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Learning Task-Optimal Registration Cost Functions
for Localizing Cytoarchitecture and Function in the

Cerebral Cortex

B.T. Thomas Yeo

Katrin Amunts Karl Zilles

Abstract—Image registration is typically formulated as an
optimization problem with multiple tunable, manually set param-
eters. We present a principled framework for learning thousands
of parameters of registration cost functions, such as a spily-
varying tradeoff between the image dissimilarity and reguériza-
tion terms. Our approach belongs to the classic machine leaing
framework of model selection by optimization of cross-valiation
error. This second layer of optimization of cross-validaton error
over and above registration selects parameters in the registion
cost function that result in good registration as measured § the
performance of the specific application in a training data sé

Much research effort has been devoted to developing generic

registration algorithms, which are then specialized to paticular
imaging modalities, particular imaging targets and particular
post-registration analyses. Our framework allows for a syematic
adaptation of generic registration cost functions to spefic
applications by learning the “free” parameters in the cost func-
tions. Here, we consider the application of localizing unddying
cytoarchitecture and functional regions in the cerebral cotex by
alignment of cortical folding. Most previous work assumes hat
perfectly registering the macro-anatomy also perfectly agns the
underlying cortical function even though macro-anatomy des
not completely predict brain function. In contrast, we leam
(1) optimal weights on different cortical folds or (2) optimal
cortical folding template in the generic weighted Sum of Sqared
Differences (wSSD) dissimilarity measure for the localizion
task. We demonstrate state-of-the-art localization resi$ in both
histological and fMRI data sets.
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1.

N medical image analysis, registration is necessary to es-
tablish spatial correspondence across two or more images.
Traditionally, registration is considered a pre-proaegsitep
(Fig. 1(a)). Images are registered and are then used for othe
image analysis applications, such as voxel-based morpinpme
and shape analysis. Here, we argue that the quality of image
registration should be evaluated in the context of the appli
tion. In particular, we propose a framework for learning the
parameters of registration cost functions that are optiimal
a specific application. Our framework is therefore equintle
to classic machine learning approaches of model selecton b
optimization of cross-validation error [33], [43], [58].

INTRODUCTION

A. Motivation

Image registration is typically formulated as an optimizat
problem with a cost function that comprises an image dissim-
ilarity term and a regularization term (Fig. 1(a)). The paea
ters of the cost function are frequently determined mamumsll
inspecting the quality of the image alignment to accountter
characteristics (e.g., resolution, modality, signahtise ratio)
of the image data. During this process, the final task is yarel
considered in a principled fashion. Furthermore, the ity
of the results due to these tunable parameters is rarelytegho
in the literature. Yet, recent work has shown that taking int
account the tradeoff between the regularization and siityila
measure in registration can significantly improve popafati
analysis [40] and segmentation quality [10], [79].

In addition to improving the performance of applications
downstream, taking into account the end-goal of regismati
could help resolve ambiguities and the ill-posed nature of
image registration. For example,

1) The variability of the folding pattern in the human cere-
bral cortex is well-documented (see e.g. [45]). Fig. 2(a)
shows postcentral sulci of two different subjects. Note
the differences in topology between the two sulci. When
matching cortical folds, even neuroanatomical experts
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Traditional and proposed frameworks for image teafion. {I,,} indicates a collection of images. In image registration, seek a deformation
each imagel,,. The resulting deformation§I';} are then used for other applications, such as segmentatigroap analysis. The registration cost

Task: segmentation,
group analysis, etc

Task: segmentation,
group analysis, etc

function typically contains multiple parameters, such les tradeoff parametek and the templatd’. Changes in these parameters alter the deformations
{T'; } and thus the outcomes of downstream applications. In owuneveork (b), we assume a training data set, which allows uvatuate the quality of
the registration as measured by the application performdac cross-validation error metrig), for each training subject. This allows us to pick the best
parameters that result in good registration as measurezhy. Subsequent new subjects are registered using these depanameters.

(a) Postcentral Sulci with Dif-

Postcentral Sulcus

Inferior
Frontal
Sulcus

ferent Topology (b) Brodmann Areas (BAs) Overlaid on Cortical Surfaces

Fig. 2.

2)

Examples of ambiguities in image registration, vahéan potentially be resolved by taking the application atchimto account.

disagree on whether to join the ends of the broken sulcus  cortical surfaces of two different subjects, obtained from
or to break up the uninterrupted sulcus. histology. BAs define cytoarchitectonic parcellation of
In population studies of human brain mapping, itis com-  the cortex closely related to brain function [9]. Here,
mon to align subjects into a single coordinate system by  we see that perfectly aligning the inferior frontal sul-
aligning macroanatomy or cortical folding patterns. The cus (Fig. 2(b)) will misalign the superior end of BA44
pooling of functional data in this common coordinate (Broca’s language area). If our goal is to segment sulci
system boosts the statistical power of group analysis and and gyri, perfect alignment of the cortical folding pattern
allows functional findings to be compared across differ- is ideal. However, it is unclear that perfectly aligning
ent studies. However, substantial cytoarchitectonic [3],  cortical folds is optimal for function localization.

[4], [18] and functional [41], [62], [63], [64], [77], In this paper, we propose a task-optimal registration frame
[78] variability is widely reported. One reason for thisyork that optimizes parameters of any smooth family of
variability is certainly mis-registration of the highlywa registration cost functions on a training set, with the aim o
able macroanatomy. However, even if we perfectly aliginproving the performance of a particular task for a new imag
the macroanatomy, the underlying function and cellulgFig. 1(b)). The key idea is to introduce a second layer of
architecture of the cortex will not be aligned because thgtimization over and above the usual registration. Thissd
cortical folds do not completely predict the underlyingayer of optimization assumes the existence of a smooth cost
brain function [54], [62]. To illustrate this, Fig.2(b)function or cross-validation error metrig (n Fig. 1(b)) that
shows nine Brodmann Areas (BAs) projected onto th&aluates the performance of a particular task given theubut
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of the registration step for a training data set. The trgnin Instead, our resulting optimization procedure borrows/hea
data provides additional information not present in a tedy from the mathematical field of continuation methods [2].
image, allowing the task-specific cost function to be evi@da Continuation methods have been recently introduced to the
during training. For example, if the task is segmentatiomachine learning community for computing the entire path
we assume the existence of a training data set with grouofdsolutions of learning problems (e.g., SVM or Lasso) as a
truth segmentation and a smooth cost function (e.g., Difenction of a single regularization parameter [16], [28]6].
overlap measure) that evaluates segmentation accurattye If For example, the cost function in Lasso [67] consists of the
registration cost function employs a single parametem th&radeoff between a least-squares term ard, aegularization
the optimal parameter value can be found by exhaustiterm. Least-angles Regression (LARS) allows one to compute
search [79]. With multiple parameters, exhaustive seaschthe entire set of solutions of Lasso as a function of the wfde
not possible. Here, we establish conditions for which thgarameter [16]. Because we deal with multiple (thousands
space of local minima is locally smooth and demonstrate thé parameters, it is impossible for us to compute the entire
optimization of thousands of parameters by gradient desceplution manifold. Instead, we trace a path within the soiut
on the space of local minima, selecting registration patarae manifold that improves the task-specific cost function.-Fur
that result in good registration local minima as measured kyermore, registration is not convex (unlike SVM and Lasso)
the task-specific cost function in the training data set. resulting in several theoretical and practical conundrtimas

We validate our framework on two datasets. The firste have to overcome, some of which we leave for future work.
dataset consists of 1@x vivo brains with the Brodmann The wSSD similarity measure implicitly assumes an in-
Areas (BAs) of each subject obtained via histology [4], [84dependent Gaussian distribution on the image intensities,
and mapped onto the cortical surface representation of eadhere the weights correspond to the precision (reciprocal
subject obtained via MRI [18]. The second dataset consfstsaf the variance) and the template corresponds to the mean
42 in vivo brains with functional region MT+ (V5) defined of the Gaussian distribution. The weights can be set to a
using functional Magnetic Resonance Imaging (fMRI). Hereonstant value [31], [6] or a spatially-varying variancen ca
our task is defined to be the localization of BAs and MTbe estimated from the intensities of registered images. [19]
in the cortical surface representation via the registratib However, depending on the wSSD regularization tradeod, th
the cortical folding pattern. While it is known that certairchoice of the scale of the variance is still arbitrary [79].
cytoarchitectonically or functionally-defined areas,tsas V1 With weaker regularization, the training images will betbet
or BA28, are spatially consistent with respect to localicatt aligned, resulting in lower variance estimates.
geometry, other areas, such as BA44, present a challengRecent work in probabilistic template construction resslv
for existing localization methods [18], [20]. We learn thehis problem by either marginalizing the tradeoff under a
weights of the weighted Sum of Squared Differences (wWSSBhyesian framework [1] or by estimating the tradeoff with
family of registration cost functions and/or estimate atiropl the Minimum Description Length principle [71]. While these
macroanatomical template for localizing the cytoarchitesd methods are optimal for “explaining the images” under the
and functional regions using only the cortical folding patt assumed generative models, it is unclear whether the esti-
We demonstrate improvement over existing methods [18]. mated parameters are optimal for application-specificstask

