
www.elsevier.com/locate/ynimg

NeuroImage 42 (2008) 230–247
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Developments inmulti-channel radio-frequency (RF) coil array technology
have enabled functional magnetic resonance imaging (fMRI) with higher
degrees of spatial and temporal resolution. While modest improvement in
temporal acceleration has been achieved by increasing the number of RF
coils, the maximum attainable acceleration in parallel MRI acqisition is
intrinsically limited only by the amount of independent spatial information
in the combined array channels. Since the geometric configuration of a
large-nMRIhead coil array is similar to thatused inEEGelectrodeorMEG
SQUID sensor arrays, the source localization algorithms used in MEG or
EEG source imaging can be extended to also process MRI coil array data,
resulting in greatly improved temporal resolution by minimizing k-space
traversal during signal acquisition. Using a novel approach, we acquire
multi-channel MRI head coil array data and then apply inverse
reconstruction methods to obtain volumetric fMRI estimates of blood
oxygenation level dependent (BOLD) contrast at unprecedented whole-
brain acquisition rates of 100 ms. We call this combination of techniques
magnetic resonance Inverse Imaging (InI), amethod that provides estimates
of dynamic spatially-resolved signal change that can be used to construct
statisticalmaps of task-related brain activity.Wedemonstrate the sensitivity
and inter-subject reliability of volumetric InI using an event-related design
to probe the hemodynamic signal modulations in primary visual cortex.
Robust results from both single subject and group analyses demonstrate the
sensitivity and feasibility of using volumetric InI in high temporal resolution
investigations of human brain function.
© 2008 Elsevier Inc. All rights reserved.
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Introduction

Hemodynamically based fMRI (Belliveau et al., 1991; Belliveau
et al., 1990; Kwong et al., 1992; Ogawa et al., 1990) is typically
limited to a temporal sampling period of 2 to 4 s if whole-brain
coverage is desired. Most fMRI data acquisition methods employ an
EPI technique that utilizes many phase-encoding steps and multiple
read-out gradients. Consequently, this reliance on gradient encoding
results in long image acquisition times and relatively loud acoustic
noise related to the requisite rapid gradient switching. Here, we
demonstrate the use of a novel volumetric imaging method, called
Inverse Imaging (InI), which uses minimal phase encoding to
achieve an order-of-magnitude improvement in BOLD-contrast
temporal resolution. Its minimal dependence on encoding gradients
allows extremely short image acquisition times, with an associated
trade-off involving somewhat reduced and spatially-varying spatial
resolution.

The temporal resolution of MRI is limited by the time required to
traverse k-space during signal acquisition. The collection of vol-
umetricMRI data continues until the completion of k-space traversal
in multiple 2D k-spaces or in a single 3D k-space. Classical gradient-
echo or spin-echo image acquisition methods collect data from one
k-space line during each excitation. Thus the total acquisition time
for traditional 3D MRI data acquisition is the product of the number
of slices and the number of phase-encoding steps. In contrast to
gradient-echo or spin-echo imaging, both echo-planar imaging (EPI)
(Mansfield, 1977) and spiral imaging (Blum et al., 1987) utilize fast
gradient switching to achieve 2D k-space traversal in a single RF
excitation. With current state-of-the-art EPI or spiral imaging
techniques, one 2D single-slice image can be collected in
approximately 80 ms, allowing whole head coverage with 3 mm
isotropic resolution in 2 to 4 s. Small improvements in temporal
resolution can be achieved by optimizing k-space sampling schemes
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and reconstruction methods: e.g., instead of completing the k-space
traversal for every measurement, MRI data acquisition can be ac-
celerated by coordinated alterations of in k-space trajectories and
their associated image reconstruction algorithms, as in partial-k
space sampling (McGibney et al., 1993). Alternatively, a priori
information-based methods can improve the temporal resolution of
MR dynamic measurements (Tsao et al., 2001).

Recently, parallel imaging methods have been introduced to
reconstruct images using spatial information derived simultaneously
from multiple coil array channels. The techniques employed in-
clude k-space SMASH (Sodickson and Manning, 1997), k-space
GRAPPA (Griswold et al., 2002) and image-domain SENSE
(Pruessmann et al., 1999), all of which share a similar theore-
tical background (Sodickson and McKenzie, 2001). While paral-
lel MRI can accelerate data acquisition rates by reducing total
k-space traversal at the cost of reduced signal-to-noise ratio
(SNR), the resulting net acceleration rate is limited both by the
number of array coils and the specific phase-encoding scheme
employed.

Prior information can be incorporated by combining EPI with
parallelMR imaging (Golay et al., 2000; Preibisch et al., 2003; Schmidt
et al., 2005; Weiger et al., 2002), resulting in fMRI detection sensitivity
improvements with sensitivity encoded parallel MRI techniques (Lin
et al., 2005). Prior-informed parallel MRI has been explored using a
fixed regularization parameterwith empirical singular value decomposi-
tion truncation (King, 2001; Sodickson, 2000). Incorporation of prior
information can suppress noise amplification in parallel MRI
reconstruction (Lin et al., 2002, 2005, 2004; Tsao et al., 2002) and
traditional parallel MRI has been used to solve under-determined ill-
posed problems (Katscher and Manke, 2002; Tsao et al., 2003).
However, either only minor acceleration has been achieved (4-fold
acceleration using a 2-channel array in cardiac imaging) (Katscher and
Manke, 2002), or the reconstruction process has depended on
incorporation of low-resolution prior image information (Tsao et al.,
2003, 2005).

More extreme accelerations in MRI acquisition rates have been
achieved by reconstructing each image from a single echo. For
example, single-echo-acquisition (SEA) was achieved using a
dedicated 64-channel linear planar array that eliminated phase
encoding, instead using the spatial information obtained from an
array of long and parallel coils. This planar pair element design
proved to be crucial for achieving well-localized field sensitivity
patterns (McDougall and Wright, 2005). In other work, Hennig
developed the one-voxel-one-coil (OVOC) MR-encephalography
technique, obtaining a reconstructed image by computing the
product of a full FOV reference scan and the accelerated
acquisition scan where traditional phase and frequency encoding
can be selectively omitted. This approach uses simultaneous multi-
channel acquisition with multiple small receiver coils sampled such
that the signal received by each coil is read out separately. The
effective voxel size observed by each receiver channel is
determined by the sensitive volume of the corresponding coil
element and the source spatial distribution is estimated by
constrained reconstruction using images from each separate coil
as references (Hennig et al., 2007). A similar reconstruction al-
gorithm termed HYPR was also proposed in the context of MR
angiography (Mistretta et al., 2006). Nevertheless, none of these
approaches explicitly formulate the relationship between the spatial
information contained in the different channels of a RF coil array
with full gradient encoding or with minimal gradient encoding. Nor
do they provide algorithms to estimate the significance of task-
related signal changes that would allow dynamic statistical
inferences to be made from a highly temporally resolved data set.

