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Learning Task-Optimal Registration Cost Functions
for Localizing Cytoarchitecture and Function in the

Cerebral Cortex
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Abstract—Image registration is typically formulated as an
optimization problem with multiple tunable, manually set param-
eters. We present a principled framework for learning thousands
of parameters of registration cost functions, such as a spatially-
varying tradeoff between the image dissimilarity and regulariza-
tion terms. Our approach belongs to the classic machine learning
framework of model selection by optimization of cross-validation
error. This second layer of optimization of cross-validation error
over and above registration selects parameters in the registration
cost function that result in good registration as measured by the
performance of the specific application in a training data set.
Much research effort has been devoted to developing generic
registration algorithms, which are then specialized to particular
imaging modalities, particular imaging targets and particular
post-registration analyses. Our framework allows for a systematic
adaptation of generic registration cost functions to specific
applications by learning the “free” parameters in the cost func-
tions. Here, we consider the application of localizing underlying
cytoarchitecture and functional regions in the cerebral cortex by
alignment of cortical folding. Most previous work assumes that
perfectly registering the macro-anatomy also perfectly aligns the
underlying cortical function even though macro-anatomy does
not completely predict brain function. In contrast, we learn
(1) optimal weights on different cortical folds or (2) optimal
cortical folding template in the generic weighted Sum of Squared
Differences (wSSD) dissimilarity measure for the localization
task. We demonstrate state-of-the-art localization results in both
histological and fMRI data sets.
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1. INTRODUCTION

I N medical image analysis, registration is necessary to es-
tablish spatial correspondence across two or more images.

Traditionally, registration is considered a pre-processing step
(Fig. 1(a)). Images are registered and are then used for other
image analysis applications, such as voxel-based morphometry
and shape analysis. Here, we argue that the quality of image
registration should be evaluated in the context of the applica-
tion. In particular, we propose a framework for learning the
parameters of registration cost functions that are optimalfor
a specific application. Our framework is therefore equivalent
to classic machine learning approaches of model selection by
optimization of cross-validation error [33], [43], [58].

A. Motivation

Image registration is typically formulated as an optimization
problem with a cost function that comprises an image dissim-
ilarity term and a regularization term (Fig. 1(a)). The parame-
ters of the cost function are frequently determined manually by
inspecting the quality of the image alignment to account forthe
characteristics (e.g., resolution, modality, signal-to-noise ratio)
of the image data. During this process, the final task is rarely
considered in a principled fashion. Furthermore, the variability
of the results due to these tunable parameters is rarely reported
in the literature. Yet, recent work has shown that taking into
account the tradeoff between the regularization and similarity
measure in registration can significantly improve population
analysis [40] and segmentation quality [10], [79].

In addition to improving the performance of applications
downstream, taking into account the end-goal of registration
could help resolve ambiguities and the ill-posed nature of
image registration. For example,

1) The variability of the folding pattern in the human cere-
bral cortex is well-documented (see e.g. [45]). Fig. 2(a)
shows postcentral sulci of two different subjects. Note
the differences in topology between the two sulci. When
matching cortical folds, even neuroanatomical experts
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Fig. 1. Traditional and proposed frameworks for image registration. {In} indicates a collection of images. In image registration, weseek a deformation
Γ∗

n
for each imageIn. The resulting deformations{Γ∗

n
} are then used for other applications, such as segmentation or group analysis. The registration cost

function typically contains multiple parameters, such as the tradeoff parameterλ and the templateT . Changes in these parameters alter the deformations
{Γ∗

n
} and thus the outcomes of downstream applications. In our framework (b), we assume a training data set, which allows us to evaluate the quality of

the registration as measured by the application performance (or cross-validation error metric)gn for each training subject. This allows us to pick the best
parameters that result in good registration as measured by{gn}. Subsequent new subjects are registered using these learned parameters.
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(a) Postcentral Sulci with Dif-
ferent Topology (b) Brodmann Areas (BAs) Overlaid on Cortical Surfaces

Fig. 2. Examples of ambiguities in image registration, which can potentially be resolved by taking the application at hand into account.

disagree on whether to join the ends of the broken sulcus
or to break up the uninterrupted sulcus.

2) In population studies of human brain mapping, it is com-
mon to align subjects into a single coordinate system by
aligning macroanatomy or cortical folding patterns. The
pooling of functional data in this common coordinate
system boosts the statistical power of group analysis and
allows functional findings to be compared across differ-
ent studies. However, substantial cytoarchitectonic [3],
[4], [18] and functional [41], [62], [63], [64], [77],
[78] variability is widely reported. One reason for this
variability is certainly mis-registration of the highly vari-
able macroanatomy. However, even if we perfectly align
the macroanatomy, the underlying function and cellular
architecture of the cortex will not be aligned because the
cortical folds do not completely predict the underlying
brain function [54], [62]. To illustrate this, Fig. 2(b)
shows nine Brodmann Areas (BAs) projected onto the

cortical surfaces of two different subjects, obtained from
histology. BAs define cytoarchitectonic parcellation of
the cortex closely related to brain function [9]. Here,
we see that perfectly aligning the inferior frontal sul-
cus (Fig. 2(b)) will misalign the superior end of BA44
(Broca’s language area). If our goal is to segment sulci
and gyri, perfect alignment of the cortical folding pattern
is ideal. However, it is unclear that perfectly aligning
cortical folds is optimal for function localization.

In this paper, we propose a task-optimal registration frame-
work that optimizes parameters of any smooth family of
registration cost functions on a training set, with the aim of
improving the performance of a particular task for a new image
(Fig. 1(b)). The key idea is to introduce a second layer of
optimization over and above the usual registration. This second
layer of optimization assumes the existence of a smooth cost
function or cross-validation error metric (g in Fig. 1(b)) that
evaluates the performance of a particular task given the output
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of the registration step for a training data set. The training
data provides additional information not present in a test
image, allowing the task-specific cost function to be evaluated
during training. For example, if the task is segmentation,
we assume the existence of a training data set with ground
truth segmentation and a smooth cost function (e.g., Dice
overlap measure) that evaluates segmentation accuracy. Ifthe
registration cost function employs a single parameter, then
the optimal parameter value can be found by exhaustive
search [79]. With multiple parameters, exhaustive search is
not possible. Here, we establish conditions for which the
space of local minima is locally smooth and demonstrate the
optimization of thousands of parameters by gradient descent
on the space of local minima, selecting registration parameters
that result in good registration local minima as measured by
the task-specific cost function in the training data set.

We validate our framework on two datasets. The first
dataset consists of 10ex vivo brains with the Brodmann
Areas (BAs) of each subject obtained via histology [4], [84]
and mapped onto the cortical surface representation of each
subject obtained via MRI [18]. The second dataset consists of
42 in vivo brains with functional region MT+ (V5) defined
using functional Magnetic Resonance Imaging (fMRI). Here,
our task is defined to be the localization of BAs and MT+
in the cortical surface representation via the registration of
the cortical folding pattern. While it is known that certain
cytoarchitectonically or functionally-defined areas, such as V1
or BA28, are spatially consistent with respect to local cortical
geometry, other areas, such as BA44, present a challenge
for existing localization methods [18], [20]. We learn the
weights of the weighted Sum of Squared Differences (wSSD)
family of registration cost functions and/or estimate an optimal
macroanatomical template for localizing the cytoarchitectural
and functional regions using only the cortical folding pattern.
We demonstrate improvement over existing methods [18].

B. Related Work

An alternative approach to overcome the imperfect cor-
relation between anatomy and function is to directly use
the functional data for establishing across-subjectfunctional
correspondence [54], [56]. However, these approaches require
extra data acquisition (such as fMRI scans) of all future test
subjects. In contrast, our method aims to learn the relationship
between macro-anatomy and function (or cytoarchitectonics)
in a training data set containing information about both macro-
anatomy and function (or cytoarchitectonics). We use this
information to localize function (or cytoarchitectonics)in
future subjects, for which only macro-anatomical information
is available.

Our approach belongs to the class of “wrapper methods”
for model or feature selection in the machine learning liter-
ature [27], [34]. In particular, our model selection criterion
of application-specific performance is equivalent to the use
of cross-validation error in various model selection algo-
rithms [33], [43], [58]. Unlike feature selection methods that
operate in a discrete parameter space, we work in a continuous
parameter space. Consequently, standard algorithms in the
“wrapper methods” literature do not apply to this problem.