After all, the parameters for optimal image segmentation

B. Related Work might be different from those for optimal group analysis. In

An alternative approach to overcome the imperfect cotontrast, Van Leemput [74] proposes a generative model for
relation between anatomy and function is to directly udeage segmentation. The estimated parameters are therefor
the functional data for establishing across-subfecictional Bayesian-optimal for segmentation. When considering one
correspondence [54], [56]. However, these approachesreeqlobal tradeoff parameter, a more direct approach is to eynpl
extra data acquisition (such as fMRI scans) of all future tesross-validation of segmentation accuracy and to perfaim a
subjects. In contrast, our method aims to learn the relshigpn exhaustive search over the values of the tradeoff parame-
between macro-anatomy and function (or cytoarchitecg)nider [79]. This is infeasible for multiple parameters.
in a training data set containing information about bothmac By learning the weights of the wSSD, we implicitly op-
anatomy and function (or cytoarchitectonics). We use thiignize the tradeoff betweeen the dissimilarity measure and
information to localize function (or cytoarchitectonics) regularization. Furthermore, the tradeoff we learn is igjigt
future subjects, for which only macro-anatomical inforimat varying. Previous work on learning a spatially varying riegu
is available. ization prior suffers from the lack of ground truth (nonlamg

Our approach belongs to the class of “wrapper methoddéformations. For example, [10], [25], [35] assume that the
for model or feature selection in the machine learning -itedeformations obtained from registering a set of trainingges
ature [27], [34]. In particular, our model selection critgr can be used to estimate a registration regularization teterg
of application-specific performance is equivalent to the usew images. However, a change in the parameters of the
of cross-validation error in various model selection algaegistration cost function used by these methods to registe
rithms [33], [43], [58]. Unlike feature selection methodgat the training images would lead to a different set of training
operate in a discrete parameter space, we work in a continudeformations and thus a different prior for registering new
parameter space. Consequently, standard algorithms in images. Furthermore, the methods are inconsistent in tisese
“wrapper methods” literature do not apply to this problem. that the learned prior applied on the training images will no
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result in the same training deformations obtained preWous and thus will effectively define a different image coordaat
While there has been efforts in obtaining ground trutiystem.
human-annotated deformation fields [37], the images censid The resulting deformatiod™* is used to warp the input
ered typically have well-defined correspondences, ratiem t image or is itself used for further tasks, such as image
for example, the brain images of two different subjects. Asegmentation or voxel-based morphometry. We assume that th
suggested in the previously presented examples (Fig.8), task performance can be measured by a smooth cost function
concept of “ground truth deformations” may not always bgor cross-validation error metric), so that a smaller value
well-defined, since the optimal registration may be a fuorcti of ¢(T'*(w)) corresponds to better task performangeis
of the application at hand. In contrast, image segmentatitypically a function of additional input data associatedhwi
is generally better defined in the sense that ground trushsubject (e.g., manual segmentation labels if the task-s au
segmentation is usually known. Our problem therefore diffetomatic segmentation), although we suppress this depegpden
from recent work on learning segmentation cost functio$,[4 in the notation for conciseness. This auxiliary data is only
[70], [83]. In this paper, we avoid the need for ground trugh d available in the training set; cannot be evaluated for the new
formations by focusing on the application of registratlmased image.
segmentation, where ground truth segmentations are betteGiven a set ofN training subjects, leT"’ (w) denote the
defined and available. However, our framework is general agdiution of Eq. (2.2) for training subjeet for a fixed set of
can be applied whenever a post-registration applicatiorbea parametersw and g, (I'} (w)) denote the task performance
well quantified by a smooth application-specific perfornendor training subjectn using the deformation(w) and
cost function. other information available for the-th training subject. A
This paper is organized as follows. In the next sectiodifferent set of parameters would lead to different task
we introduce the task-optimal registration framework. Wgerformanceg,, (I'; (w)). We seek the parameters* that
specialize the framework to align hidden labels in Section generalize well to a new subject: registration of a new sttbje
We present localization experiments in Section 4 and dsscugith w* yields the transformatiofi* (w*) with a small task-
outstanding issues in Section 5. This paper extends a presfiecific cosy(I'* (w*)). One approach to solve this functional
ously presented conference article [80] and contains lddtaiapproximation problem [17] is regularized risk minimizati
derivations, discussions and experiments that were ainitte et Regw) denote regularization om and define
the conference version. To summarize, N
1) We present a framework for learning the parameters of Sy * ) )
registration cost functions with respect to specific ap- Glw) ;gn(rn(w» + Regw) 2:3)
plications. We present an algorithm sufficiently efficien

S Ig?egularization risk minimization seeks
for optimizing thousands of parameters.

2) We specialize the framework for the alignment of hidden w* = argmin G(w). (2.4)
labels, which are not necessarily well-predicted by local v
image features. The optimization is difficult because while we assumeto

3) We apply the framework to localizing cytoarchitecturdpe smooth, the input tg,,(-) is itself the local minimum of
and functional regions using only the cortical foldingtnother nonlinear cost functioh Furthermore, evaluating the
pattern and demonstrate improvements over existifgst functionG for only one particular set of parameters
localization methods [18]. requires performingV different registrations!

2. TASK-OPTIMAL FRAMEWORK A. Characterizing the Space of Local Minima
In this section, we present the task-optimal registration

framework for learning the parameters of a registratiort co In this section, we provide theoretical characterizatiohs

function. Given an imagd, let f(w,T) denote a smooth e optimization problem in Eq.(2.4). [F*(w) is defined

registration cost function, with parametets and a spatial Slt”Ctlly totbe a gl?ﬁ?l reglstrgft}loq opt|mum,”th§ﬁ(w) 1S
transformatiorT’. For example, clearly not a smooth function ab, since a small change in

can result in a big change in the global registration optimum
flw={\T},T)=ADissimT,IoT')+ RedI'), (2.1) This definition is also impractical, since the global optimaf
a nonlinear optimization problem cannot be generally found

mzeirrig els ditggrr:ﬁzr;ﬁlatrﬁegi?:/’\arzz :22 rtéai(?:r?ze;%meen tpractice. Instead, we relax the definitionltf(w) to be a local
ge ¢ y 9 minimum of the registration cost function for fixed values of
transformation”, I o I denotes the deformed and resampled

. T fis theref I functi fthe i hich - Here, we derive conditions in which*(w) is locally a
imagel. f s there ore aiso a function of the Imagewhic smooth function ofw, so we can employ gradient descent to
we suppress for conciseness. The optimal transformdtion

minimizes the cost function for a given set of parameters optimize Eq.(2.4).
9 P Let T (wo) denote a local minimum of the registration cost

I'*(w) = argmin f(w,T). (2.2) function for a fixedw = wy. Suppose we perturly by an

r infinitestimally small jw, so thatI'™*(wg) is no longer the

We emphasize thdt* is a function ofw since a different set registration local minimum forw = wy + dw. We consider
of parametersy will result in a different solution to Eq. (2.2) two representations of this change in local minimum.
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Additive deformation models arise when the space of defaufficient conditions for a local minimum are satisfied (zero
mations is a vector space, such as the space of displacenggatiient and positive definite Hessial,(wq )+ 6T* (wp, dw)
fields or positions of B-spline control points. At each itevsa is indeed a new local minimum close 5 (wy). O
of the registration algorithm, deformation updates adeled
to the current deformation estimates. The additive model @bserve that the conditions in Proposition 1 are stronger
general and applies to many non-convex, smooth optimizatithan those of typical nonlinear optimization problems. In
problems outside of registration. Most registration ailfpons particular, we do not just require the cost functiofsand
can in fact be modeled with the additive framework. g to be smooth, but also that the Hessi@af(wo,T") be

In some registration algorithms, including that used irs thpositive definite at the local minimum. Atuo, I'*(wo)), by
paper, it is more natural to represent deformation changdgfinition, the Hessiad? f(wo,T') is positive semi-definite,
through composition rather than additions [7], [61], [75]s0 the positive definite condition in Proposition 1 should no
For example, in the diffeomorphic variants of the demors® too restrictive. Unfortunately, degeneracies may digse
algorithm [75], [81], [82], the diffeomorphic transfornmian local minima with a singular Hessian. For example,Ilebe
I' is represented as a dense displacement field. At edbl 1 x 2 vector [a b] and f(I',w) = (ab — w)?. Then for
iteration, the transformation update is restricted to bena oany value ofw, there is an infinite number of local minima
parameter subgroup of diffeomorphism parameterized byl'4(w) corresponding ta:b = w. Furthermore, the Hessian
stationary velocity field. The diffeomorphic transfornuati at any local minimum is singular. In this case, even though
update is thencomposedwith, rather than added to, thef is infinitely differentiable, there is an infinite number of
current estimate of the transformation, thus ensuring tiat local minima near the current local minimuiii(wy), i.e.,

resulting transformation is diffeomorphic. dT* (wy, dw) is not a well-defined function and the gradient
is not defined. Consequently, the parametersof local
(1) ADDITION MODEL. Let T™(wo + dw) = registration minima whose Hessians are singular are also