Mathematically, the maximum acceleration possible with parallel
MRI acquisition is limited by the available independent spatial
information encoded by the coil array elements. This limit manifests
itself as a problem in solving an over-determined linear system.
Increasing the number of channels can thus increase MRI sampling
rates. To this end, dense head coil arrays consisting of 16 (Bodurka
et al., 2004; de Zwart et al., 2002, 2004), 23, 32 and 90 elements
(Wiggins et al., 2005a,b) have been constructed in support of a range
of parallel acquisition applications. In addition, a dedicated 64-
channel linear planar array has been developed to achieve 64-fold
acceleration (McDougall and Wright, 2005). Notably, the geometric
configuration of our 32-channel head array is remarkably similar to
that used for electrode and super-conducting quantum interference
(SQUID) sensor arrays in modern EEG and MEG systems
(Hamalainen et al., 1993). While the MEG sensors detect magnetic
fields generated by neural currents (Hamalainen et al., 1993), MRI
detects oscillating electromagnetic fields from magnetization preces-
sion (Haacke, 1999). In addition, while MEG derives all of its spatial
information from the geometry of the detectors, current accelerated
MRI methods still rely heavily on gradient encoding.

We have generalized parallel MRI reconstruction techniques to
exceed the limitations encountered when utilizing an under-
determined linear system by introducing single-shot volumetric
MR Inverse Imaging (InI), an approach that employs an over-
determined linear system in order to achieve dramatically reduced
acquisition times. We demonstrate the use of single-shot
volumetric InI in supporting dynamic spatially-resolved statistical
inference in a functional neuroimaging experiment. Inspired by
MEG and EEG source localization techniques, we use a general-
ization of prior-informed parallel MRI (Lin et al., 2005, 2004) and
an adaptation of MEG reconstruction methods to MRI, to reduce
the whole-brain sampling time by minimizing the k-space traversal
time. Rather than relying on gradient encoding, InI derives spatial
information by solving the inverse problem utilizing information
from all array channels. Thus, given the constraint imposed by the
need to use echo times (TE) that are optimal for BOLD-contrast,
InI can complete k-space traversal and acquire sufficient data for
whole-brain image reconstruction in under 100 ms. Although we
have previously shown the feasibility of a 2D InI implementation
(Lin et al., 2006a), we now demonstrate its application to
functional imaging studies employing 3D whole-brain coverage
and event-related designs (Rosen et al., 1998). Event-related fMRI
is a widely utilized neuroimaging method to study not only spatial
but also temporal characteristics of hemodynamic changes
secondary to neuronal events. Compared to the classical block-
design fMRI, the timing information available in the event-related
fMRI allows for the study of both transient and steady states of
cerebrovascular responses. This experimental technique mitigates
the difficulty of potential bias originating from the context or
history of previous stimuli events. Event-related fMRI also enables
the analysis of data using post-hoc categorization (Wagner et al.,
1998). Some experimental designs, such as “odd-ball” experi-
ments, can only be implemented using event-related fMRI rather
than block-design (Friston, 2007). All reasons described above
encouraged us to study the feasibility of 3D InI acquisition and
reconstruction using event-related fMRI designs.

The principal novelty of our method is its combination of a
dense coil array with a linear estimation approach, allowing the
transition from a largely gradient encoded to a largely detector



Fig. 1. The 3D InI spatial encoding scheme implemented using a 32-channel array of coils. One thick sagittal slice was spatially encoded using an EPI sequence,
allowing resolution of the spatial information in both the anterior-posterior (A–P) and superior-inferior (S–I) directions. The inverse problem was solved based
on minimum-norm estimates along the left-right (L–R) axis.
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encoded image, thereby achieving an order-of-magnitude speedup
in the frame rate of dynamic whole-brain MRI. In the following
sections, we present the data acquisition strategy and mathematical
algorithms underlying InI, which allow extension of the technique to
include event-related, functional imaging designs with whole-brain
coverage. We next demonstrate the technique's capabilities in
measuring the spatiotemporal properties of the hemodynamic
response to brief visual stimuli using a 100 ms temporal sampling
rate on a 3Tscanner with a 32-channel coil array. In comparison with
conventional EPI, 3D InI exhibits comparable sensitivity and
adequate spatial resolving power in detecting visual task-related
activity when performance is examined at both the single subject and
group levels.

Methods

Participants

Five healthy participants were recruited for the study. Informed
consent approved by the Institutional Review Board was obtained
from each participant.

Task

Our participants were asked to maintain fixation at the center of a
tangent screen while viewing a high-contrast visual checkerboard
reversing at 8 Hz. The checkerboard subtended 20° of visual angle
andwas generated from 24 evenly distributed wedges (15° each) and
eight concentric rings of equal width. The stimuli were generated
using the Psychtoolbox (Brainard, 1997; Pelli, 1997) and presented
using Matlab (Mathworks, Natick, MA). The checkerboard stim-
uli were presented for 500 ms duration and the onset of each
checkerboard presentation epoch was randomized with a uniform
distribution of inter-stimulus intervals varying from 3 to 16 s. Thirty-
two visual stimulation epochs were presented during each of four
240 s runs, resulting in a total of 128 visual stimulation epochs per
participant.

Image data acquisition

MRI data were collected on a 3T MRI scanner (Tim Trio,
Siemens Medical Solutions, Erlangen, Germany). We used a
custom-built 32-channel head array receive coil (Wiggins et al.,
2006) and a body transmit coil. The array consisted of 32 circular
surface coils tessellated evenly to cover the whole brain. Functional
imaging included standard BOLD-contrast imaging using conven-
tional EPI techniques as well as volumetric InI.

Functional imaging

Using 3D InI, each acquired volume was obtained at a
particular time instant by the combination of EPI frequency
encoding along the inferior-superior direction and phase encoding
along the anterior-posterior direction. Fig. 1 shows a schematic
diagram of the spatial encoding procedure used to combine EPI
and InI. The spatial information in the left-right direction was
recovered during the InI reconstruction computation.

InI reconstruction requires collection of a reference scan that
provides information about the entire 3D volume. With this
reference scan data, also called the forward operator, accelerated
acquisition is enabled by replacing time consuming spatial
encoding, dependent upon gradient switching, with an alternative
approach utilizing an image reconstruction algorithm.