Instead, our resulting optimization procedure borrows heav-
ily from the mathematical field of continuation methods [2].
Continuation methods have been recently introduced to the
machine learning community for computing the entire path
of solutions of learning problems (e.g., SVM or Lasso) as a
function of a single regularization parameter [16], [28], [46].
For example, the cost function in Lasso [67] consists of the
tradeoff between a least-squares term and aL1 regularization
term. Least-angles Regression (LARS) allows one to compute
the entire set of solutions of Lasso as a function of the tradeoff
parameter [16]. Because we deal with multiple (thousands
of) parameters, it is impossible for us to compute the entire
solution manifold. Instead, we trace a path within the solution
manifold that improves the task-specific cost function. Fur-
thermore, registration is not convex (unlike SVM and Lasso),
resulting in several theoretical and practical conundrumsthat
we have to overcome, some of which we leave for future work.

The wSSD similarity measure implicitly assumes an in-
dependent Gaussian distribution on the image intensities,
where the weights correspond to the precision (reciprocal
of the variance) and the template corresponds to the mean
of the Gaussian distribution. The weights can be set to a
constant value [31], [6] or a spatially-varying variance can
be estimated from the intensities of registered images [19].
However, depending on the wSSD regularization tradeoff, the
choice of the scale of the variance is still arbitrary [79].
With weaker regularization, the training images will be better
aligned, resulting in lower variance estimates.

Recent work in probabilistic template construction resolves
this problem by either marginalizing the tradeoff under a
Bayesian framework [1] or by estimating the tradeoff with
the Minimum Description Length principle [71]. While these
methods are optimal for “explaining the images” under the
assumed generative models, it is unclear whether the esti-
mated parameters are optimal for application-specific tasks.
After all, the parameters for optimal image segmentation
might be different from those for optimal group analysis. In
contrast, Van Leemput [74] proposes a generative model for
image segmentation. The estimated parameters are therefore
Bayesian-optimal for segmentation. When considering one
global tradeoff parameter, a more direct approach is to employ
cross-validation of segmentation accuracy and to perform an
exhaustive search over the values of the tradeoff parame-
ter [79]. This is infeasible for multiple parameters.

By learning the weights of the wSSD, we implicitly op-
timize the tradeoff betweeen the dissimilarity measure and
regularization. Furthermore, the tradeoff we learn is spatially
varying. Previous work on learning a spatially varying regular-
ization prior suffers from the lack of ground truth (nonlinear)
deformations. For example, [10], [25], [35] assume that the
deformations obtained from registering a set of training images
can be used to estimate a registration regularization to register
new images. However, a change in the parameters of the
registration cost function used by these methods to register
the training images would lead to a different set of training
deformations and thus a different prior for registering new
images. Furthermore, the methods are inconsistent in the sense
that the learned prior applied on the training images will not
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result in the same training deformations obtained previously.
While there has been efforts in obtaining ground truth

human-annotated deformation fields [37], the images consid-
ered typically have well-defined correspondences, rather than
for example, the brain images of two different subjects. As
suggested in the previously presented examples (Fig. 2), the
concept of “ground truth deformations” may not always be
well-defined, since the optimal registration may be a function
of the application at hand. In contrast, image segmentation
is generally better defined in the sense that ground truth
segmentation is usually known. Our problem therefore differs
from recent work on learning segmentation cost functions [42],
[70], [83]. In this paper, we avoid the need for ground truth de-
formations by focusing on the application of registration-based
segmentation, where ground truth segmentations are better
defined and available. However, our framework is general and
can be applied whenever a post-registration application can be
well quantified by a smooth application-specific performance
cost function.

This paper is organized as follows. In the next section,
we introduce the task-optimal registration framework. We
specialize the framework to align hidden labels in Section 3.
We present localization experiments in Section 4 and discuss
outstanding issues in Section 5. This paper extends a previ-
ously presented conference article [80] and contains detailed
derivations, discussions and experiments that were omitted in
the conference version. To summarize,

1) We present a framework for learning the parameters of
registration cost functions with respect to specific ap-
plications. We present an algorithm sufficiently efficient
for optimizing thousands of parameters.

2) We specialize the framework for the alignment of hidden
labels, which are not necessarily well-predicted by local
image features.

3) We apply the framework to localizing cytoarchitectural
and functional regions using only the cortical folding
pattern and demonstrate improvements over existing
localization methods [18].

2. TASK-OPTIMAL FRAMEWORK

In this section, we present the task-optimal registration
framework for learning the parameters of a registration cost
function. Given an imageI, let f(w, Γ) denote a smooth
registration cost function, with parametersw and a spatial
transformationΓ. For example,

f(w = {λ, T }, Γ) = λ Dissim(T, I ◦ Γ) + Reg(Γ), (2.1)

where T is the template image,λ is the tradeoff between
the image dissimilarity measure and the regularization on the
transformationΓ, I ◦ Γ denotes the deformed and resampled
imageI. f is therefore also a function of the imageI, which
we suppress for conciseness. The optimal transformationΓ∗

minimizes the cost function for a given set of parametersw:

Γ∗(w) = argmin
Γ

f(w, Γ). (2.2)

We emphasize thatΓ∗ is a function ofw since a different set
of parametersw will result in a different solution to Eq. (2.2)

and thus will effectively define a different image coordinate
system.

The resulting deformationΓ∗ is used to warp the input
image or is itself used for further tasks, such as image
segmentation or voxel-based morphometry. We assume that the
task performance can be measured by a smooth cost function
(or cross-validation error metric)g, so that a smaller value
of g(Γ∗(w)) corresponds to better task performance.g is
typically a function of additional input data associated with
a subject (e.g., manual segmentation labels if the task is au-
tomatic segmentation), although we suppress this dependency
in the notation for conciseness. This auxiliary data is only
available in the training set;g cannot be evaluated for the new
image.

Given a set ofN training subjects, letΓ∗
n(w) denote the

solution of Eq. (2.2) for training subjectn for a fixed set of
parametersw and gn(Γ∗

n(w)) denote the task performance
for training subjectn using the deformationΓ∗

n(w) and
other information available for then-th training subject. A
different set of parametersw would lead to different task
performancegn(Γ∗

n(w)). We seek the parametersw∗ that
generalize well to a new subject: registration of a new subject
with w∗ yields the transformationΓ∗(w∗) with a small task-
specific costg(Γ∗(w∗)). One approach to solve this functional
approximation problem [17] is regularized risk minimization.
Let Reg(w) denote regularization onw and define

G(w) ,

N
∑

n=1

gn(Γ∗
n(w)) + Reg(w). (2.3)

Regularization risk minimization seeks

w∗ = argmin
w

G(w). (2.4)

The optimization is difficult because while we assumegn to
be smooth, the input togn(·) is itself the local minimum of
another nonlinear cost functionf . Furthermore, evaluating the
cost functionG for only one particular set of parametersw

requires performingN different registrations!

A. Characterizing the Space of Local Minima

In this section, we provide theoretical characterizationsof
the optimization problem in Eq. (2.4). IfΓ∗(w) is defined
strictly to be a global registration optimum, thenΓ∗(w) is
clearly not a smooth function ofw, since a small change inw
can result in a big change in the global registration optimum.
This definition is also impractical, since the global optimum of
a nonlinear optimization problem cannot be generally foundin
practice. Instead, we relax the definition ofΓ∗(w) to be a local
minimum of the registration cost function for fixed values of
w. Here, we derive conditions in whichΓ∗(w) is locally a
smooth function ofw, so we can employ gradient descent to
optimize Eq. (2.4).

Let Γ∗(w0) denote a local minimum of the registration cost
function for a fixedw = w0. Suppose we perturbw by an
infinitestimally small δw, so thatΓ∗(w0) is no longer the
registration local minimum forw = w0 + δw. We consider
two representations of this change in local minimum.
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Additive deformation models arise when the space of defor-
mations is a vector space, such as the space of displacement
fields or positions of B-spline control points. At each iteration
of the registration algorithm, deformation updates areadded
to the current deformation estimates. The additive model is
general and applies to many non-convex, smooth optimization
problems outside of registration. Most registration algorithms
can in fact be modeled with the additive framework.

In some registration algorithms, including that used in this
paper, it is more natural to represent deformation changes
through composition rather than additions [7], [61], [75].
For example, in the diffeomorphic variants of the demons
algorithm [75], [81], [82], the diffeomorphic transformation
Γ is represented as a dense displacement field. At each
iteration, the transformation update is restricted to be a one
parameter subgroup of diffeomorphism parameterized by a
stationary velocity field. The diffeomorphic transformation
update is thencomposedwith, rather than added to, the
current estimate of the transformation, thus ensuring thatthe
resulting transformation is diffeomorphic.