I'*(wp) + 6T*(wo,dw) denote the new locally optimallocal minima of the task-optimal optimization Eqg. (2.4).€Th
deformation for the updated set of parameters + dw. proof of Proposition 1 follows the ideas of the Continuation
The following proposition characterizes the existence amdethods literature [2]. We include the proof here to motvat
uniqueness off[™* (wg, dw) as dw is varied. In particular, the more complex composition of deformations model.

we show that under some mild condition8l™ (wg, dw)

is a well-defined smooth function in the neighborhood d2) COMPOSITION MODEL. Let I'*(wg) be the
(wo,T*(wo)). In the remainder, we us&,, 02, andd? , to registration local minimum atw, and JT'(v) denote an
denote the corresponding partial derivatives. ' update transformation parameterized by so that éT°(0)
corresponds to the identity transform. For example,
could be a stationary [75], [81], [82], non-stationary [8]
velocity field parameterization of diffeomorphism, pasits
of spline control points [52] or simply displacement
fields [59]. In the composition model™(wy) is a local
minimum if and only if there exists am > 0, such that
Proof. We define the vector-valued functioh(w,I') £ f(wo,I"(wo)) < f(wo,I™(wo) o 6T'(v)) for all values of
dr f(w,T). SinceI™*(wy) is a local minimum off(w,T), |l <e.

Proposition 1. If the Hessiah 02 f (wo, T') is positive definite
at I' = T™(wy), then there exists am > 0, such that for
all dw, ||dw|| < €, a unique continuous functiof™ (wo, dw)
exists withéI'™* (wg,0) = 0. Furthermore,éT"™* has the same
order of smoothness a3 f.

we have LetT™* (wp)odI'(v*(wp, dw)) denote the new locally optimal
deformation for the new parameters + dw. In general, there
h(w,T) wo. I (wo) Orf(w,T) wo T (wo) 0. (2.9) might not exist a single update transformatidi{v* (wo, dw))

that leads to a new local minimum under a perturbation of

* H A2 — . . .
At (wo, I'" (wp)), the Hessian matriiy. f (wo, I') = drh(w,T')  the parameters, so that there is no correponding version of
is positive definite by the assumption of the proposition 8nd proposition 1 for the general composition model. However,

therefore invertible. By the Implicit Function Theorem [51 i, the special case of the composition of diffeomorphisms

there exists anc > 0, such that_for* allow, [|bw] < € model [75], [81], [82] employed in this paper, the following

there is a unique CO”“E‘UOUS functioir (“’0’51")' such that nronosition characterizes the existence and uniqueness of

h(wo + dw, T*(wg) + 6T* (wp, dw)) = 0 and 6T* (wp, 0) = 0. v* (wo, Sw) asdw is varied.

Furthermore T (wp, dw) has the same order of smoothness

ash. Proposition 2. If the Hessiand? f(wo, ['*(wp) o 6T (v)) is
Because the Hessian ¢fis smooth and the eigenvalues of0sitive definite ab = 0, then there exists an > 0, such

a matrix depend continuously on the matrix [72], there existhat for all dw, [|dw| < ¢ a unique continuous function

a small neighborhood arounfiw,, I'*(we)) in which the v*(wo, dw) exists, such that*(wp, dw) is the new local mini-

eigenvalues oB2 f(w,T) are all greater than 0. Since botHmum for parametersy +dw andv*(wo, 0) = 0. Furthermore,
v*(wo, dw) has the same order of smoothnessfas

IHere, we assume that the transformatioris finite dimensional, such as Proof. The pI’OOf is a more complicated version of

the parameters of affine transformations, positions ofnsptiontrol points - . .
or dense displacement fields defined on the voxels or vertitése image Proposition 1 and so we leave the details to Appendix AL

domain.
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Just like in the case of the additive deformation modelule, we obtain
the parametersy of local registration minima that do not

N
satisfy the conditions of Proposition 2 are also local maimg, @ = 9, Z gn (T (w)) + Regw) (2.10)
of the task-optimal optimization Eq. (2.4). In the next smtt el

we derive exact and approximate gradientgGof N
= [0r:gn] [0uT}] + OuRegw) (2.11)
n=1
N
= =3 [Or;00] Borfalw D] DuRegu).
B. Optimizing Registration Parameteus o ' (2.12)

We note the subscript on f indicates the dependency of the
We now discuss the optimization of the regularized taskgistration cost function on the-th training image.
performances.

(2) COMPOSITION MODEL. In the previous section, we
(1) ADDITION MODEL. In the previous section, we have shown that afwo, I'*(wp)), assuming the conditions of
showed that afwo, ' (wo)) with a positive definite Hessian, Proposition 2 are truey*(wo, dw) is a smooth well-defined
0T (wp, d0w) is a smooth well-defined function such thafunction such thal* (wg) o 6T (v* (wo, dw)) is the new local
™ (wo) + 6T (wo, dw) is the new local minimum aiyy +dw. minimum. Therefore, we can compute the derivatives of
Therefore, we can compute the derivatives Itf(w) with v* with respect tow. As before, by performing a Taylor
respect tow at wy, allowing us to traverse a curve of localexpansion, we obtain
optima, finding values ofw that improve the task-specific . ) . 1
cost function for the training images. We first perform a Owv™ = = (05, v, f(w, T 0 0T (v1) 0 6T (v2))) X
Taylor expansion obr f (w,T") at (wg, I'*(wp)):

X 03 4y f(w,T* 0 0T (v3)) (2.13)
w=wq,v1=0,v2=0
O f(w,T) = (2.6)
wo~+dw,T* (we ) +6T ~ _agu,vf(wv ' o 5F(U)) (214)
w=wg,v=0

|02/ (w,T)OT + 82 1 f (1, T)dw + O(3w?, oT%)

)
’LU[),F*(’LU())

Appendix B provides the detailed derivations. Differetitig
the cost function in Eq.(2.4), using the chain rule, we get

where we dropped the terrﬁpf(w,l“)‘ (on) = 0. For N
wo,[™* (wo
OT = 0T (wop, dw), the left-hand side is equal to 0 and wed,,G = Z [Op gn (T 0 6T (v*))] [Ov™] + Oy Reqw)
can write o v =0
(2.15)
0T (wo, dw) = (2.7) N
[ (92 (w,1)) ™" 02 1 (w,T)ow + O(ouw?, 6T2) T Z_:l B gn(T' 0 AL (7))
wo,F*(wo) n=
Therefore by taking the limi§w — 0, we get x 0z, o fn(w, T} 0 6T (v)) + 0wRegqw).
w=wp,v=v*=0
BT (10) £ gy (o, 6w) (2.16)
Sw=0 Once again, the subscripton f indicates the dependency of
_ (8%f(w F))_l 82 1 f(w,T) the registration cost function on theth training image.
' wo,F*(wo

)
(2.8) Algorithm 1 summarizes the method for learning the

Eq. (2.8) tells us the direction of change of the local mirtimu.taSk'Opt'mal registration parameters. Each line search

at (wo, '™ (wp)). In practice, the matrix inversion in Eq. (2.8)!"“’?"/es eva_Iuatmg t_hte qosttfr:mc;tm@_multlpl!g t|rtnes,_whl|ich
is computationally prohibitive for high-dimensional warp. In turn requires registering the training SUbjects, resgin

Here, we consider a simplification of Eq. (2.8) by setting th_%_c_or_"P“ta“O”a”y Intensive process. However, since we are
Hessian to be the identity: initializing from a local optimum, for a small change in,

each registration converges quickly.
Ol ~ = 1 f(w,T) (2.9)  Ssince nonlinear registration is dependent on initialzati
. . L . the current estimategu, I'* (w)), which were initialized from
Since —or [ is the direction of gradient descent of the cos{o\jous estimates, might not be achievable when initiiz
function Eq. (2‘2),’ we can interpret Eq. (2.9) as approxingat i,q registration with the identity transform. The correspiog
the new local minimum to be, in the same Q|rect|on as M rameters might thereforenot generalize well to a new sub-
changein the direction of gradient descent asis perturbed. ject, which are typically initialized with the identity tnaform.

