The features used to train the function approximator must have some
degree of noise tolerance, while also representing the image structure in
a neighborhood around the point of interest. A simple scheme which
satisfies both these requirements is the use of a 3x3 window of the Gaussian
smoothed image gradient magnitude based on 2 and y image derivatives
generated by a Sobel operator. The 3x3 neighborhood gives the network
both information on the dominant local orientation (if one exists), as well
as the offset of any edges in the local region.

16



5.3 Coefficient estimation.

In order to estimate the coefficients y;, given the multi-scale intensity gra-
dient magnitudes, we train a multilayer perceptron using a modified®,
backpropagation algorithm (Werbos, 1974; Parker, 1985; Rumelhart et al.,
1986; LeCun, 1985). Other nonlinear function estimators such as radial
basis functions (Broomhead and Lowe, 1988), MARS (Friedman, 1991) or
the Il method (Breiman, 1991) are viable alternatives. Qur task is simpli-
fied somewhat due to the uncorrelated nature of the principal components.
This allows us to train separate networks for each component, obviating
the need to learn nonlinear interactions between coefficients. Figure (3)
illustrates the form that the coefficient images take, as well as the approxi-
mation after training.

6 Results.

We have applied the Green’s function approximation or GFA algorithm
to two different diffusion schemes. All results presented in this paper are
from the same GFA filter except where specified. The filter is constructed by
training the multilayer perceptron on coefficients derived from the single
64x64 pixel image shown in figure (2). The kernels are derived by iterating
the Malik-Perona diffusion algorithm on the that image for 100 time steps.
Note that all images are scaled so that their intensity values are between
zero and one, all edge maps are generated using the same parameter set?,
and all diffusion generated images are created using the same number of
iterations (100), and identical parameter values.

3In practice, the function approximation turns out io be quite sensitive, and extensive
modifications of the backpropagation algorithm are required to successfully approximate
the principal component coefficients, These include the use of momentum, an adaptive
step size algorithm with a hard minimum, normalization of output distributions, as well
as rejecting training epochs which result in an average error increase above a certain
percentage.

‘we use the Matlab ‘edge’ routine which employs Sobel operators and threshoided
non-maximum suppression to generate edge maps.
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target 2

5y

coefficient 3

residual 1 residual 2

Figure 3: Top row: first three principal component coefficients at each
point in the image (targets of training). Middle row: the coefficient ap-
proximation generated by the multilayer perceptron. Bottom row: residual
error images generated by taking the absolute value of the difference of
the images in the first two rows in the same column.

6.1 Gradient-based diffusion.

The first diffusion process we approximate is the Perona and Malik (Perona
and Malik, 1987; Perona and Malik, 1990) scheme. They choose to use the
simple nonlinear diffusion equation (4) with a conductance coefficient ¢(-)
which is a decreasing function of the image intensity gradient magnitude.
They give a number of mild constraints on the form of the function. One
choice of ¢(-) they discuss is

JE;J)2

(19 1)) = e (30)

Figure (4) displays the results of applying the Malik-Perona equation as
well as the Green's Function Approximation (GFA) filter to a novel real-
world image, corrupted with naturally occurring noise. Note the noise-
enhancing property of the Malik-Perona process. Specifically, the speckle
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noise in all three digits has been retained and expanded into white blocks
in each character. The GFA filtered image does not evidence this effect, as
the interior of all three characters is uniform.

inpul imaga ditlused image GFA image

R

Figure 4: Top left: original image. Top center: Perona and Malik diffu-
sion (k = 0.05). Top right: GFA filtered image. Bottom row: associated
edge maps generated by non-maximum suppression of gradient magni-
tude with thresholding.

6.2 Mean curvature-based diffusion.

El-Fallah and Ford (El-Fallah and Ford, 1994) address the issue of the lack
of noise-tolerance in the Malik and Perona equation. They propose a con-
ductance function of the form:

(V1)) =

NFNEITE
Equation (31) is derived by embedding the image in #°, and setting the
right hand side of (4) equal to 2/, or twice the mean curvature of the
surface. Solving this system for a conductance function yields the ¢(+) of
equation (31). Figure (5) depicts the mean curvature based diffusion as well
as its approximation. As can be seen, the mean curvature-based diffusion
has excellent noise suppression qualities. The character outlines are quite
clear, with only minor noise edges remaining. The GFA filter in this section

(31)
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is generated by using kernels from the curvature-based diffusion process.
It has properties similar to the filter used elsewhere in this paper. However,
we have found that the edges and corners in the mean curvature diffusion
tend to become slightly rounded, while characters are somewhat thickened.
For these reasons, we choose to use the Malik-Perona diffusion as a model
for our filter construction.

inpul image

dilfused knage

GFA image

Figure 5: Top left: original image. Top center: image after mean curvature
diffusion (k = 50). Top right: GFA filtered image. Bottom row: associated
edge maps generated using the same technique as in figure (4).