(1) ADDITION MODEL. Let Γ∗(w0 + δw) =
Γ∗(w0) + δΓ∗(w0, δw) denote the new locally optimal
deformation for the updated set of parametersw0 + δw.
The following proposition characterizes the existence and
uniqueness ofδΓ∗(w0, δw) as δw is varied. In particular,
we show that under some mild conditions,δΓ∗(w0, δw)
is a well-defined smooth function in the neighborhood of
(w0, Γ

∗(w0)). In the remainder, we use∂x, ∂2
x, and ∂2

x,y to
denote the corresponding partial derivatives.

Proposition 1. If the Hessian1 ∂2
Γf(w0, Γ) is positive definite

at Γ = Γ∗(w0), then there exists anǫ > 0, such that for
all δw, ‖δw‖ < ǫ, a unique continuous functionδΓ∗(w0, δw)
exists withδΓ∗(w0, 0) = 0. Furthermore,δΓ∗ has the same
order of smoothness as∂Γf .

Proof. We define the vector-valued functionh(w, Γ) ,

∂Γf(w, Γ). Since Γ∗(w0) is a local minimum off(w0, Γ),
we have

h(w, Γ)
∣

∣

∣

w0,Γ∗(w0)
= ∂Γf(w, Γ)

∣

∣

∣

w0,Γ∗(w0)
= 0. (2.5)

At (w0, Γ
∗(w0)), the Hessian matrix∂2

Γf(w0, Γ) = ∂Γh(w, Γ)
is positive definite by the assumption of the proposition andis
therefore invertible. By the Implicit Function Theorem [51],
there exists anǫ > 0, such that for allδw, ‖δw‖ < ǫ,
there is a unique continuous functionδΓ∗(w0, δw), such that
h(w0 + δw, Γ∗(w0) + δΓ∗(w0, δw)) = 0 andδΓ∗(w0, 0) = 0.
Furthermore,δΓ∗(w0, δw) has the same order of smoothness
ash.

Because the Hessian off is smooth and the eigenvalues of
a matrix depend continuously on the matrix [72], there exists
a small neighborhood around(w0, Γ

∗(w0)) in which the
eigenvalues of∂2

Γf(w, Γ) are all greater than 0. Since both

1Here, we assume that the transformationΓ is finite dimensional, such as
the parameters of affine transformations, positions of spline control points
or dense displacement fields defined on the voxels or verticesof the image
domain.

sufficient conditions for a local minimum are satisfied (zero
gradient and positive definite Hessian),Γ∗(w0)+δΓ∗(w0, dw)
is indeed a new local minimum close toΓ∗(w0).

Observe that the conditions in Proposition 1 are stronger
than those of typical nonlinear optimization problems. In
particular, we do not just require the cost functionsf and
g to be smooth, but also that the Hessian∂2

Γf(w0, Γ) be
positive definite at the local minimum. At(w0, Γ

∗(w0)), by
definition, the Hessian∂2

Γf(w0, Γ) is positive semi-definite,
so the positive definite condition in Proposition 1 should not
be too restrictive. Unfortunately, degeneracies may arisefor
local minima with a singular Hessian. For example, letΓ be
the 1 × 2 vector [a b] and f(Γ, w) = (ab − w)2. Then for
any value ofw, there is an infinite number of local minima
Γ∗(w) corresponding toab = w. Furthermore, the Hessian
at any local minimum is singular. In this case, even though
f is infinitely differentiable, there is an infinite number of
local minima near the current local minimumΓ∗(w0), i.e.,
δΓ∗(w0, δw) is not a well-defined function and the gradient
is not defined. Consequently, the parametersw of local
registration minima whose Hessians are singular are also
local minima of the task-optimal optimization Eq. (2.4). The
proof of Proposition 1 follows the ideas of the Continuation
Methods literature [2]. We include the proof here to motivate
the more complex composition of deformations model.

(2) COMPOSITION MODEL. Let Γ∗(w0) be the
registration local minimum atw0 and δΓ(v) denote an
update transformation parameterized byv, so that δΓ(0)
corresponds to the identity transform. For example,v

could be a stationary [75], [81], [82], non-stationary [8]
velocity field parameterization of diffeomorphism, positions
of spline control points [52] or simply displacement
fields [59]. In the composition model,Γ∗(w0) is a local
minimum if and only if there exists anǫ > 0, such that
f(w0, Γ

∗(w0)) < f(w0, Γ
∗(w0) ◦ δΓ(v)) for all values of

‖v‖ < ǫ.
Let Γ∗(w0)◦δΓ(v∗(w0, δw)) denote the new locally optimal

deformation for the new parametersw0+δw. In general, there
might not exist a single update transformationδΓ(v∗(w0, δw))
that leads to a new local minimum under a perturbation of
the parametersw, so that there is no correponding version of
Proposition 1 for the general composition model. However,
in the special case of the composition of diffeomorphisms
model [75], [81], [82] employed in this paper, the following
proposition characterizes the existence and uniqueness of
v∗(w0, δw) asδw is varied.

Proposition 2. If the Hessian∂2
vf(w0, Γ

∗(w0) ◦ δΓ(v)) is
positive definite atv = 0, then there exists anǫ > 0, such
that for all δw, ‖δw‖ < ǫ, a unique continuous function
v∗(w0, δw) exists, such thatv∗(w0, δw) is the new local mini-
mum for parametersw0+δw andv∗(w0, 0) = 0. Furthermore,
v∗(w0, δw) has the same order of smoothness asf .

Proof. The proof is a more complicated version of
Proposition 1 and so we leave the details to Appendix A.
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Just like in the case of the additive deformation model,
the parametersw of local registration minima that do not
satisfy the conditions of Proposition 2 are also local minima
of the task-optimal optimization Eq. (2.4). In the next section,
we derive exact and approximate gradients ofG.

B. Optimizing Registration Parametersw

We now discuss the optimization of the regularized task
performanceG.

(1) ADDITION MODEL. In the previous section, we
showed that at(w0, Γ

∗(w0)) with a positive definite Hessian,
δΓ∗(w0, δw) is a smooth well-defined function such that
Γ∗(w0)+ δΓ∗(w0, δw) is the new local minimum atw0 + δw.
Therefore, we can compute the derivatives ofΓ∗(w) with
respect tow at w0, allowing us to traverse a curve of local
optima, finding values ofw that improve the task-specific
cost function for the training images. We first perform a
Taylor expansion of∂Γf(w, Γ) at (w0, Γ

∗(w0)):

∂Γf(w, Γ)

∣

∣

∣

∣

w0+δw,Γ∗(w0)+δΓ

= (2.6)

[

∂2
Γf(w, Γ)δΓ + ∂2

w,Γf(w, Γ)δw + O(δw2, δΓ2)
]

∣

∣

∣

∣

w0,Γ∗(w0)

,

where we dropped the term∂Γf(w, Γ)
∣

∣

∣

w0,Γ∗(w0)
= 0. For

δΓ = δΓ∗(w0, δw), the left-hand side is equal to 0 and we
can write

δΓ∗(w0, δw) = (2.7)
[

−
(

∂2
Γf(w, Γ)

)−1
∂2

w,Γf(w, Γ)δw + O(δw2, δΓ2)
]

∣

∣

∣

∣

w0,Γ∗(w0)

.

Therefore by taking the limitδw → 0, we get

∂wΓ∗(w0) , ∂(δw)δΓ
∗(w0, δw)

∣

∣

∣

∣

δw=0

= −
(

∂2
Γf(w, Γ)

)−1
∂2

w,Γf(w, Γ)

∣

∣

∣

∣

w0,Γ∗(w0)

.

(2.8)

Eq. (2.8) tells us the direction of change of the local minimum
at (w0, Γ

∗(w0)). In practice, the matrix inversion in Eq. (2.8)
is computationally prohibitive for high-dimensional warps Γ.
Here, we consider a simplification of Eq. (2.8) by setting the
Hessian to be the identity:

∂wΓ∗ ≈ −∂2
w,Γf(w, Γ)

∣

∣

∣

w0,Γ∗(w0)
. (2.9)

Since−∂Γf is the direction of gradient descent of the cost
function Eq. (2.2), we can interpret Eq. (2.9) as approximating
the new local minimum to be in the same direction as the
changein the direction of gradient descent asw is perturbed.