Differentiating the cost function in Eq. (2.4), using theagh To put this more concretely, suppose our current estimédtes o

wo,[* (wo)
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Data: A set of training imageg 7, }
Result Parametersy that minimize the regularized task performargédsee Eq. (2.4))
Initialize w?.
repeat
Step 1.Given current values oy, estimatel’;,(w) = argming_ f,,(w,I',), i.e., perform registration of each training
subjectn.
Step 2.Given current estimate@u, {T',,(w)}), compute the gradierf,,,G using either
1) Eg.(2.12) viad,,I'* in Eg. (2.9) for the addition model or
2) Eq.(2.16) viad,v* in Eq.(2.14) for the composition model.
Step 3.Perform line search in the direction oppositettpG [47].
until convergence

Algorithm 1. Task-Optimal Registration

w and the registration local minima afe = 5,T*(5) = 2). when choosing the training subject or registration algonit
Next, we perform the gradient decent step and update Rer hidden labels that are poorly predicted by local image in
accordingly. For argument’s sake, let our new estimates oftensity (e.g., BA44 discussed in Section 1-A), blind aligemn
and the registration local minima lfe = 5.1,T*(5.1) = 1.9).  of image intensities lead to poor localization.

Note that this particular value @f(5.1) = 1.9 is achieved by  In contrast, we pick one training subject as the initial
initializing the registration witl® = 2. Had we initialized the template and use the remaining training images and labels
registration with the identity transform (such as for a nelv-s (Fig. 3(b)) to learn a registration cost function that isioyt
ject), thenl*(5.1) might instead be equal 1, with possibly for aligning the labels of the training and template sulsject
poorer application performance théw = 5,I'*(5) = 2). To - perfect alignment of the labels lead to perfect predictibn
avoid this form of overfitting, after every few iterationsew the labels in the training subjects by the template labefierA
re-register the training images by initializing with thesidity pairwise registration between the template and test subjec
transform, and verify that the value @f is better than the using the optimal registration cost function, the groundhr
current best value ofr computed with initialization from the label of the template subject is used to predict that of tlse te
identity transform. subject.

The astute reader will observe that the preceding discusWe limit ourselves to spherical images (i.e., images defined
sion on “Addition Model” makes no assumptions specifion a unit sphere), although it should be clear that the discus
to the task-optimal registration problem. The framework casion readily extends to volumetric images. Our motivation f
therefore also be applied to learn the cost functions inrothésing spherical images comes from the representation of the
applications that are formulated as nonlinear optimizatidhuman cerebral cortex as a closed 2D mesh in 3D. There has
problems solved by gradient descent. been much effort focused on registering cortical surfaces i

3D [14], [15], [24], [30], [65]. Since cortical areas — both

3. LEARNING WSSDEORHIDDEN LABEL ALIGNMENT structure and function — are arranged in a mosaic across

. _ ) ) ) the cortical surface, an alternative approach is to warp the

We now |n_s'Fant|a_te the task-gp'qmal registration fram?jnderlying spherical coordinate system [19], [48], [6@9,
work for Iocallglng hidden Ial?els in images. We demon.stratg(s]’ [73], [79], [81]. Warping the spherical coordinatesgsm
schemes for either (1) learning the weights of the weighteliapjishes correspondences across the surfitiesut actu-
Sum of Squared Differences (WSSD) family of registrationy jeforming the surfaces in 3D. We assume that the meshes

cost _fu_nctions or (_2) estimating an optimal t_emplate image_fhave already been spherically parameterized and repessent
localizing these hidden labels. We emphasize that the aptin,¢ spherical images: a geometric attribute is associatdd wi

template isnot necessarily the average of the training imagesgch mesh vertex, describing local cortical geometry.
since the goal is not to align image intensities across stdje

but to localize the hidden labels.

Suppose we have a set of training imaggk,} with A. Instantiating Registration Cost Functigh
some underlying ground truth structure manually labeled g register a given imagé, to the template imagd’, we
obtained from another imaging modality (e.g., Brodmanmsregefine the following cost function:
from histology mapped onto cortical surface representajio
We define our task as localizing the hidden structure in & (w = {{\:}, T}, T) = > A7 [T(2:) — Ln (T (2:))] +
test image. In the traditional pairwise registration apgto i
(Fig. 3(a)), a single training subject is chosen as the tatapl 1 1Ty (x;) — Tn(zj)|| — dij 2
After pairwise registration between the template and test Z A Z ( d ) ’
images, the ground truth label of the template subject igl use !
to predict that of the test subject. The goal of predicting thwhere transformatiod’,, maps a pointz; on the spheres?
hidden structure in the test subject is typically not coesed to another pointl’, (z;) € S2. The first term corresponds

JEN; Y
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Test Image  Unknown Label Test Image  Unknown Label

Template & v Template
Image and ' Image and
Ground Truth Ground Truth

Label Ground Truth  Training Label

Labels Images

(a) Pairwise registration without training using grounathrlabels (b) Task-Optimal registration framework

Fig. 3. lllustration of the differences between our apphoaad the pairwise registration approach. In our approaehuse training images and labels to
learn an optimal cost function that is optimal for alignirtge tlabels of the training and template subjects. This casttion is then used to register and
predict the hidden label in a new subject.

to the wSSD image similiarity. The second term is a pewith 5 min of computation for Spherical Demons on a Xeon
centage metric distortion regularization on the transtion 2.8GHz single processor machine.

', where NV is a predefined neighborhood around vertex |, general, a smooth stationary velocity fieldparameter-

andd,; is the original distance between the neighbéss= ;o5 3 diffeomorphisn® via a stationary ODE#,®(z, t) =

[[; — ;]| [79]. The weights{);}'s are generalizations of the ;¢ +)) with an initial condition®(z, 0) = z. The solution

tradeoff parametek, allowing for a spatially-varying tradeoff 5;, _ 1 is denoted a®(z,1) = ®(x) = exp(¥)(z), where we

between the image dissimilarity term and regularization: |36 dropped the time index. A solution can be computed effi-

higher weightA? corresponds to placing more emphasis O8ently using scaling and squaring [5]. This particulariceaf

matching the template image at spatial locatioelative 10 o asenting deformations provides a computationallgiefit

the regularization. The parameterization of the weightsias method of achieving invertible transformations, which is a

ensures non-negative weights. desirable property in many medical imaging applicatioms. |
In this work, we consider either learning the weights our case, the velocity field is a tangent vector field on the

or the templatel” for localizing Brodmann Area (BA) labels sphereS? and not an arbitrary 3D vector field.

or functional labels by aligning cortical folding pattei®ince

the weights of the wSSD correspond to the precision of the

Gaussian model, by learning the weights of wSSD, we are

learning the precision of the Gaussian model and hence the

uncertainty of the sulcal geometry. Optimizing leads to g Optimizing Registration Cost Functigh

placing non-uniform importance on matching different mait

folds with the aim of aligning the underlying cytoarchitec- _ _ _ )

tonics or function. For example, suppose there is a sulcus'© '€gister subject: to ;c)he template imagé’ for a fixed

with functional regions that appear on either side of trget Of parametersy, let I, be the current estimate df;,.

sulcus depending on the subject. The algorithm may decitie Seek an update transformatiep(v) parameterized by a

to place low weight on the “poorly predictive” sulcus. On th&tationary velocity field:

other hand, optimizindg" corresponds to learning a cortical ¢ (. T o exp(#)) (3.1)
folding template that is optimal for localizing the undenly ) 1
cytoarchitectonics or functional labels of the trainingjgats. = Y A7 [T'(x:) — In(TY o exp(¥)(z:))]” + VI

In the case of the previously mentioned “unpredictive ssilcu
the algorithm might learn that the optimal cortical folding T2 o exp(¥)(z;) — I o exp(D)(x;)| — dij ?
template should not contain this sulcus. Z di; :

We choose to represent the transformatignas a com- JeN:
position of diffeomorphic warps®;} parameterized by a Let v; be the velocity vector tangent to vertex, andv =
stationary velocity field, so thaf,, = ®; 0---0 &, [75], {¥;} be the entire velocity field. We adopt the techniques in
[81], [82]. We note that our choice of regularization is diint the Spherical Demons algorithm [81] to differentiate Eql}3
from the implicit hierarchical regularization used in Spbal with respect to?, evaluated ati = 0. Using the fact that
Demons [81] since the Demons regularization is not compalie differential ofexp(v) at ¥ = 0 is the identity [44], i.e.,
ible with our derivations from the previous section. InsteaD exp(0)] ¢ = ¥, we conclude that a change in velocityat
of the efficient 2-Step Spherical Demons algorithm, we willertexx; does not affecexp(v)(x,) for n # i up to the first
use steepest descent. The resulting registration algorith order derivatives. Defining’ I,, (T'% (z;)) to be thel x 3 spatial
still relatively fast, requiring about 15 min for registegifull-  gradient of the warped imagg, (I'%(-)) at z; and VI'?(z;)
resolution meshes with more than 100k vertices, comparedbe the3 x 3 Jacobian matrix of' % at z;, we get thel x 3
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derivative specified in Eq. (2.16). We first compute the derivative of the
5 o0 . task-specific cost function with respect to the optimal upda