The reference scan was using a single-slice echo-planar imaging
(EPI) readout approach. Specifically, we excited one thick sagittal slab
covering the entire brain (FOV 256 mm×256 mm×256 mm;
64×64×64 image matrix), setting the flip angle to the Ernst angle
of 30°. Partition phase encoding was used to obtain the spatial
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information along the left-right axis (inter-aural line). The EPI readout
had frequency and phase encoding along the superior-inferior and
anterior-posterior axes respectively. We used 100 ms TR, 30 ms TE,
2604 Hz bandwidth and a 10 s total acquisition time for the reference
scan.

InI functional data acquisition used the same volume
prescription, TR, TE, flip angle, and bandwidth as the reference
scan. The principal difference was that the partition phase encoding
was removed. The full volume was excited, and the spins were
spatially encoded by a single-slice EPI acquisition. This resulted in
a projection image along the left-right direction. The InI
reconstruction algorithm, described in the next section, was then
used to estimate the spatial information along the x–y axis. In each
run, we collected 2,400 measurements after collecting 32
measurements in order to reach the longitudinal magnetization
steady state. A total of four runs of data were acquired from each
participant.

To validate the InI functional results, conventional EPI data, using
conventional BOLD-contrast detection methods, were also collected
using identical stimulus and presentation paradigm timing. EPI
functional data acquisition used TE=30ms, TR=2 s, flip angle=90°,
FOV=220 mm, 24 slices, slice thickness=4 mm with 20% gap).

Structural imaging

In addition to the EPI and InI functional data, anatomical MRI
data for each participant were obtained in the same session using a
high-resolution T1-weighted 3D sequence (MPRAGE, TR/TE/
flip=2530 ms/3.49 ms/7°, partition thickness=1.33 mm, ma-
trix=256×256, 128 partitions, FOV=21 cm×21 cm). Using these
data, the location of the gray–white matter boundary was estimated
with an automatic segmentation algorithm to yield a triangulated
mesh model with approximate 340,000 vertices (Dale et al., 1999;
Fischl et al., 2001, 1999). The spatial registration between the EPI
data or InI reconstructed data and the anatomical data was done by
using SPM5 (http://www.fil.ion.ucl.ac.uk/spm/), estimating a 12-
parameter rigid body transformation between the EPI mean image
and volumetric InI reference scan and MPRAGE anatomical study.
Note that the accelerated InI acquisition data were not spatially
registered using this tool. The registration matrix was subsequently
applied to each time instant of the EPI or InI hemodynamic
estimates, to transform the neural activity estimates for each
functional run to an inflated cortical surface space (Dale et al.,
1999; Fischl et al., 1999). The transformed results were also
spatially smoothed with a 3D Gaussian kernel with 10 mm full-
width-half-maximum (FWHM).

Image reconstruction

Both reference scans and InI scans use EPI read-out, which
demonstrate classical Nyquist ghost artifacts in the phase-encoding
direction (anterior–posterior direction in our implementation). To
correct this artifact and to make consistent measurements between
reference and InI scans, we applied the same phase correction
algorithm in each reference (with partition encoding) and InI
(without partition encoding) image at all channels of the coil array.
Specifically, 64 interleave EPI read-outs were acquired in the
frequency encoding direction (superior–inferior direction) without
phase-encoding blips to estimate the k-space shift between even
and odd echoes along the frequency encoding direction. This echo-
shifting was then corrected by appending a compensation phase to
the even echoes to avoid N/2 Nyquist ghosting. The InI acquisition
and reference scans were processed using 2D and 3D fast Fourier
transformations from the k-space domain to the image domain,
respectively. The reference scan in each channel of the coil array
was synthetically averaged across partitions to simulate the InI
acquisitions by making projection images along the partition
encoding direction in each channel of the coil array, such that

dSIMi
tr
� �

, the simulated InI acquisition at locationtq and channel i,

is calculated as

dSIMi
tr
� � ¼X

tq

Ai
tq
� � ð1Þ

Here tq represents the spatial location indices across different
partition phase-encoding steps with the same frequency and phase-
encoding numbers, indicated by the spatial index tr , and Ai

tq
� �

represents the reference scan image from location tq and channel i.
These simulated data were compared with the InI acquisition at
each time instant to separately investigate the phase difference
between the simulated InI projection image from the reference scan
and the acquired InI projection image at each time instant. The
global phase difference, θi(t), for channel i at time instant t, is given
by

hi tð Þ ¼ B
X
tr

di tr ;t
� �

=dSIMi
tr
� �� � !

ð2Þ

where di tr ; t
� �

represents the signal from the InI acquisition with
spatial location tr , time t and channel i of the coil array. Phase
information is important in the subsequent InI reconstruction since
phase may change dramatically over continuous scans as a result of
scanner instabilities such as gradient coil heating. We corrected this
discrepancy in phase between the actual accelerated InI acquisition
and the simulated InI acquisition from the reference scan by sub-
tracting θi(t) for different channel and time instant separately.

After pre-processing the whole time series in the InI projection
acquisitions, now we estimated the hemodynamic response function
(HRF) in each projection image across all channels of the coil array.
This effort reduces the size of data in the time-domain dramatically
without affecting the subsequent image-domain reconstruction.
From a list of the stimulus onset times, we constructed a vector tq
with entries containing a one indicating the occurrence of stimuli
during each 500 ms stimulation period, and all other entries
containing zeros. A contrast matrix D was constructed from the
convolution between the tq vector and the hemodynamic response
function H,

D ¼ tq � H ð3Þ

where � denotes the linear convolution.
We used a finite-impulse response (FIR) basis for the HRF and

thus H is a discrete delta function with different delays indicating the
HRF at a specific time instant. Specifically,Hmodeled a HRF of 30 s
duration with a 6 s pre-stimulus baseline of 100 ms TR. Thus H is an
identity matrix of dimension 300 (i.e., nh=300). In addition to the
phase drift θi(t), we appended the design matrixDwith two confound
vectors within each run to account for linear drift and constant
confounds. Additionally, we also included a time series from themean
of the magnitude projection image in each channel as a confound
vector attempting to explain potential physiological noise sources
(respiration and cardic pulse). The estimation of GLM coefficients for
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channel i and time instant τ of the InI acquisition was computed by
least square fitting

bi
tr ;s
� � ¼ DHD

� ��1
DHdi tr ;t

� �
;s ¼ 1: : :nh; ð4Þ

where the superscript H indicates the transpose and complex
conjugate. HRF estimation, hi tr ;s

� �
, was then extracted from entries

of the bi
tr ;s
� �

vector corresponding to the FIR basis function while
all other contributions corresponding to confounding vectors were
discarded in the subsequent analysis.