Differentiating the cost function in Eq. (2.4), using the chain

rule, we obtain

∂wG = ∂w

(

N
∑

n=1

gn(Γ∗
n(w)) + Reg(w)

)

(2.10)

=

N
∑

n=1

[

∂Γ∗

n
gn

]

[∂wΓ∗
n] + ∂wReg(w) (2.11)

= −
N
∑

n=1

[

∂Γ∗

n
gn

]

∂2
w,Γfn(w, Γ)

∣

∣

∣

w,Γ∗

n(w0)
+ ∂wReg(w).

(2.12)

We note the subscriptn on f indicates the dependency of the
registration cost function on then-th training image.

(2) COMPOSITION MODEL. In the previous section, we
have shown that at(w0, Γ

∗(w0)), assuming the conditions of
Proposition 2 are true,v∗(w0, δw) is a smooth well-defined
function such thatΓ∗(w0) ◦ δΓ(v∗(w0, δw)) is the new local
minimum. Therefore, we can compute the derivatives of
v∗ with respect tow. As before, by performing a Taylor
expansion, we obtain

∂wv∗ = −
(

∂2
v1,v2

f(w, Γ∗ ◦ δΓ(v1) ◦ δΓ(v2))
)−1

×

× ∂2
w,v2

f(w, Γ∗ ◦ δΓ(v2))

∣

∣

∣

∣

w=w0,v1=0,v2=0

(2.13)

≈ −∂2
w,vf(w, Γ∗ ◦ δΓ(v))

∣

∣

∣

∣

w=w0,v=0

. (2.14)

Appendix B provides the detailed derivations. Differentiating
the cost function in Eq. (2.4), using the chain rule, we get

∂wG =

N
∑

n=1

[∂v∗gn(Γ∗
n ◦ δΓ(v∗))] [∂wv∗]

∣

∣

∣

∣

v∗=0

+ ∂wReg(w)

(2.15)

= −
N
∑

n=1

[∂v∗gn(Γ∗
n ◦ δΓ(v∗))]×

× ∂2
w,vfn(w, Γ∗

n ◦ δΓ(v))

∣

∣

∣

∣

w=w0,v=v∗=0

+ ∂wReg(w).

(2.16)

Once again, the subscriptn on f indicates the dependency of
the registration cost function on then-th training image.

Algorithm 1 summarizes the method for learning the
task-optimal registration parameters. Each line search
involves evaluating the cost functionG multiple times, which
in turn requires registering the training subjects, resulting in
a computationally intensive process. However, since we are
initializing from a local optimum, for a small change inw,
each registration converges quickly.

Since nonlinear registration is dependent on initialization,
the current estimates(w, Γ∗(w)), which were initialized from
previous estimates, might not be achievable when initializing
the registration with the identity transform. The corresponding
parametersw might thereforenot generalize well to a new sub-
ject, which are typically initialized with the identity transform.
To put this more concretely, suppose our current estimates of
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Data: A set of training images{In}
Result: Parametersw that minimize the regularized task performanceG (see Eq. (2.4))
Initialize w0.
repeat

Step 1.Given current values ofw, estimateΓ∗
n(w) = argminΓn

fn(w, Γn), i.e., perform registration of each training
subjectn.
Step 2.Given current estimates(w, {Γn(w)}), compute the gradient∂wG using either

1) Eq. (2.12) via∂wΓ∗ in Eq. (2.9) for the addition model or
2) Eq. (2.16) via∂wv∗ in Eq. (2.14) for the composition model.

Step 3.Perform line search in the direction opposite to∂wG [47].
until convergence;

Algorithm 1 . Task-Optimal Registration

w and the registration local minima are(w = 5, Γ∗(5) = 2).
Next, we perform the gradient decent step and update w
accordingly. For argument’s sake, let our new estimates of w
and the registration local minima be(w = 5.1, Γ∗(5.1) = 1.9).
Note that this particular value ofΓ∗(5.1) = 1.9 is achieved by
initializing the registration withΓ = 2. Had we initialized the
registration with the identity transform (such as for a new sub-
ject), thenΓ∗(5.1) might instead be equal to2.1, with possibly
poorer application performance than(w = 5, Γ∗(5) = 2). To
avoid this form of overfitting, after every few iterations, we
re-register the training images by initializing with the identity
transform, and verify that the value ofG is better than the
current best value ofG computed with initialization from the
identity transform.

The astute reader will observe that the preceding discus-
sion on “Addition Model” makes no assumptions specific
to the task-optimal registration problem. The framework can
therefore also be applied to learn the cost functions in other
applications that are formulated as nonlinear optimization
problems solved by gradient descent.

3. LEARNING WSSDFOR HIDDEN LABEL ALIGNMENT

We now instantiate the task-optimal registration frame-
work for localizing hidden labels in images. We demonstrate
schemes for either (1) learning the weights of the weighted
Sum of Squared Differences (wSSD) family of registration
cost functions or (2) estimating an optimal template image for
localizing these hidden labels. We emphasize that the optimal
template isnot necessarily the average of the training images,
since the goal is not to align image intensities across subjects,
but to localize the hidden labels.

Suppose we have a set of training images{In} with
some underlying ground truth structure manually labeled or
obtained from another imaging modality (e.g., Brodmann areas
from histology mapped onto cortical surface representations).
We define our task as localizing the hidden structure in a
test image. In the traditional pairwise registration approach
(Fig. 3(a)), a single training subject is chosen as the template.
After pairwise registration between the template and test
images, the ground truth label of the template subject is used
to predict that of the test subject. The goal of predicting the
hidden structure in the test subject is typically not considered

when choosing the training subject or registration algorithm.
For hidden labels that are poorly predicted by local image in-
tensity (e.g., BA44 discussed in Section 1-A), blind alignment
of image intensities lead to poor localization.

In contrast, we pick one training subject as the initial
template and use the remaining training images and labels
(Fig. 3(b)) to learn a registration cost function that is optimal
for aligning the labels of the training and template subjects
– perfect alignment of the labels lead to perfect predictionof
the labels in the training subjects by the template labels. After
pairwise registration between the template and test subject
using the optimal registration cost function, the ground truth
label of the template subject is used to predict that of the test
subject.

We limit ourselves to spherical images (i.e., images defined
on a unit sphere), although it should be clear that the discus-
sion readily extends to volumetric images. Our motivation for
using spherical images comes from the representation of the
human cerebral cortex as a closed 2D mesh in 3D. There has
been much effort focused on registering cortical surfaces in
3D [14], [15], [24], [30], [65]. Since cortical areas – both
structure and function – are arranged in a mosaic across
the cortical surface, an alternative approach is to warp the
underlying spherical coordinate system [19], [48], [60], [69],
[66], [73], [79], [81]. Warping the spherical coordinate system
establishes correspondences across the surfaceswithout actu-
ally deforming the surfaces in 3D. We assume that the meshes
have already been spherically parameterized and represented
as spherical images: a geometric attribute is associated with
each mesh vertex, describing local cortical geometry.

A. Instantiating Registration Cost Functionf

To register a given imageIn to the template imageT , we
define the following cost function:

fn(w = {{λi}, T }, Γn) =
∑

i

λ2
i [T (xi) − In(Γn(xi))]

2
+

∑

i

1

|Ni|

∑

j∈Ni

(

‖Γn(xi) − Γn(xj)‖ − dij

dij

)2

,

where transformationΓn maps a pointxi on the sphereS2

to another pointΓn(xi) ∈ S2. The first term corresponds



8 IEEE TRANSACTIONS ON MEDICAL IMAGING, TO BE PUBLISHED

(a) Pairwise registration without training using ground truth labels (b) Task-Optimal registration framework

Fig. 3. Illustration of the differences between our approach and the pairwise registration approach. In our approach, we use training images and labels to
learn an optimal cost function that is optimal for aligning the labels of the training and template subjects. This cost function is then used to register and
predict the hidden label in a new subject.

to the wSSD image similiarity. The second term is a per-
centage metric distortion regularization on the transformation
Γn whereNi is a predefined neighborhood around vertexi

anddij is the original distance between the neighborsdij =
‖xi − xj‖ [79]. The weights{λi}’s are generalizations of the
tradeoff parameterλ, allowing for a spatially-varying tradeoff
between the image dissimilarity term and regularization: a
higher weightλ2

i corresponds to placing more emphasis on
matching the template image at spatial locationxi relative to
the regularization. The parameterization of the weights asλ2

i

ensures non-negative weights.