6.3 Noise tolerance and comparison with median filtering.

While many filters are capable of reconstructing images for a given (known)
noise distribution, the restoration problem is much more difficult if the
noise characteristics are unknown or variable. The GFA filter noise-
tolerance properties derive from a number of its components. The Gaus-
sian blurred gradient magnitudes, coupled with the neural network, com-
bine to form a robust function approximator in the presence of a wide
assortment of noise profiles. In addition, the blurring of the kernels (as
detailed in section 4) improves the noise tolerance considerably, as small
errors in coefficient estimation result in correspondingly small deviations
in the output image. In this section we compare the GFA filter to both
the mean curvature diffusion process as well as a 5x5 median filter on
noise corrupted images. The median filter is a simple image processing
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technique® whose performance is generally excellent in the presence of
noise.

The first noise model we use to illustrate the performance of the GFA
filter is an additive Gaussian one. Figure (6) contrasts the GFA perfor-
mance with that of a median filter applied to an image corrupted with zero
mean, 0.25 variance additive Gaussian noise. The edge maps at the bottom
indicate that the GFA filtered image contains most of the edge information
of the image generated by applying the mean-curvature diffusion model
at far less cost, while the median filtered image breaks down at this noise
level.

input image diffused image GFA Image median fiftered image

Figure 6: Comparison of the GFA filter with a median filter on an image
corrupted by additive Gaussian noise (0 mean, 0.25 variance). Top row,
from left to right: noisy original image, image after mean curvature dif-
fusion (k = 50), GFA filtered image, median filtered image. Bottom row:
associated edge maps.

Figure (7) illustrates the excellent performance of the GFA filter in the
presence of multiplicative noise as compared to the median filter. Interest-
ingly in this case, the full diffusion process washes away all detail of the
fur, while the GFA filter eliminates most of the noise but retains much of
the fur texture. Additionally, the diffusion generated image has fused the
nose and mouth into one continuous region, while they remain separate
after the application of the GFA filter.

a median filter replaces the image value at each pixel with the median or central value
of the intensity levels in a neighborhood of that pixel
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input image diffused image GFA image median filtered image

Figure 7: Comparison of the GFA filter with a median filter on an image
corrupted by multiplicative (speckle) noise (amplitude=10%). Top row,
from left to right: noisy original image, image after mean curvature dif-
fusion (& = 50), GFA filtered image, median filtered image. Bottom row:
associated edge maps.

As the last noise model, we demonstrate the GFA filter performance in
the presence of salt and pepper noise {random pixel values replaced with
zeros or ones). In this type of environment, the median filter produces
excellent quality images, as evidenced by the building shown in figure
(8). This is due to the invariance of the median filter to noise amplitude
as opposed to the noise density which plagued it in the earlier examples.
However, the mean curvature-based diffusion which performs so well in
the presence of other types of noise, encounters difficulty with salt and
pepper corruption. As can be seen, region boundaries for the triangular
patches on the leftmost building have been lost, and new borders are
generated which do not correspond to any real image feature. In contrast,
the GFA filter retains most of the image structure, as is reflected in the edge
maps at the bottom.

Finally, figures (9) and (10) present the performance of the GFA filter
on a variety of images with different lighting conditions, textures, and
noise types. As can be seen, the GFA filter is comparable to the full-scale
diffusion process in all cases, and typically outperforms the median filter.
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input image diffused image GFA image median filtered image

Figure 8: Comparison of the GFA filter with a median filter on an image
corrupted by salt & pepper noise (density=10%). Top row, from left to
right: noisy original image, image after mean curvature diffusion (k = 50),
GFA filtered image, median filtered image. Bottom row: associated edge
maps.

7 Conclusion.

Diffusion is a powerful tool of great potential utility in early vision. It uni-
fies multi-scale processing into a simple procedure which reduces noise
and integrates information at all scales of interest. However, it is a com-
putationally costly and inherently serial process. In this paper we have
presented a method which reduces both the computational cost of the al-
gorithm as well as transforming the process into one that is amenable to
parallelization. In addition, the GFA algorithm resolves many of the is-
sues thatare problematic for the Perona and Malik filtering. Regularization
to improve equilibrium behavior becomes unnecessary as an appropriate
time constant is implicitly imbedded in the system. Noise sensitivity can
be dealt with separately in the feature extraction and training stages, and
is thus no longer an issue for the PDE. Potential numerical instability of
the underlying PDE is also eliminated as images for which the instability
is manifest are excluded from the training set.