The minimum-norm estimate (MNE) provided the recon-
structed image x tq; s

� �
of 3D volumetric index tq and time index

τ, which can be expressed as

x tq; s
� � ¼ A tr

� �H
A tr
� �

A tr
� �Hþk tr

� �
C

� ��1
h tr ; s
� �

¼ WMNE
tr
� �

h tr ; s
� � ð5Þ

where C is the noise covariance matrix of the array, k tr
� �

is the
regularization parameter, andWMNE

tr
� �

is the inverse operator for the
InI location index tr . A tr

� �
and h tr ;s

� �
indicate the vertically

concatenated Ai
tq
� �

and hi tr ; s
� �

at spatial indextr and time index τ
across all channels in the coil array. The regularization parameter was
calculated from a pre-defined signal-to-noise ratio (SNR) as

k tr
� � ¼ Tr Cð Þ=Tr A tr

� �H
A tr
� �H� �

=SNR2 ð6Þ

Here Tr(•) indicates the trace of the matrix. This choice of
regularization parameter followed our original 2D InI reconstruction
algorithm and was inspired by the analogy between InI reconstruc-
tion (Lin et al., 2006a) and distributed source modeling in MEG
(Lin et al., 2006b). We used SNR=5 in this study. This choice
of SNR was derived from our previous InI study (Lin et al.,
2006a). The sensitivity of MNE reconstruction in InI was
investigated in our previous study, which showed that the
regularization parameter affects InI reconstructions moderately for
±10 fold changes. Our choice of regularization parameter was within
that range.

Statistical modeling

InI data
To allow statistical inference from the results of the InI time-

series reconstruction, we estimated the noise in the baseline by
Fig. 2. A schematic diagram of procedure for spatial resolution analysis using sy
applying the MNE inverse operator to the baseline InI data. Then,
dynamic statistical parametric maps were derived as the time-point
by time-point ratio between InI reconstruction and baseline noise
estimates, given by

t tq; s
� � ¼ x tq; s

� �
=diag WMNE

tr
� �

CWMNE
tr
� �H� �

¼ WMNE
tq
� �

d tq; s
� �

=diag :WMNE
tq
� �

C:WMNE
tq
� �H� �

¼ WMNE�dSPM
tq
� �

d tq; s
� �

ð7Þ

where diag(•) is the operator used to construct a diagonal matrix
from the input argument vector. Here x tq; s

� �
represents the

estimated signal vector and diag WMNE
tr
� �

CWMNE
tr
� �H� �

de-
notes the estimated noise vector. Both vectors have the dimension
of the number of sources to be resolved. The division denotes the
element-wise division. Dynamic statistical parametric maps
(dSPMs) t tq; s

� �
should be t-distributed under the null hypothesis

of no hemodynamic response (i.e., x tq; s
� � ¼ 0) (Dale et al.,

2000). When the number of time samples to calculate the noise
covariance matrix C is quite large, the t-distribution approaches the
unit normal distribution (i.e., a z-score).
EPI data
The statistical modeling of the conventional EPI BOLD-contrast

data was implemented using a general linear model (GLM) with a
design matrix based on the same finite-impulse response (FIR)
model (c.f. Eqs. (3) and (4)). Using least squares fitting, we
estimated the strength of the FIR HDR at each voxel and each time
instant, and the residuals in the GLM led to an estimate of baseline
variability. Taken together, the t-statistics of the evoked hemody-
namic response were calculated for each image voxel at each time
instant.

Here we want to emphasize that InI image reconstruction
separates processing for HRF estimation in the projection images in
all channels of the coil array (time domain) and restoration of 3D
spatial information using MNE (spatial domain). However, EPI data
had only time domain HRF estimation. In the time domain
estimation of HRF, both InI and EPI data used the same finite-
impulse response (FIR) basis in the GLM estimation of HDR and
thus the results are comparable. The use of FIR basis functions make
no assumptions concerning the shape of the HDR. This is different
from the traditional use of parameterized models to estimate
canonical HDR using, for example, gamma functions. Compared
nthetic data to calculate average point-spread-function and SHIFT metric.



Fig. 3. The distribution of spatial resolution (quantified by average point-spread-function) of reconstructions at different SNRs (SNR=0.5, 1, 5 and 10). Only central 24 axial slices of total 64 slices in a brain volume
are shown here.

235
F.-H

.
L
in

et
al.

/
N
euroIm

age
42

(2008)
230–247



Table 1
The average (avg.) and standard deviation (std.) of average point-spread-
function (aPSF) and SHIFT metrics for MNE-dSPM at different SNRs

aPSF SHIFT

SNR avg. (mm) std. (mm) avg. (mm) std. (mm)

0.1 26.87 9.94 25.69 15.46
0.5 11.00 3.76 6.56 4.35
1 8.64 3.42 4.54 3.37
5 4.66 2.54 2.24 1.89
10 2.98 2.18 1.52 1.49
50 0.15 0.58 0.09 0.36
100 0.01 0.13 0.01 0.09
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to traditional EPI reconstruction, the only additional processing in
InI reconstruction is theMNE in the spatial domain to convert the 2D
projected images into 3D volumetric images.

To compare the similarity of InI and EPI reconstructions, InI
dSPMs of t-statistic maps were averaged between 3–7 s after
stimulus onset. The center of mass of this temporally averaged
t-statistic map from the InI TInI tq

� �
and EPI t-statistics maps

TEPI tq
� �

were calculated separately:

tqInI ¼
P
tq

TInI tq
� �tq=X

tq

TInI tq
� �

tqEPI¼
X
tq

TEPI tq
� �tq=X

tq

TEPI tq
� �

g ¼ jj tqInI �tqEPI jj

ð8Þ

Here ||•|| denotes the Euclidean norm.

Spatial resolution analysis

We performed numerical simulations to evaluate the spatial
resolution and localization accuracy of our InI reconstructions. The
reference data for the forward operator is represented by A tq

� �
and

noise covariance matrix is represented by C. The simulation
procedure started from creating a source vector x tr

� �
, with tr set

to unit activity and other locations set to zero. We then estimated
the idealized measurements from all coil array channels by
computing the product of the forward operator A tq

� �
and x tr

� �
.

s tr
� � ¼ A tq

� �
x tq
� � ð9Þ

We created 100 realizations of synthetic noise with spatial
coloring according to the noise covariance matrix:

n tr
� � ¼ UCS

1=2
C e tr
� � ð10Þ

where e tr
� �

is the noise vector with complex values following a
Gaussian distribution of zero mean and unit variance. UC and SC
are the singular vectors and singular values of the noise covariance
matrix. At a specified SNR, the noise n tr

� �
was scaled and

subsequently added to s tr
� �

to generate the synthetic measure-
ments d tr

� �
:

d tr
� � ¼ s tr

� �þ 1
SNR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max js tr

� �j2� �
Tr SCð Þ

vuut
n tr
� � ð11Þ

Then we followed Eq. (5) to obtain the data covariance matrix,
the inverse operator, and the noise normalized inverse operator:

tx̂MNE
tq
� � ¼ WMNE

tq
� �

d tr
� �

tx̂ MNE�dSPM
tq
� � ¼ WMNE�dSPM

tq
� �

d tr
� � ð12Þ

The InI reconstruction obtained with this procedure is
equivalent to the point spread function of the simulated source
x tq
� �

. Both txMNE
tq
� �

and tx̂ MNE�dSPM
tq
� �

were scaled to a
maximum of 1.