In this work, we consider either learning the weightsλ2
i

or the templateT for localizing Brodmann Area (BA) labels
or functional labels by aligning cortical folding pattern.Since
the weights of the wSSD correspond to the precision of the
Gaussian model, by learning the weights of wSSD, we are
learning the precision of the Gaussian model and hence the
uncertainty of the sulcal geometry. Optimizingλ2

i leads to
placing non-uniform importance on matching different cortical
folds with the aim of aligning the underlying cytoarchitec-
tonics or function. For example, suppose there is a sulcus
with functional regions that appear on either side of the
sulcus depending on the subject. The algorithm may decide
to place low weight on the “poorly predictive” sulcus. On the
other hand, optimizingT corresponds to learning a cortical
folding template that is optimal for localizing the underlying
cytoarchitectonics or functional labels of the training subjects.
In the case of the previously mentioned “unpredictive sulcus”,
the algorithm might learn that the optimal cortical folding
template should not contain this sulcus.

We choose to represent the transformationΓn as a com-
position of diffeomorphic warps{Φk} parameterized by a
stationary velocity field, so thatΓn = Φ1 ◦ · · · ◦ ΦK [75],
[81], [82]. We note that our choice of regularization is different
from the implicit hierarchical regularization used in Spherical
Demons [81] since the Demons regularization is not compat-
ible with our derivations from the previous section. Instead
of the efficient 2-Step Spherical Demons algorithm, we will
use steepest descent. The resulting registration algorithm is
still relatively fast, requiring about 15 min for registering full-
resolution meshes with more than 100k vertices, compared

with 5 min of computation for Spherical Demons on a Xeon
2.8GHz single processor machine.

In general, a smooth stationary velocity fieldv parameter-
izes a diffeomorphismΦ via a stationary ODE:∂tΦ(x, t) =
~v(Φ(x, t)) with an initial conditionΦ(x, 0) = x. The solution
at t = 1 is denoted asΦ(x, 1) = Φ(x) = exp(~v)(x), where we
have dropped the time index. A solution can be computed effi-
ciently using scaling and squaring [5]. This particular choice of
representing deformations provides a computationally efficient
method of achieving invertible transformations, which is a
desirable property in many medical imaging applications. In
our case, the velocity field~v is a tangent vector field on the
sphereS2 and not an arbitrary 3D vector field.

B. Optimizing Registration Cost Functionf

To register subjectn to the template imageT for a fixed
set of parametersw, let Γ0

n be the current estimate ofΓ∗
n.

We seek an update transformationexp(~v) parameterized by a
stationary velocity field~v:

fn(w, Γ0
n ◦ exp(~v)) (3.1)

=
∑

i

λ2
i

[

T (xi) − In(Γ0
n ◦ exp(~v)(xi))

]2
+
∑

i

1

|Ni|

∑

j∈Ni

(

‖Γ0
n ◦ exp(~v)(xi) − Γ0

n ◦ exp(~v)(xj)‖ − dij

dij

)2

.

Let ~vi be the velocity vector tangent to vertexxi, and~v =
{~vi} be the entire velocity field. We adopt the techniques in
the Spherical Demons algorithm [81] to differentiate Eq. (3.1)
with respect to~v, evaluated at~v = 0. Using the fact that
the differential ofexp(~v) at ~v = 0 is the identity [44], i.e.,
[D exp(0)]~v = ~v, we conclude that a change in velocity~vi at
vertexxi does not affectexp(~v)(xn) for n 6= i up to the first
order derivatives. Defining∇In(Γ0

n(xi)) to be the1×3 spatial
gradient of the warped imageIn(Γ0

n(·)) at xi and∇Γ0
n(xi)

to be the3× 3 Jacobian matrix ofΓ0
n at xi, we get the1× 3
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derivative

∂~vi
fn(w, Γ0

n ◦ exp(~v))
∣

∣

∣

~v=0

= −2λ2
i

[

T (xi) − In

(

Γ0
n (xi)

)] [

∇In

(

Γ0
n (xi)

)]

(3.2)

+ 2
∑

j∈Ni

(

1

|Ni|
+

1

|Nj |

)

(

‖Γ0
n(xi) − Γ0

n(xj)‖ − dij

d2
ij‖Γ

0
n(xi) − Γ0

n(xj)‖

)

×
[

Γ0
n(xi) − Γ0

n(xj)
]T

∇Γ0
n(xi).

We can perform gradient descent of the registration cost
functionfn using Eq. (3.2) to obtainΓ∗

n, which can be used to
evaluate the regularized task performanceG to be described in
the next section. We also note that Eq. (3.2) instantiates∂~vfn

within the mixed derivatives term in the task-optimal gradient
Eq. (2.16) for this application.

C. Instantiating Regularized Task PerformanceG

We represent the hidden labels in the training subjects
as signed distance transforms on the sphere{Ln} [36]. We
consider a pairwise approach, where we assume that the
template imageT has a corresponding labels with distance
transformLT and set the task-specific cost function to be

gn(Γ∗
n) =

∑

i

[LT (xi) − Ln (Γ∗
n (xi))]

2
. (3.3)

A low value of gn indicates good alignment of the hidden
label maps between the template and subjectn, suggesting
good prediction of the hidden label.

We experimented with a prior that encourages spatially
constant weights and template, but did not find that the
regularization lead to improvements in the localization results.
In particular, we considered the following smoothness regular-
ization on the registration parameters depending on whether
we are optimizing for the weightsλi or the templateT :

Reg({λi}) =
∑

i

1

|Ni|

∑

j∈Ni

(λ2
i − λ2

j)
2, (3.4)

Reg(T ) =
∑

i

1

|Ni|

∑

j∈Ni

(T (xi) − T (xj))
2. (3.5)

A possible reason for this lack of improvement is that the
re-registration after every few line searches already helps
to regularize against bad parameter values. Another possible
reason is that the above regularization assumes a smooth
variation in the relationship between structure and function,
which may not be true in reality. Unfortunately, the rela-
tionship between macro-anatomical structure and functionis
poorly understood, making it difficult to design a more useful
regularization that could potentially improve the results. In
the experiments that follow, we will discard the regularization
term of the registration parameters (i.e., set Reg(w) = 0).
We also note that Reg(w) is typically set to0 in machine
learning approaches of model selection by optimization of
cross-validation error [33], [43], [58].

D. Optimizing Task PerformanceG

To optimize the task performanceG over the set of pa-
rametersw, we have to instantiate the task-optimal gradient

specified in Eq. (2.16). We first compute the derivative of the
task-specific cost function with respect to the optimal update
~v∗. Once again, we represent~v∗ as the collection{~v∗i }, where
~v∗i is a velocity vector at vertexxi. Defining∇Ln(Γ∗

n(xi))
T to

be the1× 3 spatial gradient of the warped distance transform
of then-th subjectLn(Γ∗

n(·)) at xi, we get the1×3 derivative

∂~v∗

i
gn(Γ∗

n ◦ exp(~v∗))

∣

∣

∣

∣

~v∗=0

= −2 [LT (xi) − Ln (Γ∗
n (xi))] [∇Ln (Γ∗

n (xi))] . (3.6)

Weight Update. To update the weights{λj} of the wSSD,
we compute the derivative of the registration local minimum
update~v∗ with respect to the weights. Using the approximation
in Eq. (2.14), we obtain the3 × 1 derivative of the velocity
update ~v with respect to the weights of the wSSD cost
function:

∂λk
~v∗i

(2.14)
≈ −∂2

λk,~vi
fn({λj}, Γ

∗
n ◦ exp(~v))

∣

∣

∣

∣

{λj},~v=0

(3.7)

= −∂~vi
∂λk

fn({λj}, Γ
∗
n ◦ exp(~v))

∣

∣

∣

{λj},~v=0
(3.8)

= −∂~vi
2λk [T (xk) − In(Γ∗

n ◦ exp(~v)(xk))]
2
∣

∣

∣

{λj},~v=0

(3.9)

= 4λk [T (xk) − In(Γ∗
n(xk))]∇In (Γ∗

n (xk)) δ(k, i).
(3.10)

Here δ(k, i) = 1 if k = i and is zero otherwise. Since
Eq. (3.10) is in the same direction as the first term of
the gradient descent direction of registration (negative of
Eq. (3.2)), increasingλ2

k will improve the intensity matching
of vertex xk of the template. Substituting Eq. (3.10) and
Eq. (3.6) into Eq. (2.16) provides the gradient for updating
the weights of the wSSD cost function.

Template Update. To update the template imageT
used for registration, we compute the3 × 1 derivative of the
velocity update~v with respect to the templateT :

∂T (xk)~v
∗
i

(2.14)
≈ −∂2

T (xk),~vi
fn(T, Γ∗

n ◦ exp(~v))

∣

∣

∣

∣

T,~v=0

(3.11)

= −∂~vi
∂T (xk)fn(T, Γ∗

n ◦ exp(~v))
∣

∣

∣

T,~v=0
(3.12)

= −2∂~vi
λ2

k [T (xk) − In(Γ∗
n ◦ exp(~v)(xk))]

∣

∣

∣

T,~v=0

(3.13)

= 2λ2
k [T (xk) − In(Γ∗

n(xk))]∇In (Γ∗
n (xk)) δ(k, i).