. fn(w, Ty 0 exp(7)) =0 o*. Once again, we represefit as the collectioq 7} }, where

= _2)\1.2 [T (z5) — I, ( g(xim [an (rg (xi))} (3.2) U is avelocity vector at vertex;. DefiningV L, (T (x;))" to
i ] 0 (2:) — TO (. 0 be thel x 3 spatial gradient of the warped distance transform

+2 Z <_ + I ;(xl) — U ())l| = ds of then-th subjectL,, (T} ()) atz;, we get thel x 3 derivative

o AW I di; 109 (i) — T, ()|
T 817% n F; O ex 17*
x [19(2;) = T%(2,)] " VIO (). 9nl PN,
We can perform gradient descent of the registration cost = —2 Lz (#:i) = Ln (T7, (2:))] [VLn (7, (22))] . (3.6)

function f,, using Eq. (3.2) to obtaif’}, which can be used to

evaluate the regularized task performagtto be described in Weight Update. To update the weight$);} of the wSSD,
the next section. We also note that Eq. (3.2) instantiétes  \ve compute the derivative of the registration local minimum
within the m|xeq der|va}t|vgs term in the task-optimal geadi updater* with respect to the weights. Using the approximation
Eq. (2.16) for this application. in Eqg.(2.14), we obtain th8 x 1 derivative of the velocity

o ) update ¥ with respect to the weights of the wSSD cost
C. Instantiating Regularized Task Performan@e function:

We represent the hidden labels in the training subjects (2.14)
as signed distance transforms on the spHeig} [36]. We O U] = —8§k,mfn({Aj},Fiz o exp(7))
consider a pairwise approach, where we assume that the
template imagel’ has a corresponding labels with distance = —05,0, fn({N\;}, T, oexp(ﬁ))’ (3.8)
transform Ly and set the task-specific cost function to be ’

(3.7)

9a(Th) = D [Lr (@) = L (T (@) (3.3) As),7=0
i 3.9

A low value of g,, indicates good alignment of the hidden =4\ [T (1) — In(T}, (2x))]) VI, (T, (z1)) 6(K, 7).
label maps between the template and subjgcsuggesting (3.10)

good prediction of the hidden label. ere 3(k, 1)

Wi ) d with : h ) lg = 1if k = i and is zero otherwise. Since
& experimented with a prior that encourages spatia g.(3.10) is in the same direction as the first term of

constant weights and template, but did not find that trfﬁe gradient descent direction of registration (negatife o

regularization lead to _improvements in_ the localizatiosutts. Eq. (3.2)), increasing? will improve the intensity matching
In particular, we considered the following smoothness laagu of vertex z; of the template. Substituting Eq.(3.10) and

ization on the registration parameters depending on whet@q]_(&fs) into Eq.(2.16) provides the gradient for updating
we are optimizing for the weights; or the templatel™: the weights of the wSSD cost function

Reg {3 }) = - 77 3 (42 =A% 34

= Template Update. To update the template imagdq’
J i

1 used for registration, we compute tBex 1 derivative of the
RedqT) = E al E (T(z;) — T(x;))>. (3.5) velocity updater with respect to the templatg:
i Vil JEN;

L (219) * —
A possible reason for this lack of improvement is that the Or) Wi X =07 (z,).5In(T, T, 0 exp(v)) (1Y
re-registration after every few line searches already shelp =0
to regularize against bad parameter values. Another gdessib = —05,07(xy) fu (T, T} 0 exp(ﬁ))‘:ﬁ7 o (3.12)
reason is that the above regularization assumes a smooth ) . N
variation in the relationship between structure and fuamti = =205 Aj, [T (k) = In(L7, 0 exp(7)(w1))] ‘Tﬁ:o
which may not be true in reality. Unfortunately, the rela- ’ (3.13)
tionship between macro-anatomical structure and fundson = 202 [T(w) — Ln (T% (21))] Vi (T% () (K, 7).
poorly understood, making it difficult to design a more usefu (3.14)

regularization that could potentially improve the resulis

the experiments that follow, we will discard the regulatiza Since Eg.(3.14) is in the same direction as the first term
term of the registration parameters (i.e., set Reg= 0). of the gradient descent direction of registration (negat¥
We also note that Reég) is typically set to0 in machine Ed.(3.2)), whenl'(z;) is larger than,, (I}, (1)), increasing
learning approaches of model selection by optimization &i€ value ofl'(xx) will warp vertexz, of the template further

cross-validation error [33], [43], [58]. along the direction of increasing intensity in the subjetage.
Conversely, ifT'(z) is smaller thanZ,, (T (z)), decreasing
D. Optimizing Task Performana@ the value ofT’(x) will warp vertexz;, of the template further

along the direction of decreasing intensity in the subject

To optimize the task performand@ over the set of pa- rilrlnage. Substituting Eg.(3.14) and Eg.(3.6) into Eg.(2.16)

rametersw, we have to instantiate the task-optimal gradie
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provides the gradient for updating the template used faith only Talairach or nonlinear spatial normalization het
registration. Note that the template subject’s hidden I&abeEuclidean 3D space [18]. Even though each subject has multi-
are considered fixed in template space and are not modifild BAs, we focus on each structure independently. Thisvallo

during training.

for an easier interpretation of the estimated parametact) s

as the optimal template example we provide in Section 4-A3.
We can in principle optimize both the weight$\;} A clear future direction is to learn a registration cost fiime
and the templatel’. However, in practice, we find thatthat is jointly optimal for localizing multiple cytoarclettural
this does not lead to better localization, possibly becausefunctional areas.

of too many degrees of freedom, suggesting the need toye compare the following algorithms:

design better regularization of the parameters. A second

reason might come from the fact that we are only using ana) Task-Optimal.

approximate gradient rather than the true gradient forigrad
descent. Previous work [82] has shown that while using
an approximate gradient can lead to reasonable solutions,
using the exact gradient can lead to substantially bettal lo
minima. Computing the exact gradient is a challenge in
our framework. We leave exploration of efficient means of
computing better approximations of the gradient to future
work.

4, EXPERIMENTS

We now present experiments on localizing Brodmann Areas
(BAs) and fMRI-defined MT+ (V5) using macro-anatomical
cortical folding in two different data sets. For both ex-
periments, we compare the framework with using uniform
weights [31] and FreeSurfer [19].

A. Brodmann Area (BA) Localization

We consider the problem of localizing Brodmann Areas
(BAs) in the surface representations of the cortex using onl
cortical folding patterns. In this study, ten human brains
were analyzed histologically postmortem using the tealedq
described in [57], [84]. The histological sections weregadid
to postmortem MR with nonlinear warps to build a 3D his-
tological volume. These volumes were segmented to separate
white matter from other tissue classes, and the segmemtatio
was used to generate topologically correct and geomdirical
accurate surface representations of the cerebral corieg us (b)
a freely available suite of tools [21]. Six manually labeled
BA maps (V1, V2, BA2, BA44, BA45, MT) were sampled
onto the surface representations of each hemisphere, and
errors in this sampling were manually corrected (e.g., when
a label was erroneously assigned to both banks of a sulcus).
A morphological close was then performed on each label to
remove small holes. Finally, the left and right hemispheres
of each subject were mapped onto a spherical coordinate
system [19]. The BAs on the resulting cortical represeotesti
for two subjects are shown in Fig.2(b). We do not consider
BA4a, BA4p and BAG6 in this paper because they were not
histologically mapped by the experts in two of the ten suisjec (c)
in this particular data set (even though they exist in all ham
brains).

As illustrated in Fig.2(c) and discussed in multiple stud-
ies [3], [4], [18], we note that V1, V2 and BA2 are well-
predicted by local cortical geometry, while BA44, BA45 and
MT are not. For all the BAs however, a spherical morph of cor-
tical folding was shown to improve their localization comga

We perform leave-two-out cross-
validation to predict BA location. For each test subject,
we use one of the remaining 9 subjects as the template
subject and the remaining 8 subjects for training. When
learning the weights of the wSSD, the weigHts; }

are globally initialized tol and the template imag€

is fixed to the geometry of the template subject. When
learning the cortical folding templat#’, the template
image is initialized to that of the template subject and
the weights{);} are globally set td.

Once the weights or template are learned, we use them
to register the test subject and predict the BA of the test
subject by transferring the BA label from the template to
the subject. We compute the symmetric mean Hausdorff
distance between the boundary of the true BA and the
predicted BA on the cortical surface of the test subject —
smaller Hausdorff distance corresponds to better local-
ization [13]. The symmetric mean Hausdorff distance
between two curves is defined as follows. For each
boundary point of the first curve, the shortest distance
to the second curve is computed and averaged. We
repeat by computing and averaging the shortest distance
from each point of the second curve to the first curve.
The symmetric mean Hausdorff distance is obtained by
averaging the two values. We consider all 90 possibilities
of selecting the test subject and template, resulting in a
total of 90 trials and 90 mean Hausdorff distances for
each BA and for each hemisphere.