Similar to procedures used in MEG/EEG source analysis (Dale
et al., 2000; Liu et al., 1998, 2002), we estimated the average point-
spread-function (aPSF) at each location to quantify the spatial spread of
the reconstruction:

aPSFMNE
tq
� � ¼

P
i;ipq jdi tq

� �
xiMNEj

l

aPSFMNE�dSPM
tq
� � ¼

P
i;ipq jdi tq

� �
xiMNE�dSPMj

l

ð13Þ

where jdi tq
� �j indicates the distance between source location i and

source location tq . xMNE
i (or xMNE-−dSPM

i ) represents vector entries in
the InI reconstruction⇀x̂MNE

tq
� �

(or tx̂ MNE�dSPM
tq
� �

) exceeding 0.5
and l is the number of voxels to be spatially resolved by the InI
reconstructions. This procedure allows estimation of the full-width-half-
maximum (FWHM) of the point-spread-function. A 3D map of the
spatial distribution of the average point-spread-function, aPSF, for either
MNE or MNE-dSPM estimates can be obtained by repeating the
calculation across the whole source space, sampling the 256×256×
256 mm FOVat a 4 mm isotropic spatial resolution.

Since InI is an intrinsically ill-posed inverse problem, the
reconstructed image may not reflect the original spatial distribu-
tion of the magnetizations contributing to the actual measure-
ments. Thus analysis of localization accuracy concerning the
discrepancy between the reconstructed sources and the original
sources is desirable. Quantification of localization accuracy was
done by calculating the shift between the center of mass of the InI
reconstruction and the simulated source:

SHIFTMNE
tq
� � ¼ j Pi;i pq

tx̂MNE
tq
� �

xiMNE

� �
�tq j

SHIFTMNE�dSPM
tq
� � ¼ j Pi;i pq

tx̂MNE�dSPM
tq
� �

xiMNE�dSPM

� �
�tq j
ð14Þ

A 3D SHIFT metric map for MNE and MNE-dSPM was
generated in each simulation. Since the inverse operators depend
on the SNR (and the measurement data), the SNRs were
parametrically varied from 0.1 to 100. Fig. 2 illustrates the
procedure of spatial resolution analysis using simulations. The
implementation of the image reconstruction and statistical analysis
procedures were done with Matlab.

Results

Spatial resolution analysis of simulated datasets

Spatial resolution
Fig. 3 shows the spatial distribution of aPSF at different SNRs

(SNR=0.5, 1, 5, and 10). We observed global reductions in the



Fig. 4. The distribution of localization accuracy (quantified by the SHIFT metric) of reconstructions at different SNRs (SNR=0.5, 1, 5 and 10). Only central 24 axial slices of total 64 slices in a brain volume are
shown here.
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Fig. 5. The time series of the phase of mean InI acquisitions from three channels of the 32-channel array.
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aPSF for MNE reconstructions at higher SNRs. In particular, deep
brain regions show a larger aPSF metric. This matches the physical
intuition that, at center of the head coil, the B1 fields from all
channels are less spatially disparate and the SNR is lower than that
at periphery. Thus the spatial resolution is lower. Quantitatively,
the MNE-dSPM inverse still has an average aPSF of 8.64 mm
when the SNR is higher than 1. At extremely high SNR
(SNRN50), MNE can provide an excellent spatial resolution
(average aPSF of 0.15 mm).

To translate the aPSF into a measure of spatial resolution, the point-
spread-function reported here should be spatially convolved with the
nominal spatial resolution of the fully gradient-encoded scan. Thus, for
example, the average spatial resolution at SNR=5 is approximately
8.7 mm with a standard deviation of 6.5 mm (see Table 1).
Spatial accuracy
The SHIFT metrics derived from MNE are shown in Fig. 4.

MNE is characterized by sporadic high SHIFT metrics at low
SNRs (SNR=0.5 and 1). Larger errors occurred at source locations
in deep brain areas. On average, the localization accuracy is higher
than 5 mm when SNR is higher than 1. Details of the aPSF and
SHIFT metrics are listed in Table 1.

Single subject results

Raw traces of InI acquisitions from three channels close to the
occipital lobe, parietal lobe, and frontal lobe were shown in Fig. 5.
Clear cardiac and respiratory fluctuations were observed in the
phase and magnitude plots of the time series from each RF coil
channel. Fig. 5 also shows that acquired InI images indeed had
significant phase drifting at respiratory frequencies. This supports
the need for phase correction in Eq. (2). To illustrate the quality
and consistency of the InI reconstruction, we show the difference
magnitude images between simulated InI acquisitions dSIMi

tr
� �
from reference scan and the those images of the mean of
accelerated InI acquisitions in Fig. 6. The discrepancy between
the simulated and actual InI acquisitions was quantified as the
percentage error with respect to the simulated InI acquisitions in
each channel of the coil array separately. We observed that all
32 channels show a discrepancy of less than 10%. Note that the
number of an RF channel is arbitrary and it does not imply spatial
location of each RF coil. This implies that the reference scan
suffices as an accurate forward operator for the subsequent inverse
operator derivation and volumetric image reconstruction.

To illustrate the spatial resolution of InI reconstruction, we
performed InI reconstruction using the average InI acquisitions across
time. The results are shown in Fig. 7, which includes magnitude
images of InI reconstructions and sum-of-squares reference images
across 32-channels of the coil array at the central 12 contiguous axial
slices. Compared to the reference images, InI reconstructions pre-
served some features, including cerebral hemisphere boundaries, and
the contours of the whole brain. However, local image features and
contrasts are different. In the context of fMRI, we are interested in the
time-domain contrast-to-noise ratio, rather than the spatial-domain
contrast-to-noise ratio. Also, using a univariate general linear model,
the analysis treats different image voxel separately. Thus we tolerated
the resultant level of spatial heterogeneity and proceeded with time-
series analysis.