(3.14)

Since Eq. (3.14) is in the same direction as the first term
of the gradient descent direction of registration (negative of
Eq. (3.2)), whenT (xk) is larger thanIn(Γ∗

n(xk)), increasing
the value ofT (xk) will warp vertexxk of the template further
along the direction of increasing intensity in the subject image.
Conversely, ifT (xk) is smaller thanIn(Γ∗

n(xk)), decreasing
the value ofT (xk) will warp vertexxk of the template further
along the direction of decreasing intensity in the subject
image. Substituting Eq. (3.14) and Eq. (3.6) into Eq. (2.16)
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provides the gradient for updating the template used for
registration. Note that the template subject’s hidden labels
are considered fixed in template space and are not modified
during training.

We can in principle optimize both the weights{λi}
and the templateT . However, in practice, we find that
this does not lead to better localization, possibly because
of too many degrees of freedom, suggesting the need to
design better regularization of the parameters. A second
reason might come from the fact that we are only using an
approximate gradient rather than the true gradient for gradient
descent. Previous work [82] has shown that while using
an approximate gradient can lead to reasonable solutions,
using the exact gradient can lead to substantially better local
minima. Computing the exact gradient is a challenge in
our framework. We leave exploration of efficient means of
computing better approximations of the gradient to future
work.

4. EXPERIMENTS

We now present experiments on localizing Brodmann Areas
(BAs) and fMRI-defined MT+ (V5) using macro-anatomical
cortical folding in two different data sets. For both ex-
periments, we compare the framework with using uniform
weights [31] and FreeSurfer [19].

A. Brodmann Area (BA) Localization

We consider the problem of localizing Brodmann Areas
(BAs) in the surface representations of the cortex using only
cortical folding patterns. In this study, ten human brains
were analyzed histologically postmortem using the techniques
described in [57], [84]. The histological sections were aligned
to postmortem MR with nonlinear warps to build a 3D his-
tological volume. These volumes were segmented to separate
white matter from other tissue classes, and the segmentation
was used to generate topologically correct and geometrically
accurate surface representations of the cerebral cortex using
a freely available suite of tools [21]. Six manually labeled
BA maps (V1, V2, BA2, BA44, BA45, MT) were sampled
onto the surface representations of each hemisphere, and
errors in this sampling were manually corrected (e.g., when
a label was erroneously assigned to both banks of a sulcus).
A morphological close was then performed on each label to
remove small holes. Finally, the left and right hemispheres
of each subject were mapped onto a spherical coordinate
system [19]. The BAs on the resulting cortical representations
for two subjects are shown in Fig. 2(b). We do not consider
BA4a, BA4p and BA6 in this paper because they were not
histologically mapped by the experts in two of the ten subjects
in this particular data set (even though they exist in all human
brains).

As illustrated in Fig. 2(c) and discussed in multiple stud-
ies [3], [4], [18], we note that V1, V2 and BA2 are well-
predicted by local cortical geometry, while BA44, BA45 and
MT are not. For all the BAs however, a spherical morph of cor-
tical folding was shown to improve their localization compared

with only Talairach or nonlinear spatial normalization in the
Euclidean 3D space [18]. Even though each subject has multi-
ple BAs, we focus on each structure independently. This allows
for an easier interpretation of the estimated parameters, such
as the optimal template example we provide in Section 4-A3.
A clear future direction is to learn a registration cost function
that is jointly optimal for localizing multiple cytoarchitectural
or functional areas.

We compare the following algorithms:

(a) Task-Optimal. We perform leave-two-out cross-
validation to predict BA location. For each test subject,
we use one of the remaining 9 subjects as the template
subject and the remaining 8 subjects for training. When
learning the weights of the wSSD, the weights{λj}
are globally initialized to1 and the template imageT
is fixed to the geometry of the template subject. When
learning the cortical folding templateT , the template
image is initialized to that of the template subject and
the weights{λj} are globally set to1.
Once the weights or template are learned, we use them
to register the test subject and predict the BA of the test
subject by transferring the BA label from the template to
the subject. We compute the symmetric mean Hausdorff
distance between the boundary of the true BA and the
predicted BA on the cortical surface of the test subject –
smaller Hausdorff distance corresponds to better local-
ization [13]. The symmetric mean Hausdorff distance
between two curves is defined as follows. For each
boundary point of the first curve, the shortest distance
to the second curve is computed and averaged. We
repeat by computing and averaging the shortest distance
from each point of the second curve to the first curve.
The symmetric mean Hausdorff distance is obtained by
averaging the two values. We consider all 90 possibilities
of selecting the test subject and template, resulting in a
total of 90 trials and 90 mean Hausdorff distances for
each BA and for each hemisphere.

(b) Uniform-Weights. We repeat the process for the
uniform-weight method that fixes the templateT to
the geometry of the template subject, and sets all the
weights{λj} to a global fixed valueλ without training.
We explore 14 different values of global weightλ,
chosen such that the deformations range from rigid to
flexible warps. For each BA and each hemisphere, we
pick the best value of λ leading to the lowest mean
Hausdorff distances. Because there is no cross-validation
in selecting the weights, the uniform-weight method is
using an unrealistic oracle-based version of the strategy
proposed in [79].

(c) FreeSurfer. Finally, we use FreeSurfer [19] to register
the 10ex vivosubjects to the FreeSurfer Buckner40 at-
las, constructed from the MRI of 40in vivosubjects [21].
Once registered into thisin vivoatlas space, for the same
90 pairs of subjects, we can use the BAs of oneex vivo
subject to predict anotherex vivosubject. We note that
FreeSurfer also uses the wSSD cost function, but a more
sophisticated regularization that penalizes both metric
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Fig. 4. FreeSurfer’s atlas-based registration approach. Training and test
subjects are registered to an atlas. The BA of a training subject can then
be used to predict that of the test subject.

and areal distortion. For a particular tradeoff between
the similarity measure and regularization, the Buckner40
template consists of the empirical mean and variance of
the 40in vivo subjects registered to template space. We
use the reported FreeSurfer tradeoff parameters that were
used to produce prior state-of-the-art BA alignment [18].

We note that both the task-optimal and uniform-weights meth-
ods use a pairwise registration framework, while FreeSurfer
uses an atlas-based registration framework. Under the atlas-
based framework, all theex vivosubjects are registered to an
atlas (Fig. 4). To use the BA of a training subject to predict
a test subject, we have to compose the deformations of the
training subject to the atlas with the inverse deformation of
the test subject to the atlas. Despite this additional source of
error from composing two warps, it has been shown that with
carefully constructed atlases, using the atlas-based strategy
leads to better registration because of the removal of template
bias in the pairwise registration framework [6], [23], [26], [31],
[32], [39], [79].

We run the task-optimal and uniform-weights methods
on a low-resolution subdivided icosahedron mesh containing
2,562 vertices, whereas FreeSurfer results were computed on
high-resolution meshes of more than 100k vertices. In our
implementation, training on 8 subjects takes on average 4hrs
on a standard PC (AMD Opteron, 2GHz, 4GB RAM). Despite
the use of the low-resolution mesh, we achieve state-of-the-art
localization accuracy. We also emphasize that while training is
computationally intensive, registration of a new subject only
requires one minute of processing time since we are working
with low-resolution meshes.

1) Quantitative Results:Fig. 5 displays the mean and stan-
dard errors from the 90 trials of leave-two-out. On average,
task-optimal template performs the best, followed by task-
optimal weights. Permutation tests show that task-optimal
template outperforms FreeSurfer in 5 of the 6 areas, while
task-optimal weights outperforms FreeSurfer in 4 of the 6
areas after corrections for multiple comparisons (see Fig.5
for more details). For the Broca’s areas (BA44 and BA45)
and MT, this is not surprising. Since local geometry poorly
predicts these regions, by taking into account the final goal
of aligning BAs instead of blindly aligning the cortical folds,
our method achieves better BA localization. FreeSurfer andthe

uniform-weights method have similar performance because a
better alignment of the cortical folds on a finer resolution mesh
does not necessary improve the alignment of these areas.