Uniform-Weights. We repeat the process for the
uniform-weight method that fixes the templafé to

the geometry of the template subject, and sets all the
weights{\,} to a global fixed value\ without training.

We explore 14 different values of global weight
chosen such that the deformations range from rigid to
flexible warps. For each BA and each hemisphere, we
pick the bestvalue of A leading to the lowest mean
Hausdorff distances. Because there is no cross-validation
in selecting the weights, the uniform-weight method is
using an unrealistic oracle-based version of the strategy
proposed in [79].

FreeSurfer. Finally, we use FreeSurfer [19] to register
the 10ex vivosubjects to the FreeSurfer Buckner40 at-
las, constructed from the MRI of 40 vivo subjects [21].
Once registered into thia vivo atlas space, for the same
90 pairs of subjects, we can use the BAs of emevivo
subject to predict anoth@x vivosubject. We note that
FreeSurfer also uses the wSSD cost function, but a more
sophisticated regularization that penalizes both metric



LEARNING TASK-OPTIMAL REGISTRATION COST FUNCTIONS 11

uniform-weights method have similar performance because a
better alignment of the cortical folds on a finer resolutiogsim
does not necessary improve the alignment of these areas.
Since local cortical geometry is predictive of V1, V2 and
BA2, we expect the advantages of our framework to vanish.
/ i Surprisingly, as shown in Fig. 6, task-optimal templateimga
emplate Test Image  Unknown Label B H - H H H
image achieve significant improvement in BAs alignment over the
uniform-weights method and FreeSurfer. Task-optimal Wisig
is also significantly better than the uniform-weights metho
A h e but only slightly better than FreeSurfer. Permutationstebow
that task-optimal template outperforms FreeSurfer in fhefg
Fig. 4. FreeSurfer's atlas-based registration approachinifig and test areas, while task-optimal We.lghtS IS OUtp_erformS Fre_&Sumf
subjects are registered to an atlas. The BA of a trainingestibjan then 3 Of the 6 areas after corrections for multiple comparisses (
be used to predict that of the test subject. Fig.6 for more details). This suggests that even when local
geometry is predictive of the hidden labels and anatomydas

) ) ) registration achieves reasonable localization of the I&abe
and areal distortion. For a particular tradeoff betweegyning the registration cost function can further improkie t

the similarity measure and regularization, the Buckner4Qs performance. We also note that in this case, FreeSurfer

template consists of the empirical mean and variance grforms better than the uniform-weights method on average

the 40in vivo subjects registered to template space. Weince |ocal cortical folds are predictive of these areagnalg

use the reported FreeSurfer tradeoff parameters that Weggiical folds on a higher resolution mesh yields more mci

used to produce prior state-of-the-art BA alignment [18]alignment of the cortical geometry and of the BAs.
We note that both the task-optimal and uniform-weights meth We note that the FreeSurfer Buckner40 atlas utilizes 40
ods use a pairwise registration framework, while FreeSurfi vivo subjects consisting of 21 males and 19 females of
uses an atlas-based registration framework. Under the-atla wide-range of age. Of these, 30 are healthy subjects whose
based framework, all thex vivosubjects are registered to arages range from 19 to 87. 10 of the subjects are Alzheimer’s
atlas (Fig.4). To use the BA of a training subject to predigiatients with age ranging from 71 to 86. The average age of
a test subject, we have to compose the deformations of the group is 56 (see [12] for more details). The T1-weighted
training subject to the atlas with the inverse deformatiébn gcans were acquired on a 1.5T Vision system (Siemens,
the test subject to the atlas. Despite this additional sofc Erlangen Germany), with the following protocol: two saalitt
error from composing two warps, it has been shown that wititquisitions, FOV = 224, matrix = 256 256, resolution =
carefully constructed atlases, using the atlas-basedegyra 1x1x1.25mm, TR = 9.7ms, TE = 4ms, Flip angle 19°,
leads to better registration because of the removal of t®plTI = 20ms and TD = 200ms. Two acquisitions were averaged
bias in the pairwise registration framework [6], [23], [2E1], together to increase the contrast-to-noise ratio. Thelbigical
[32], [39], [79]. data set includes five male and five female subjects, with

We run the task-optimal and uniform-weights methodsge ranging from 37 to 85 years old. The subjects had no
on a low-resolution subdivided icosahedron mesh contginiprevious history of neurologic or psychiatric diseases (4
2,562 vertices, whereas FreeSurfer results were computedfer more details). The T1-weighted scans of the subjectewer
high-resolution meshes of more than 100k vertices. In oubtained on a 1.5T system (Siemens, Erlangen Germany) with
implementation, training on 8 subjects takes on averags 4ltie following protocol: flip anglet0°, TR = 4ms, TE = 5ms
on a standard PC (AMD Opteron, 2GHz, 4GB RAM). Despitand resolution = ¥1x1.17mm. While there are demographic
the use of the low-resolution mesh, we achieve state-eithe and scanning differences between thevivo andex vivodata
localization accuracy. We also emphasize that while tnaims  sets, the performance differences between FreeSurferhand t
computationally intensive, registration of a new subjeglyo task-optimal framework cannot be solely attributed to this
requires one minute of processing time since we are workidgfference. In particular, we have shown in previous work
with low-resolution meshes. that FreeSurfer's results are worse when we usexawivo
1) Quantitative ResultsFig. 5 displays the mean and stanatlas for registeringex vivosubjects (see Table Il in [81]).

dard errors from the 90 trials of leave-two-out. On averagBurthermore, FreeSurfer’s results are comparable withaha
task-optimal template performs the best, followed by taskhe uniform-weights baseline algorithm, as well as presipu
optimal weights. Permutation tests show that task-optimaliblished results [18], where we have checked for gross
template outperforms FreeSurfer in 5 of the 6 areas, whiématomical misregistration. We emphasize that since theigo
task-optimal weights outperforms FreeSurfer in 4 of the #® optimize Brodmann area localization, the learning atpor
areas after corrections for multiple comparisons (see3-igmight take into account the idiosyncrasies of the registnat
for more details). For the Broca’'s areas (BA44 and BA43Igorithm in addition to the relationship between macro-
and MT, this is not surprising. Since local geometry poorlgnatomy and cytoarchitecture. Consequently, it is possitat
predicts these regions, by taking into account the final gahle performance differences are partly a result of our @lyor
of aligning BAs instead of blindly aligning the cortical ftd, learning a registration cost function with better local imia,
our method achieves better BA localization. FreeSurferthad thus avoiding possible misregistration of anatomy.
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Mean Hausdorff distances over an entire range of baienenergy for V1, V2 and BA2. First row corresponds to lefinfisphere. Second row

corresponds to right hemipshereindicates that task-optimal template is statisticallyngfigantly better than FreeSurfer.indicates that task-optimal weights
is statistically significantly better than FreeSurfer.tiStial threshold is set .05, FDR corrected with respect to the 24 statistical testsoperéd in this

section. FreeSurfer is not statistically better than eitifethe task-optimal methods in any of the Brodmann areas.

2) Qualitative Results:Fig. 7 illustrates representative lo-quently, in the uniform-weights method, the central sulcus
calization of the BAs for FreeSurfer and task-optimal tesigl of the test subject is incorrectly mapped to the postcentral
We note that the task-optimal boundaries (red) tend to balcus of the template, so that BA2 is misregistered. Figj. 8(
in better visual agreement with the ground truth (yellowdlso shows the BA2 of the test subject (green) overlaid on
boundaries, such as the right hemisphere BA44 and BA45the cortical geometry of the template subject after regjigtn

3) Interpreting the TemplateFig. 8 illustrates an exam- to the initial template geometry. During task-optimal tiag,
ple of learning a task-optimal template for localizing BA2our method interrupts the geometry of the postcentral sulcu
Fig. 8(a) shows the cortical geometry of a test subject tagret in the template because the uninterrupted postcentraisuic
with its BA2. In this subject, the central sulcus is more promthe template is inconsistent with localizing BA2 in the tiag
nent than the postcentral sulcus. Fig.8(b) shows the linitsubjects. The final template is shown in Fig. 8(c). We see that
cortical geometry of a template subject with its correspoogd the BA2 of the subject (green) and the task-optimal template
BA2 in black outline. In this particular subject, the postiral (black) are well-aligned, although there still exists lizztion
sulcus is more prominent than the central sulcus. Conse-
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V2 V1 MT BA45 BA44

BA2

FreeSurfer Task-Optimal FreeSurfer Task-Optimal

Fig. 7. Representative BA localization in 90 trials of ledw®-out for FreeSurfer and task-optimal template. Yelloicates ground truth boundary. Green
indicates FreeSurfer prediction. Red indicates Task#@gitprediction. The representative samples were selegtdihdiing subjects whose localization errors
are close to the mean localization errors for each BA. Furibee, for a given BA, the same subject was selected for betthods to simplify the comparison.