Fig. 8 shows two series (2.0–2.9 s and 6.0–6.9 s post stimulus)
of functional activity estimated by InI dSPM overlaid on the sum-
of-squares images from the reference scans at eight axial slices
from a representative participant. The InI dSPM t-statistic maps
were rendered on an inflated brain surface where light gray
indicates gyri and dark gray indicates sulci. We used a critical
threshold of t=2 (uncorrected p-value=0.028). The maps show a
progressive activation in response to the reversing checkerboard
around the calcarine sulcus. Starting from the most posterior part of
the occipital lobe, the activity spreads anteriorly, superiorly, and
inferiorly. Peak activity was observed between 3 and 5 s after sti-



Fig. 6. Difference magnitude images between the simulated and actually accelerated InI acquisitions from fully gradient-encoded reference scan at 32 channels. The difference between two was quantified by the
percentage error labeled in the individual simulated image.
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Fig. 7. (Top) InI reconstructed images from actually accelerated scan using MNE inverse operator. (Bottom) InI reconstructed images from fully gradient-
encoded reference scan using sum-of-squares algorithm.
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mulus onset. This response started to decrease approximately 6 s after
stimulus onset.

The area showing a positive visual response in the first 3 s after
stimulus onset was used to define a region of interest (ROI) in the
primary visual cortex (V1). The average values and standard deviations
of this ROI time course are shown in Fig. 9. Without utilizing any
specific model of the hemodynamic response, InI measures revealed a
sharp BOLD-contrast signal peak at 4 s after stimulus onset. We also
observed a post-stimulus undershoot between 10 and 24 s after stimulus
onset. The pre-stimulus interval shows fluctuations around the baseline.

To compare InI with conventional EPI reconstruction, we
compared data from the same participants studied with both tech-
niques. Fig. 10 shows the t-statistic maps from both InI and EPI
acquisitions using an inflated cortical surface model. We averaged the
InI dSPM t-statistics between 3 and 5 s after stimulus onset in order to
match the two-s TR of the EPI acquisition from the same V1 ROI. To
compensate for the differing sensitivity of the two methods, critical
thresholds were chosen as tb2 (uncorrected p-value b0.028) and tb4
(uncorrected p-value b10−4) for InI and EPI respectively in order to
show a similar size and pattern of cortical activity.

Differing detection sensitivity between InI and EPI were
quantified by examining the t-value maxima, the t-value baseline
standard deviation, and the z-score transform of the t-values in
primary visual cortex of each participant (see Table 2). Generally, EPI
was associated with higher peak t-values compared to InI. However,
the baseline variability of the EPI t-values was also higher than InI.
The overall InI z-score transform of the t -values is thus higher than
EPI.We noticed that the standard deviation of baseline t-statistics does
not equal to 1 in V1 ROI. The reason for this result is because we
calculated the averaged t-statistics within V1 ROI first and then
calculated the standard deviation. The averaging within the V1 ROI
certainly improves the noise fluctuation because of averaging across
voxels within the ROI. This explains why the reported standard
deviation of the t-statistics in the baseline period is less than 1.

The distances η between the centers of mass of the EPI and InI
reconstructions from five participants are listed in Table 3. On
average, the spatial localization of InI and EPI peak activities
differs by 5.2 mm. This localization discrepancy was quite stable
among all five participants. The maximum distance is 6.8 mm and
minimum distance is 3.4 mm, both of which are within 2 mm of the
average.
Group results

Fig. 11 shows single frames of InI dSPM t-values averaged over five
participants at 100 ms temporal resolution. The shape of this group
average time series is very similar in character to the individual par-
ticipant time series shown in Fig. 9, demonstrating the stable
performance of InI acquisition and reconstruction techniques. Notably,
the negative t-values observed in the single participant, shown in Fig. 9,
disappeared in this group average, implying that the signal decrease, as
evidenced by the negative t-values, may be an individual or temporally
variable effect. The individual frames of this group average show
progressive increasing activity starting at 2.7 s after the stimulus onset
(critical threshold tb2; uncorrected p-value b0.028). The signal retur-
ned to baseline approximately 6.0 s after stimulus onset.

The time course of the InI dSPM t-values from the group average
are shown in Fig. 12. The shape of the hemodynamic response in the
group average is similar to that observed in individual participants
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(see Fig. 3).We observed a reduced variability along the time course,
potentially resulting from averaging multiple participants. The peak
activity was found at 4.5 s after stimulus onset and the post-stimulus
undershoot was observed between 10 s and 24 s after stimulus onset
in the group average.

Discussion

We have shown that single-shot volumetric InI methods can
achieve an order-of-magnitude acceleration in hemodynamic re-
sponse sampling by combining dense head coil array parallel data
Fig. 8. Single subject results showing successive frames of InI MNE-dSPM t-values
axial slices. The critical threshold used is t=2.0 (uncorrected p-value=0.028).
acquisition with distributed source modeling. Applying volumetric
InI to study the visual system using an event-related design, we
found that the method is both sensitive and reliable, as demon-
strated in the individual participant and group average results.
Localization accuracy was examined by comparing the InI and
conventional EPI task-related activity in primary visual cortex,
with the comparison revealing a good spatial match (approximately
5 mm) between the two methods. Our results in the visual cortex
show a faster BOLD-contrast response compared to conventional
EPI. This is comparable to previous results (Janz et al., 1997;
Pfeuffer et al., 2002). In comparison to previous studies, InI
superimposed on the sum-of-squares images from the reference scan at eight



Fig. 9. Single subject InI dSPM and the location of the primary visual cortex (V1) ROI (inset). The time course shows the average (dark blue) and the standard
deviation (light blue vertical error bars) of the InI dSPM t-values within the V1 ROI. The average EPI t-values for the V1 ROI are shown in red and the associated
standard deviations are shown in light brown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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methods exhibit two principal advantages. First, they allow col-
lection of whole-brain volumetric data using a single-shot EPI
acquisition, while previously it was only possible to obtain one
single 2D image at high temporal resolution (20 ms). Volumetric
acquisition is more attractive to neuroscientists primarily interested
in investigating whole-brain spatiotemporal activity patterns. By
sampling the entire brain, volumetric InI can avoid the need for
tedious manual slice prescription based on the prior anatomical
scans required to identify target brain areas. Second, our approach
combines volumetric InI and event-related fMRI design (Rosen
et al., 1998), a commonly employed experimental approach in
functional neuroimaging studies. We found that volumetric InI
acquisition and reconstruction had sufficient sensitivity to reliably
detect task-related activity in primary visual areas with high
temporal resolution. We also found in this study that we had
reduced false positive activation compared to our first InI attempts
(Lin et al., 2006a) (see Fig. 8). This is because the current
implementation has better matching between the reference scan
and the InI scan: both scans used the same 3D RF excitation,
frequency encoding, and phase encoding. The only difference is
that the reference scan had partition encoding steps, but the InI
scans did not. The improved matching between the reference scans
and the InI acquisitions, as quantified in Fig. 6, helps to generate a
better reconstruction with higher sensitivity and reduced false
positive activation.