Since local cortical geometry is predictive of V1, V2 and
BA2, we expect the advantages of our framework to vanish.
Surprisingly, as shown in Fig. 6, task-optimal template again
achieve significant improvement in BAs alignment over the
uniform-weights method and FreeSurfer. Task-optimal weights
is also significantly better than the uniform-weights method,
but only slightly better than FreeSurfer. Permutation tests show
that task-optimal template outperforms FreeSurfer in 5 of the 6
areas, while task-optimal weights is outperforms FreeSurfer in
3 of the 6 areas after corrections for multiple comparisons (see
Fig. 6 for more details). This suggests that even when local
geometry is predictive of the hidden labels and anatomy-based
registration achieves reasonable localization of the labels,
tuning the registration cost function can further improve the
task performance. We also note that in this case, FreeSurfer
performs better than the uniform-weights method on average.
Since local cortical folds are predictive of these areas, aligning
cortical folds on a higher resolution mesh yields more precise
alignment of the cortical geometry and of the BAs.

We note that the FreeSurfer Buckner40 atlas utilizes 40
in vivo subjects consisting of 21 males and 19 females of
a wide-range of age. Of these, 30 are healthy subjects whose
ages range from 19 to 87. 10 of the subjects are Alzheimer’s
patients with age ranging from 71 to 86. The average age of
the group is 56 (see [12] for more details). The T1-weighted
scans were acquired on a 1.5T Vision system (Siemens,
Erlangen Germany), with the following protocol: two sagittal
acquisitions, FOV = 224, matrix = 256× 256, resolution =
1×1×1.25mm, TR = 9.7ms, TE = 4ms, Flip angle =10◦,
TI = 20ms and TD = 200ms. Two acquisitions were averaged
together to increase the contrast-to-noise ratio. The histological
data set includes five male and five female subjects, with
age ranging from 37 to 85 years old. The subjects had no
previous history of neurologic or psychiatric diseases (see [4]
for more details). The T1-weighted scans of the subjects were
obtained on a 1.5T system (Siemens, Erlangen Germany) with
the following protocol: flip angle40◦, TR = 4ms, TE = 5ms
and resolution = 1×1×1.17mm. While there are demographic
and scanning differences between thein vivo andex vivodata
sets, the performance differences between FreeSurfer and the
task-optimal framework cannot be solely attributed to this
difference. In particular, we have shown in previous work
that FreeSurfer’s results are worse when we use anex vivo
atlas for registeringex vivo subjects (see Table III in [81]).
Furthermore, FreeSurfer’s results are comparable with that of
the uniform-weights baseline algorithm, as well as previously
published results [18], where we have checked for gross
anatomical misregistration. We emphasize that since the goal is
to optimize Brodmann area localization, the learning algorithm
might take into account the idiosyncrasies of the registration
algorithm in addition to the relationship between macro-
anatomy and cytoarchitecture. Consequently, it is possible that
the performance differences are partly a result of our algorithm
learning a registration cost function with better local minima,
thus avoiding possible misregistration of anatomy.
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Fig. 5. Mean Hausdorff distances over an entire range of harmonic energy for BA44, BA45 and MT. First row corresponds to left hemisphere. Second row
corresponds to right hemipshere.⋆ indicates that task-optimal template is statistically significantly better than FreeSurfer.† indicates that task-optimal weights
is statistically significantly better than FreeSurfer. Statistical threshold is set at0.05, FDR corrected with respect to the 24 statistical tests performed in this
section. FreeSurfer is not statistically better than either of the task-optimal methods in any of the Brodmann areas.
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Fig. 6. Mean Hausdorff distances over an entire range of harmonic energy for V1, V2 and BA2. First row corresponds to left hemisphere. Second row
corresponds to right hemipshere.⋆ indicates that task-optimal template is statistically significantly better than FreeSurfer.† indicates that task-optimal weights
is statistically significantly better than FreeSurfer. Statistical threshold is set at0.05, FDR corrected with respect to the 24 statistical tests performed in this
section. FreeSurfer is not statistically better than either of the task-optimal methods in any of the Brodmann areas.

2) Qualitative Results:Fig. 7 illustrates representative lo-
calization of the BAs for FreeSurfer and task-optimal template.
We note that the task-optimal boundaries (red) tend to be
in better visual agreement with the ground truth (yellow)
boundaries, such as the right hemisphere BA44 and BA45.

3) Interpreting the Template:Fig. 8 illustrates an exam-
ple of learning a task-optimal template for localizing BA2.
Fig. 8(a) shows the cortical geometry of a test subject together
with its BA2. In this subject, the central sulcus is more promi-
nent than the postcentral sulcus. Fig. 8(b) shows the initial
cortical geometry of a template subject with its corresponding
BA2 in black outline. In this particular subject, the postcentral
sulcus is more prominent than the central sulcus. Conse-

quently, in the uniform-weights method, the central sulcus
of the test subject is incorrectly mapped to the postcentral
sulcus of the template, so that BA2 is misregistered. Fig. 8(b)
also shows the BA2 of the test subject (green) overlaid on
the cortical geometry of the template subject after registration
to the initial template geometry. During task-optimal training,
our method interrupts the geometry of the postcentral sulcus
in the template because the uninterrupted postcentral sulcus in
the template is inconsistent with localizing BA2 in the training
subjects. The final template is shown in Fig. 8(c). We see that
the BA2 of the subject (green) and the task-optimal template
(black) are well-aligned, although there still exists localization
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Fig. 8. Template estimation in the task-optimal framework improves localization of BA2. (a) Cortical geometry of test subject with corresponding BA2 (in
green). (b) Initial cortical geometry of template subject with corresponding BA2 (in black). In (b), we also show the BA2of the test subject (in green) after
registration to the intial template. (c) Final cortical geometry of template subject after task-optimal training. BA2of the test subject (in green) after registration
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error in the superior end of BA2.

In the next section, we turn our attention to a functional
Magnetic Resonance Imaging (fMRI) data set. Since the
task-optimal template performed better than the task-optimal
weights, we will focus on the comparison between the task-

optimal template and FreeSurfer.

B. fMRI-MT+ Localization

We now consider the application of localizing fMRI-defined
functional areas in the cortex using only cortical folding pat-
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Fig. 9. Mean Hausdorff distances usingex vivoMT to predict MT+ in in
vivo scans. Permutation testing shows that the differences between FreeSurfer
and task-optimal template are statistically significant (p < 10−5).

terns. Here, we focus on the so-called MT+ area localized in 42
in vivo subjects using fMRI. The MT+ area defined function-
ally is thought to include primarily the cytoarchitectonically-
defined MT and a small part of the medial superior temporal
(MST) area (hence the name MT+). The imaging paradigm
involved subjects viewing an alternating 16 second blocks of
moving and stationary concentric circles. The structural scans
were processed using the FreeSurfer pipeline [21], result-
ing in spherically parameterized cortical surfaces [11], [19].
The functional data were analyzed using the general linear
model [22]. The resulting activation maps were thresholded
by drawing the activation boundary centered around the vertex
with maximal activation. The threshold was varied across
subjects in order to maintain a relatively fixed ROI area
of about 120mm2(±5%) as suggested in [68]. The subjects
consist of 10 females and 32 males, with age ranging from
21 to 58 years old. 23 of the 42 subjects are clinically
diagnosed with schizophrenia, while the other 19 subjects are
healthy controls. Imaging took place on a 3 Tesla MR scanner
(Siemens Trio) with echoplanar (EP) imaging capability. Sub-
jects underwent two conventional high-resolution 3D structural
scans, constituting a spoiled GRASS (SPGR) sequence (128
sagittal slices, 1.33mm thickness, TR = 2530ms, TE = 3.39ms,
flip angle =7◦, voxel size= 1.3× 1× 1.3mm). Each functional
run lasted 224 seconds during which T2*-weighted echoplanar
(EP) images were acquired (33× 3 mm thick slices, 3× 3 ×
3mm voxel size) using a gradient echo (GR) sequence (TR =
2000ms; TE = 30ms; flip angle =90◦). To maximize training
data, no distinction is made between the healthy controls and
schizophrenia patients.