Template BA2

central sulcus central sulcus central sulcu

post-central sulcus post-central sulcus post-central sulcus

(a) Test Subject (b) Alignment to Initial Template (c) Aligient to Task-Optimal Template

Fig. 8. Template estimation in the task-optimal framewaripioves localization of BA2. (a) Cortical geometry of tesbject with corresponding BA2 (in
green). (b) Initial cortical geometry of template subjedthmcorresponding BA2 (in black). In (b), we also show the Béf2the test subject (in green) after
registration to the intial template. (c) Final cortical geetry of template subject after task-optimal training. Bé&{Zhe test subject (in green) after registration
to the task-optimal template demonstrates significantlyebalignment with the BA2 of the template subject.

error in the superior end of BA2. optimal template and FreeSurfer.

In the next section, we turn our attention to a functional o
Magnetic Resonance Imaging (fMRI) data set. Since tfR fMRI-MT+ Localization
task-optimal template performed better than the taskamgdti  We now consider the application of localizing fMRI-defined
weights, we will focus on the comparison between the taskinctional areas in the cortex using only cortical foldinat-p
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o1

to predict MT+ of thein vivo subjects.

Fig.9 reports the mean and standard errors of the Haus-
dorff distances for both methods on both hemispheres. Once
again, we find that the task-optimal template significantly
outperforms the FreeSurfer template & 10=° for both
hemispheres). We note that the errors in ithevivo subjects
(Fig. 9) are significantly worse than those in tie vivosub-
jects (Fig.5). This is not surprising since functionallyfided
MT+ is slightly different from cytoarchitectonically defd

3 MT. Furthermore, theex vivosurfaces tend to be noisier and
less smooth than those acquired framvivo subjects [81].

} Since our framework attempts to leverage domain specific

: - knowledge about MT from theex vivo data, one would
Left Right expect these mismatches between the data sets to be highly
Fig. 9. Mean Hausdorff distances usieg vivoMT to predict MT+ inin deterimental to our framework. Instead, FreeSurfer apgptear
vivo scans. Permutation testing shows that the differenceseeetireesurfer Suffer more than our framework.
and task-optimal template are statistically significant(10~5). 2) In vivo MT Prediction of In vivo MT+:To understand

the effects of the training set size on localization accyrae

perform cross-validation within the fMRI data set. For each
terns. Here, we focus on the so-called MT+ area localize®in ﬂandom|y selected temp|a’[e Subject, we consider 9, 19 or 29
in vivo subjects using fMRI. The MT+ area defined functiontraining subjects. The resulting task-optimal templatessd
ally is thought to include primarily the cytoarchitectoally- to register and localize MT+ in the remaining 32, 22 or 12 test
defined MT and a small part of the medial superior temporglibjects respectively. The cross-validation trials wepeated
(MST) area (hence the name MT+). The imaging paradigiino, 200 and 300 times respectively, resulting in a total of
involved subjects viewing an alternating 16 second blodks @ 200, 4,400 and 3,600 Hausdorff distances. This conssitut
moving and stationary concentric circles. The structucahs thousands of hours of computation time. For FreeSurfer, we
were processed using the FreeSurfer pipeline [21], resylerform a pairwise prediction of MT+ among thie vivo
ing in spherically parameterized cortical surfaces [11P]{ subjects after registration to the Buckner40 atlas, riesuln
The functional data were analyzed using the general linegr722 Hausdorff distances per hemisphere.
model [22] The resulting activation maps were threShOldedFig_ 10 reports the mean and standard errors of the Haus-
by drawing the activation boundary centered around thexertyorff distances for FreeSurfer and task-optimal template o
with maximal activation. The threshold was varied acrogsoth hemispheres. We see that the FreeSurfer alignmemserro
subjects in order to maintain a relatively fixed ROl aregre now commensurate with tles vivoresults (Fig.5). How-
of about 120mm(+5%) as suggested in [68]. The subject@ver, the task-optimal template still outperforms Fre&Sur
consist of 10 females and 32 males, with age ranging frop <~ 10-5 for all cases). We also note that the accuracy
21 to 58 years old. 23 of the 42 subjects are clinicallyf MT+ localization improves with the size of the training
diagnosed with schizophrenia, while the other 19 subje®s &et. The resulting localization error with a training set26f
healthy controls. Imaging took place on a 3 Tesla MR scanngipjects is less thafmm for both hemispheres. For all training

(Siemens Trio) with echoplanar (EP) imaging capabilitypSu set sizes, the localization errors are also better thaexhévo
jects underwent two conventional high-resolution 3D dtrtel VT experiment (Fig. 5).

scans, constituting a spoiled GRASS (SPGR) sequence (128
sagittal slices, 1.33mm thickness, TR = 2530ms, TE = 3.39ms,
flip angle =7°, voxel size= 1.3« 1 x 1.3mm). Each functional
run lasted 224 seconds during which T2*-weighted echoplana The experiments in the previous section demonstrate the fea
(EP) images were acquired (333 mm thick slices, 3x 3 x  sibility of learning registration cost functions with theands
3mm voxel size) using a gradient echo (GR) sequence (TRof degrees of freedom from training data. We find that the
2000ms; TE = 30ms; flip angle $0°). To maximize training learned registration cost functions generalize well toeens
data, no distinction is made between the healthy contrals ag@st subjects of the same (Sections 4-A and 4-B2), as well
schizophrenia patients. as different imaging modality (Section 4-B1). The almost
1) Ex vivo MT Prediction of In vivo MT+:n this experi- linear improvement with increasing training subjects i th
ment, we use each of the £ vivosubjects as a template andMRI-defined MT+ experiment (Fig. 10) suggests that further
the remaining 9 subjects for training a task-optimal terglaimprovements can be achieved (in particular in the histokdg
for localizing MT. We then register each task-optimal teatpl data set) with a larger training set. Unfortunately, histidtal
to each of the 42 vivo subjects and use the template subjectdata over a whole human hemisphere is difficult to obtain,
MT to predict that of the test subjects’ MT+. The results arehile fMRI localization experiments tend to focus on single
420 Hausdorff distances for each hemisphere. For FreagSurfenctional areas. Therefore, a future direction of rede&do
we align the 42n vivo subjects to the Buckner40 atlas. Onceombine histological and functional information obtairiexn
registered in this space, we can use MT of éixerivosubjects different subjects and imaging modalities during training

FreeSurfer
¢ Task-Optimal Template

N
o

Prediction Error (mm)
|_\
)]

=
o

5. DISCUSSION ANDFUTURE WORK
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Fig. 10. Plot of mean hausdorff errors for MT+ from crossidaion of the fMRI data set using either FreeSurfeiirowivo trained task-optimal template.
For the task-optimal framework, we tried different numbetraining subjects. Test errors decrease as we go from 9 to 29 training subjects. Once again,
permutation testing shows that the differences betweeaStnder and task-optimal template are statistically $icamt (p < 10~5).

Since our measure of localization accuracy uses the meandifies the task-specific cost functignto minimize the
Hausdorff distance, ideally we should incorporate it into o variance of the distance transforms across training stgjec
task-specific objective function instead of the SSD on thadter registration. In this case, both the template gegmetr
distance transform representing the BA. Unfortunatelg ttand Brodmann (functional) area are estimated from all the
resulting derivative is difficult to compute. Furthermotke training subjects and dynamically updated at each itevaiio
gradient will be zero everywhere except at the BA boundarighe algorithm. The average geometry of the training subject
causing the optimization to proceed slowly. On the oth@rovided a reasonable template initialization. Howevern;, o
hand, it is unclear how aligning the distance transform esluinitial experiments in thex vivodata set do not suggest an im-
far from the boundary helps to align the boundary. Singgovement in task performance over the pairwise formutatio
distance transform values far away from the boundary arethis paper.
larger, they can dominate the task-specific objective fangt. While this paper focuses mostly on localization of hidden
Consequently, we utilize the distance transform over thigeen labels, different instantiations of the task-specific doattion
surface to compute the gradient, but only consider themlista can lead to other applications. For example, in group aiglys
transform within the boundary of the template BA wheithe task-specific cost function could maximize differences
evaluating the task performance criterign between diseased and control groups, while minimizingintr

The idea of using multiple atlases for segmentation hgsoup differences, similar to a recent idea proposed for dis
gained recent popularity [29], [49], [50], [53], [55], [76] criminative Procrustes alignment [38].