Sensitivity and statistical degree of freedom

The difference in the SNR and sensitivity between EPI and InI
have been analytically and empirically reported in our results. Both
methods used BOLD-contrast. However, due to different image
reconstruction algorithms and sampling rates, EPI and InI have
different sensitivity and degrees of freedom. Compared to EPI, InI
involves the additional step of solving an inverse problem. Both EPI
and InI time-series modeling and statistical inference use the same
general linear model. Using an MNE inverse operator in InI
reconstruction resulted in “decreased” sensitivity (as reported in the
reduced peak t-statistics) as well as “decreased” detection variability
(as seen in the reduced baseline t-statistics variation). This is due to
the spatial smoothing intrinsic to the minimum L-2 norm inverse
operator. This smoothing effect was analyzed quantitatively in the
average point spread function simulations. Note that InI and EPI
have different degrees of freedom, since they utilize different sam-
pling rates. We are aware of the potential temporal correlation
inside the acquisitions. However, a more detailed analysis of these
correlations, is beyond the scope of this study.

Physiological noise

One limitation in BOLD-contrast fMRI detection sensitivity
is physiological noise originating from cardiac and respiratory
fluctuations (Kruger and Glover, 2001). It has been shown that
physiological noise sources are the dominant limiting factor in
high-field fMRI (Giove et al., 2003). Traditional EPI takes ap-
proximately 2 to 4 s to acquire a full 3D brain volume and therefore
lacks sufficient temporal resolution to resolve the physiological
noise which then becomes aliased into the recorded time series. It
will be possible to utilize the high temporal resolution of InI to
improve the sensitivity of BOLD-contrast fMRI by acquiring
single-shot multiple-echo datasets at 10 Hz sampling rates. Due to
this rapid sampling rate, volumetric InI data can satisfy the Nyquist
sampling criterion and thereby allowing more effective digital
filtering strategies to isolate and reduce cardiac and respiratory
sources of noise. These reductions in temporal noise will result in
improved detection of the relevant effects of interest in the ex-
perimental design.

Limits to spatial resolution

InI solves an ill-posed inverse problem in image reconstruction.
The limited spatial resolution from all channels of the coil array
may not be able to provide a stable and unique solution for image
reconstruction. This deficiency in independent coil information
leads to limits in spatial resolution. Common to all inverse solution
alternatives, we want to highlight a caution concerning the nominal
spatial resolution and the actual image resolution. For example,
using a classical equivalent current dipole (ECD), the spatial
resolution can be regarded as infinitely high. However, this does
not adequately reflect the physical resolution set by the measure-
ment. The reconstructed InI images using the MNE algorithm
preserve some low-resolution image features (Fig. 7). This agrees
with the well-known spatial smoothing effect in a minimum-L-2



Fig. 10. Single subject medial and ventral views of thresholded InI and EPI activity estimates seen in response to a 500 ms duration reversing checkerboard. The
critical thresholds were chosen as tb2 (uncorrected p-value b0.028) and tb4 (uncorrected p-value b10−4) for the InI and EPI displays respectively.
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norm solution. Previously, we estimated that 2D InI using MNE
reconstruction has a spatial resolution ranging between 5 mm and
16 mm, depending on the measurement SNR and the coil geometry
(Lin et al., 2006a). From our results, we can see that volumetric InI
provides reasonable spatial accuracy relative to conventional EPI
acquisition. However, a more systematic and extensive study of all
factors modulating the spatial resolution, including SNR, coil
geometry, field strength, and regularization parameters, will be
required in order to quantify the factors influencing spatial variations
in resolving power.

The spatial resolution is spatially-varying because the amount of
independent spatial information from all channels in a coil array
varies among the image voxels within the field-of-view. Notably, in
peripheral cortical areas the spatial resolution is higher and at the
center of the brain the spatial resolution is lower (Lin et al., 2006a).
In volumetric InI, anisotropic spatial resolution effects only appear
in the InI dimension (L–R direction in this study), while the other
two spatial dimensions (A–P and S–I directions) still retain isotropic
spatial resolution because gradient encoding is used. To improve the
spatial resolution, there are two alternatives. First, increasing the
number of channels in a coil array can provide more independent
spatial information. However, the benefit of increasing channels will
reach a plateau as the consequence of electromagnetic theoretical
limitations (Ohliger et al., 2003; Wiesinger et al., 2004). In addition,
at high field more independent spatial information can be obtained
from the same geometry of a coil array as the consequence of a
shorter wavelength. This implies that higher spatial resolution can be
Table 2
The t-value maxima, t-value baseline standard deviation, and the z-score
transform of the t-values in primary visual cortex for EPI and InI
reconstructions of the five participants

Participant InI EPI

Peak
t-value

Baseline
t-value
standard
deviation

z-score Peak
t-value

Baseline
t-value
standard dev

z-score

1 3.45 0.32 10.78 9.35 0.53 17.64
2 5.47 0.24 22.79 3.92 0.71 5.52
3 2.06 0.43 4.79 3.98 0.90 4.42
4 2.79 0.29 9.62 5.05 0.79 6.39
5 3.87 0.41 9.44 5.84 0.64 9.13
Average 2.78 0.34 8.18 2.42 0.53 4.57

On average, InI is associated with higher z-scores due its corresponding
lower baseline variability estimates.
obtained at 7T, using the existing 32-channel coil array geometry
and the MNE reconstruction algorithm. Second, we can ameliorate
the spatial blurring using other inverse reconstruction kernels, as
discussed in the following section.
Reconstruction alternatives

The volumetric InI technique solves an ill-posed inverse problem
to obtain reconstructed images, using the MNE solution to estimate
the spatial distribution of task-related activity. In MEG and EEG
distributed source modeling, spatial filters using linear constraint
minimal variance (LCMV) beamformers have been also investi-
gated extensively (Hillebrand and Barnes, 2005; Robinson, 2004;
Sekihara et al., 2002; Van Veen et al., 1997). In contrast to MNE, the
LCMVapproach minimizes the point spread function of the inverse
operator, resulting in LCMV results that are more focal compared to
MNE. However, one disadvantage of LCMV is its inefficient
detection and separation of coherent sources (Van Veen et al., 1997).
Interestingly, it has been shown that MNE and LCMV are
mathematically related to each other; the difference residing in the
fact that MNE is model-driven while LCMV is data-driven during
the estimation of the data covariance matrix (Mosher et al., 2003).