The Green’s Function Approximation filter can also be compared with
the nonlinear filtering scheme of Nitzberg and Shiota (Nitzberg and Sh-
iota, 1992). Both construct sets of space-variant kernels based on local
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Figure 9: Comparison of the GFA filter with a median filter and curvature
based diffusion on a variety of images.
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Figure 10: Comparison of the GFA filter with a median filter and curvature
based diffusion on a variety of images.
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image structure. The GFA filter learns the appropriate parameters from
example, while the large number of constants in the Nitzberg-Shiota filter
must be estimated by the user. After training, the GFA filter has no free
parameters to be set by hand. The GFA filter is also capable of learning
the result of repeated application of the Nitzberg-Shiota filter. Finally, if
rotated, translated Gaussians are used to fit the diffusion kernels instead of
PCA, the GFA would learn the parameters of the Nitzberg-Shiota filter. It
would therefore provide a principled manner in which to select the many
parameters of their technique based on local image structure.

From a biological standpoint, the GFA type approach seems well suited
for use in the mammalian retino-cortical system. Both feature extraction
via convolution and (not necessarily orthogonal) basis function expansion
are natural operations for the neural substrate. The massive parallelism
present in these systems allows the use of a large number of basis functions,
input features, as well as units for learning and approximation, without
sacrificing computational speed as on serial machines. This would dra-
matically increase the noise tolerance and accuracy of the process. The
GFA filter is an example of a way in which a serial integration process can
be parallelized either for a hardware implementation, or for possible use
in a biological context.

The adaptive nature of the GFA allows us to model some developmental
data as well. For example, it is known that kittens raised in an environment
containing only vertical stimuli do not develop cortical cells responsive to
horizontal orientations, as do normally raised animals (Blakemore and
Cooper, 1970). This type of effect occurs naturally in the GFA filter. By
training a filter on noisy vertical stimuli, the function approximator learns
to ignore horizontal derivative information. This is illustrated in figure
(11).

While many image enhancement processes yield impressive machine
vision as well as psychophysical modeling results (Geman and Geman,
1984; Cohen and Grossberg, 1984; Grossberg and Mingolla, 1985) most
of them suffer from the same drawbacks as the anisotropic diffusion
paradigm: inherent serialism coupled with costly integration times. The
methods outlined in this paper can be applied to each one of these tech-
niques, allowing one to retain many of the benefits of the underlying
procedure while improving their utility.

Many researchers have proposed modifications of the Malik-Perona
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Figure 11: Example of simulated development in an environment contain-
ing only vertical stimuli (left). Subsequent horizontal stimuli (center) are
ignored (right).

equation to improve its performance. For example, Whitaker (Whitaker
and Pizer, 1991) suggested the use of the Gaussian smoothed image gradi-
ent in the conductance function, with the scale of the smoothing decreasing
as time evolves. In this way, the Malik-Perona equation can be made noise-
tolerant. Li and Chen (Li and Chen, 1994) point out that the parameter
of the Malik-Perona equation (4 in equation (30)) can also be made to be
a function of time and possibly image structure, thereby improving the
quality of images produced. Malik and Perona proposed the use of a
Canny "noise estimator” (Canny, 1986) to choose an appropriate value of k.
These types of modifications result in significant increases in the compu-
tational cost of the diffusion process. However, the GFA filter complexity
is invariant to this type of modification of the diffusion algorithm. In fact,
assuming a sufficiently rich feature set for the function approximator, ar-
bitrarily complex local operations are possible in the conductance function
without additional computational cost for the GFA.

In summary, we have presented a novel filter which learns an approxi-
mate Green’s function from examples of a diffusion process. The learned
filter can then directly generate output images which are good approxi-
mations of the full-scale diffusion equation. The technique is applicable
to image processing algorithms other than anisotropic diffusion. The GFA
filter is tolerant of a wide variety of noise environments, parameter free,
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robust, and between one and two orders of magnitude faster than the full-
scale anisotropic diffusion on a serial architecture, and is amenable to full
parallelization.

Acknowledgments. Thanks to Giorgio Bonmassar and Michael Cohen
for many helpful discussions.
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