While we have focused on building a single optimal tem-

plate, our method can complement the multi-atlas approach. 6. CONCLUSION

For example, one could simply fuse the results of multi- In this paper, we present a framework for optimizing the
ple individually-optimal templates for image segmentati& parameters of any smooth family of registration cost func-
more ambitious task would be to optimize for multiple joyatl tions, such as the image dissimilarity-regularization éeif,
optimal templates for segmentation. with respect to a specific task. The only requirement is that

In this work, we select one of the training subjects as tie task performance can be evaluated by a smooth cost
template subject and use the remaining subjects for tinidunction on an available training data set. We demonstrate
The task-specific cost function evaluates the localization of state-of-the-art localization of Brodmann areas and fMRI-
the hidden labels via the template subject. During trainirgfined functional regions by optimizing the weights of the
(either for learning the weights or template in the regtiatra  WSSD image-similarity measure and estimating an optimal
cost function), the Brodmann areas of the template subject gortical folding template. We believe this work presents an
held constant. Because the fixed Brodmann areas are spedifiportant step towards the automatic selection of paramete
to the template subject, the geometry of the template subjét image registration. The generality of the framework also
should in fact be the best and most natural initializatian. $uggests potential applications to other problems in seien
does not make sense to use the geometry of another subjgt engineering formulated as optimization problems.

(or average geometry of the training subjects) as initdiin

for the template subject’'s Brodmann areas, especiallyedine ACKNOWLEDGMENTS

geometry of this other subject (or average geometry) is notWe would like to thank Pablo Parillo for discussion on the
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the use of a single subject’s Brodmann (or functional) aeewr coline Brun, Stanley Durrleman, Tom Fletcher and Washington
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Hessian.We first compute thé x 3)/ Jacobian via the chain

rule
APPENDIXA

PROOF OFPROPOSITION2 Ou, p(Y(v1,Z)) = (Orp) (00, ) . (A.6)

From the above equation, we can equivalently write down the

In this appendix, we prove Proposition B:the Hessian j-th component of thd x 3M Jacobian:

02 f(wo, T*(wp) o 6T (v)) is positive definite ab = 0, then
there exists ane > 0, such that for alldw,|dw| < e, v, p(Y (v1, 7)) (j) = Z(awp) (avan)’ (A.7)
a unique continuous function*(wy, dw) exists, such that n !

v*(wo, Jw) is the new local minimum for parameters + dw whereT" andw denote then-th and j-th components off

and v*(wo, 0) = 0. Furthermore, ™ (wo, dw) has the same andwv; respectively. Now, we compute ttig j)-th component

order of smoothness_ a ) . of the 3M x 3M Hessian using the product rule
In the next section, we first prove that the Hessian

Bﬁlf(wo,l“*(wo)oél“(vl))‘v Y is equal to the mix-derivatives 97, p(Y (v1, %)) - (i,7)
matrix 92, f(wo,T*(wo) o 6T (vy) o 51“(1;2))‘ - under  _ 5. Z (Oynp) (avan) (A.8)
the composition of diffeomorphisms model [75], [81], [82]. n ' v =0
We then complete the proof of Proposition 2. _ Z [(35;‘,rnp) (3U{Tn) + (9rap) (83%]. Tn):| .
! (A.9)
A. Proof of the Equivalence between the Hessian and Mix-_ Z (02 (avi'rk) (8 an)
Derivatives Matrix for the Composition of Diffeomorphisms <~ ! “1 v1=0
Model ’
+3° @rep) (92,77) | (A10)

We will only provide the proof for when the image is
defined inR? so as not to obscur the main ideas behind the
proof. To extend the proof to a manifold (e.§2), one simply Because, T
need to extend the notations and bookkeeping by the '0%n8v1p(“f( _
parameterizing the velocity fieldg andwvs using coordinate 1=0
charts. The same proof follows. derivative is zero at local minimum), we gétfp‘ =0,
Let us define some notations. Suppose the image and thanel so the second term in Eq. (A.10) is zero.
are M voxels. Let# be theR3M rasterized coordinates of the
M voxels. For conciseness, we define for the fixed parameters
wo,

is the identity matrix and th&x 3M Jaco-
(Orp) (00, T) ‘ = 0 (because

V1=

V1 =0

Ulaf))
v

>\ A * —
p(@) = f(wo, I" (wo) (7)) A simplify the first term of Eq. (A.10), we once again use
Thereforep is a function fromR3 to R. Under the composi- the fact thatd,, T is the identity matrix, and so the

tion of diffeomorphisms modeliI’(v) is the diffeomorphism symmand is zero ”ljﬁoegs = i andn = j. Consequently,
parameterized by the stationary velocity fieldlefined on the gq. (A.10) simplifies to
M voxels, so thatT'(v)(-) is a function fromR3 to R. To

make the dependence 6F(v) on v explicit, we define 851p(“f(v1,f))‘ _(6,4) = OFiysp (A.11)
T (v, %) £ 6T (v)(Z), (A.2)  or equivalently,
H : 3M 3M 3M . N
and soT is a function fromR"™ > R** to R*™. In other 02 p( (vy,7)) = 92p(7) (A.12)
words, we can rewrite v1=0

03, f(wo, T (wo) 0 6T (v1)) = 8, p(T (v1, 7)) (A-3) Mix-Derivatives Matrix. We first compute thel x 3M
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Jacobian via the chain rule
D, p(Y1(v1, To(v2, 1)) o
= (Or,p) (01, Y1) (0, T2)
= (Or,p) (021 (v1,7)).

(A.13)
(A.14)

V2 =0

17

function v*(wp, dw), such thath(wy + dw, v*(wp, dw)) = 0
and v*(wp,0) = 0. Furthermorev*(wo, dw) has the same
order of smoothness g%

Let k(w,v1) = 82, f(w,I*(wg) o 6T (v1) o 6T (vz))
Thenk(wg, 0) is positive definite at; = 0 by the assun%ption
of the proposition. By the smoothness of derivatives and

From the above equation, we can equivalently write down ti§@ntinuity of eigenvalues, there exists a small neighbocho

j-th component of thd x 3M Jacobian:
0o p(T1(v1, To(v2, 7)) (J) = > (Orpp) (0T,
! (A.15)

Now, we compute théi, j)-th component of th&M x 3M
mix-derivatives matrix using the product rule

331,u2p(T1(UlaT2(U2af))) (4,7)

v1=v2=0
=0, 8 n 2 T
Z Ty p 1) v1=v2=0

> € Tnp) (@30 + (Oryp) (08, 2,11

)

-3 (024 +,p) (97%) (@707
£ (0nw) (211 |
" (A.17)

Like before, we havedyp = 0, and so the second

V1=V2= 0

term is zero. Becausg,, T is the identity,0,,: T’f is zero

unlessk = 4. Since Y} (v1 = O @) =&, 0z Y}
to zero unless = j. Therefore, we get

p(T1(or, Yo(v2, @)| _ (09)
or equivalently,

6317712]9(’1\1(1}1, T?(”Z, f)))

is also equal

02 =02,
i xiP

V1,V2

(A.18)

=92

V1 =02 =0

(A.19)

p(7)

B. Completing the Proof of Proposition 2

L

Id,

We now complete the proof of Proposition2. Ligtw, v;)
By, f (w, T* (wp) 0 6T (1y) 0 5P(U2))‘ - SincedT(0) =
we have e

h(w,v1)

wo,

= 9y, f(w, " (wg) 0 6T(0) 0 6T (1)

’02:0

(A.20)
(A.21)
(A.22)

= O, f(w, I (wp) 0 6I'(v2))
=0

V2=

where the last equality comes from the definitionItf(wg)
being a local minimum for the composition model.

Since the mix-derivatives matri®,, h(w, vl)\v _, Isinvert-
ible by the positive-definite assumption of this propositio
by the Implicit Function Theorem, there exists an> 0,

such that for alldw, ||0w| < e, there is a unique continuous

around(wg, v1 = 0) in which the eigenvalues df(w,v;) are
all greater than zero. Therefof& (wg) o 6T (v* (wq, dw)) does
indeed define a new local minimum closeltd(wy). O

APPENDIXB
COMPUTING THE DERIVATIVE O,,v*

To computed,,v*, we perform a Taylor expansion;

O, f(w

= |2

,I* 06T (v1) 0 6T (v2))

wo+dw,v1,v2=0
fw,T* 0 6T (v1) 0 6T (v2))v1+
+ 02 . f(w,T* 08T (vy) 0 6T (v2))dw+

w,v2

(B.1)

V1,02

+ O(6w?, v?)

wo,v1=0,v2=0

02 (B.2)

V1,02

fw,T* 0 6T (v1) 0 6T (v2))v1+
+ 02 . f(w,T* 0 6T (vg))dw+

w,v2

ol

+ O(sw?, v?)

wo,vV1 :0,’02 =0

and rearranging the terms fof = v*

OV = (32 fw,T* 0 §T(vy) o 5F(v2)))

V1,v2

, We get

-1

x (B.3)

x 02

w,v2

f(w,T" 0T (v2))

wo,v1=0,v2=0
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