Under the interpretation of Bayesian estimation theory, both
LCMV and MNE use L-2 norm prior models to solve an inverse
problem. Thus it may be possible to replace the L-2 norm model by
an L-1 norm model to achieve a narrower point-spread-function in
InI image reconstruction. The reason that the L-1 norm model has a
higher spatial resolution (a narrower point-spread-function) is that
the probabilistic distribution of L-1 norm follows a bi-exponential
distribution and the L-2 norm model follows a normal distribution.
Moreover, the bi-exponential distribution has a more concentrated
Table 3
Euclidian distances between the estimated primary visual cortex centers of
mass for EPI and InI activity in the five participants

Participant ID Distance (mm)

1 4.0
2 6.8
3 5.7
4 6.2
5 3.4
Average (mm): 5.2

Peak activity localization is strongly concordant between the two imaging
techniques.



Fig. 11. Single frames of the InI dSPM t-values in visual cortex averaged across five participants shown from the medial aspect of the left hemisphere using an
inflated brain surface model. The critical threshold was tb2.0 (uncorrected p-valueb0.028).
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probability around the mean compared to the normal distribution
(Uutela et al., 1999). L-1 norm models have been previously
studied in the context of MEG and EEG source localization under
the term of “minimum-current estimate” MCE (Lin et al., 2006b;
Matsuura and Okabe, 1995; Uutela et al., 1999). In future work, we
will investigate the comparative spatial localization accuracy of the
LCMV inverse and MCE approaches using InI data.
Spatial distortion

In this study we employed a single-shot volumetric InI acquisition
with an EPI readout. Thus, the reconstructed projection image con-
Fig. 12. Group average InI dSPM. The time courses show the average (dark blue
t-values within the primary visual cortex ROI. The average EPI t-values in the pr
red and light brown. (For interpretation of the references to colour in this figur
tains the expected EPI artifacts, including intra-voxel signal loss due
to spatially inhomogeneous susceptibility distribution and geome-
trical distortion along the phase-encoding direction due to its
intrinsically lower bandwidth. Correction of these artifacts has been
studied extensively. For example, to mitigate these artifacts, we can
use field mapping to investigate the spatial distribution of the off-
resonance effects and then use this information to reduce the
susceptibility artifacts (Chen et al., 2006; Chen and Wyrwicz, 1999;
Zeng and Constable, 2002). It is also possible to use parallel imaging
techniques with EPI acquisitions to limit geometric distortion (Weiger
et al., 2002), by systematically skipping multiple integer lines in the
continuous sampling of different phase-encoding lines and then
reconstructing the skipped phase-encoding lines using spatial
) and the standard deviation (light blue vertical error bars) of the InI dSPM
imary visual cortex ROI with associated standard deviations are shown in
e legend, the reader is referred to the web version of this article.)
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information embedded inside different array channels. Thus the
effective bandwidth in the reconstructed image will be wider and will
thereby reduce the distortion.Note that here the spatial information from
the coil array channels is in an orthogonal direction between EPI phase
encoding (anterior–posterior axis) and InI encoding (left–right axis).
Thus the implementation of this approach will not reduce the available
spatial information in the InI reconstructions, while SNR loss is a price
that must be paid for reduced data sample numbers and changes in the
parallel MRI reconstruction geometrical factor (g-factor).

Time-resolved functional imaging

The brain is a highly dynamic system. Consequently, detection
and localization of static patterns of regional functional specializa-
tion will not be sufficient to fully understand the neural mechanisms
underlying complex behavior. Nevertheless, current fMRI research
mainly relies on methods that are most sensitive to these stationary
patterns of task-related activity. Volumetric InI allows functional
imaging measurements at high sampling rates over extended brain
volumes usingminimal gradient encoding. To our knowledge, this is
the most rapid whole-brain fMRI achieved to date and this relatively
high sampling rate may, in future work, enable the measurement of
relative brain activity onset times and thereby provide a better
understanding of the dynamic driving relationships among interact-
ing neural subsystems across the whole brain. This goal cannot be
achieved with conventional EPI methods due to their limited spatial
coverage and temporal resolution.

Because of the relative sluggishness of the fMRI BOLD-contrast
time course, it has been argued that improving the temporal
resolution of fMRI might not reveal more information about brain
dynamics. However, it is becoming increasingly clear that this
popularly held view is incorrect, possibly resulting from a paucity of
practical methods allowing ultrafast fMRI recordings in large brain
volumes. For example, using limited spatial coverage, high temporal
resolution fMRI (TR=100 ms/slice or 400 ms/volume) can detect
spatially distinct differences in neural activity onset times that can
then be correlated with reaction time in order to localize the cortical
areas active in the different phases of sensorimotor integration
(Menon et al., 1998). In addition, fMRI experiments using jittered
inter-stimulus-interval manipulations have detected millisecond-
scale interactions among neural systems (Ogawa et al., 2000).
However, no direct measurements of BOLD-contrast signals at high
temporal resolution with spatial coverage of the entire brain have
been achieved previously. Using volumetric InI, it may be possible
to adapt time-resolved imaging techniques to experimental designs
probing mutual interactions among a spatially distributed set of
participating functionally specialized regions.

Future development

Motion correction is a critical process to improve detection
power of fMRI. However, Motion correction of InI data is
difficult because the acquisitions have only projection images.
Such reduction to one dimensional spatial information poses a
technical difficulty in utilizing post-processing method to do, for
example, rigid body transformation. Thus, InI may not have the
optimal sensitivity due to motion artifacts. A potential method to
mitigate this motion artifact issue uses navigator echoes during
acquisition to correct motion effects at a moderate cost in
temporal resolution (van der Kouwe et al., 2006). Even though
volumetric InI allows dramatic improvement in sampling rates, it
is still constrained by the need to use the optimal TE for detection
of BOLD-contrast effects (approximately 30 ms at 3T). At higher
field strengths, such as 7T, the optimal TE for BOLD-contrast
would be 20 ms or less, allowing further acceleration of volumetric
InI, possibly to 50 ms whole-brain sampling times. In addition,
there are two potential approaches to mitigate the temporal
resolution limitations: First, we may use different contrast
mechanisms, such as steady-state free precession (SSFP), where
TE is usually less than 5 ms (Miller et al., 2003, 2006). However,
SSFP contrast is challenging at high field because of its high SAR
from RF excitation. Second, we may use an echo-shifting
technique to reduce the TR (Golay et al., 2000; Liu et al., 1993),
as demonstrated in our previous 2D InI study (Lin et al., 2006a).
Both alternatives are capable of reducing the sampling time to
around 20 ms. The resulting higher temporal resolution may allow
study of relative cortical activity timing on an extraordinarily fine
time scale, thereby facilitating study of the complex interactions
among regionally specialized neural subsystems responsible for
the mediation of complex behavior.
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