1) Ex vivo MT Prediction of In vivo MT+:In this experi-
ment, we use each of the 10ex vivosubjects as a template and
the remaining 9 subjects for training a task-optimal template
for localizing MT. We then register each task-optimal template
to each of the 42in vivosubjects and use the template subject’s
MT to predict that of the test subjects’ MT+. The results are
420 Hausdorff distances for each hemisphere. For FreeSurfer,
we align the 42in vivo subjects to the Buckner40 atlas. Once
registered in this space, we can use MT of theex vivosubjects

to predict MT+ of thein vivo subjects.
Fig. 9 reports the mean and standard errors of the Haus-

dorff distances for both methods on both hemispheres. Once
again, we find that the task-optimal template significantly
outperforms the FreeSurfer template (p < 10−5 for both
hemispheres). We note that the errors in thein vivo subjects
(Fig. 9) are significantly worse than those in theex vivosub-
jects (Fig. 5). This is not surprising since functionally defined
MT+ is slightly different from cytoarchitectonically defined
MT. Furthermore, theex vivosurfaces tend to be noisier and
less smooth than those acquired fromin vivo subjects [81].
Since our framework attempts to leverage domain specific
knowledge about MT from theex vivo data, one would
expect these mismatches between the data sets to be highly
deterimental to our framework. Instead, FreeSurfer appears to
suffer more than our framework.

2) In vivo MT Prediction of In vivo MT+:To understand
the effects of the training set size on localization accuracy, we
perform cross-validation within the fMRI data set. For each
randomly selected template subject, we consider 9, 19 or 29
training subjects. The resulting task-optimal template isused
to register and localize MT+ in the remaining 32, 22 or 12 test
subjects respectively. The cross-validation trials were repeated
100, 200 and 300 times respectively, resulting in a total of
3,200, 4,400 and 3,600 Hausdorff distances. This constitutes
thousands of hours of computation time. For FreeSurfer, we
perform a pairwise prediction of MT+ among thein vivo
subjects after registration to the Buckner40 atlas, resulting in
1,722 Hausdorff distances per hemisphere.

Fig. 10 reports the mean and standard errors of the Haus-
dorff distances for FreeSurfer and task-optimal template on
both hemispheres. We see that the FreeSurfer alignment errors
are now commensurate with theex vivoresults (Fig. 5). How-
ever, the task-optimal template still outperforms FreeSurfer
(p < 10−5 for all cases). We also note that the accuracy
of MT+ localization improves with the size of the training
set. The resulting localization error with a training set of29
subjects is less than7mm for both hemispheres. For all training
set sizes, the localization errors are also better than theex vivo
MT experiment (Fig. 5).

5. DISCUSSION ANDFUTURE WORK

The experiments in the previous section demonstrate the fea-
sibility of learning registration cost functions with thousands
of degrees of freedom from training data. We find that the
learned registration cost functions generalize well to unseen
test subjects of the same (Sections 4-A and 4-B2), as well
as different imaging modality (Section 4-B1). The almost
linear improvement with increasing training subjects in the
fMRI-defined MT+ experiment (Fig. 10) suggests that further
improvements can be achieved (in particular in the histological
data set) with a larger training set. Unfortunately, histological
data over a whole human hemisphere is difficult to obtain,
while fMRI localization experiments tend to focus on single
functional areas. Therefore, a future direction of research is to
combine histological and functional information obtainedfrom
different subjects and imaging modalities during training.
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Fig. 10. Plot of mean hausdorff errors for MT+ from cross-validation of the fMRI data set using either FreeSurfer orin vivo trained task-optimal template.
For the task-optimal framework, we tried different number of training subjects. Test errors decrease as we go from 9 to 19to 29 training subjects. Once again,
permutation testing shows that the differences between FreeSurfer and task-optimal template are statistically significant (p < 10

−5).

Since our measure of localization accuracy uses the mean
Hausdorff distance, ideally we should incorporate it into our
task-specific objective function instead of the SSD on the
distance transform representing the BA. Unfortunately, the
resulting derivative is difficult to compute. Furthermore,the
gradient will be zero everywhere except at the BA boundaries,
causing the optimization to proceed slowly. On the other
hand, it is unclear how aligning the distance transform values
far from the boundary helps to align the boundary. Since
distance transform values far away from the boundary are
larger, they can dominate the task-specific objective function g.
Consequently, we utilize the distance transform over the entire
surface to compute the gradient, but only consider the distance
transform within the boundary of the template BA when
evaluating the task performance criteriong.

The idea of using multiple atlases for segmentation has
gained recent popularity [29], [49], [50], [53], [55], [76].
While we have focused on building a single optimal tem-
plate, our method can complement the multi-atlas approach.
For example, one could simply fuse the results of multi-
ple individually-optimal templates for image segmentation. A
more ambitious task would be to optimize for multiple jointly-
optimal templates for segmentation.

In this work, we select one of the training subjects as the
template subject and use the remaining subjects for training.
The task-specific cost functiong evaluates the localization of
the hidden labels via the template subject. During training
(either for learning the weights or template in the registration
cost function), the Brodmann areas of the template subject are
held constant. Because the fixed Brodmann areas are specific
to the template subject, the geometry of the template subject
should in fact be the best and most natural initialization. It
does not make sense to use the geometry of another subject
(or average geometry of the training subjects) as initialization
for the template subject’s Brodmann areas, especially since the
geometry of this other subject (or average geometry) is not
registered to the geometry of the template subject. However,
the use of a single subject’s Brodmann (or functional) area can
bias the learning process. An alternative groupwise approach

modifies the task-specific cost functiong to minimize the
variance of the distance transforms across training subjects
after registration. In this case, both the template geometry
and Brodmann (functional) area are estimated from all the
training subjects and dynamically updated at each iteration of
the algorithm. The average geometry of the training subjects
provided a reasonable template initialization. However, our
initial experiments in theex vivodata set do not suggest an im-
provement in task performance over the pairwise formulation
in this paper.

While this paper focuses mostly on localization of hidden
labels, different instantiations of the task-specific costfunction
can lead to other applications. For example, in group analysis,
the task-specific cost function could maximize differences
between diseased and control groups, while minimizing intra-
group differences, similar to a recent idea proposed for dis-
criminative Procrustes alignment [38].

6. CONCLUSION

In this paper, we present a framework for optimizing the
parameters of any smooth family of registration cost func-
tions, such as the image dissimilarity-regularization tradeoff,
with respect to a specific task. The only requirement is that
the task performance can be evaluated by a smooth cost
function on an available training data set. We demonstrate
state-of-the-art localization of Brodmann areas and fMRI-
defined functional regions by optimizing the weights of the
wSSD image-similarity measure and estimating an optimal
cortical folding template. We believe this work presents an
important step towards the automatic selection of parameters
in image registration. The generality of the framework also
suggests potential applications to other problems in science
and engineering formulated as optimization problems.
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APPENDIX A
PROOF OFPROPOSITION2

In this appendix, we prove Proposition 2:If the Hessian
∂2

vf(w0, Γ
∗(w0) ◦ δΓ(v)) is positive definite atv = 0, then

there exists anǫ > 0, such that for all δw, ‖δw‖ < ǫ,
a unique continuous functionv∗(w0, δw) exists, such that
v∗(w0, δw) is the new local minimum for parametersw0 +δw

and v∗(w0, 0) = 0. Furthermore,v∗(w0, δw) has the same
order of smoothness asf .

In the next section, we first prove that the Hessian
∂2

v1
f(w0, Γ

∗(w0)◦δΓ(v1))
∣

∣

∣

v1=0
is equal to the mix-derivatives

matrix ∂2
v1,v2

f(w0, Γ
∗(w0) ◦ δΓ(v1) ◦ δΓ(v2))

∣

∣

∣

v1=v2=0
under

the composition of diffeomorphisms model [75], [81], [82].
We then complete the proof of Proposition 2.

A. Proof of the Equivalence between the Hessian and Mix-
Derivatives Matrix for the Composition of Diffeomorphisms
Model

We will only provide the proof for when the image is
defined inR

3 so as not to obscur the main ideas behind the
proof. To extend the proof to a manifold (e.g.,S2), one simply
need to extend the notations and bookkeeping by the local
parameterizing the velocity fieldsv1 andv2 using coordinate
charts. The same proof follows.

Let us define some notations. Suppose the image and there
areM voxels. Let~x be theR

3M rasterized coordinates of the
M voxels. For conciseness, we define for the fixed parameters
w0,

p(~x) , f(w0, Γ
∗(w0)(~x)) (A.1)

Thereforep is a function fromR
3M to R. Under the composi-

tion of diffeomorphisms model,δΓ(v) is the diffeomorphism
parameterized by the stationary velocity fieldv defined on the
M voxels, so thatδΓ(v)(·) is a function fromR

3M to R. To
make the dependence ofδΓ(v) on v explicit, we define

Υ(v, ~x) , δΓ(v)(~x), (A.2)

and soΥ is a function fromR
3M × R

3M to R
3M . In other

words, we can rewrite

∂2
v1

f(w0, Γ
∗(w0) ◦ δΓ(v1)) = ∂2

v1
p(Υ(v1, ~x)) (A.3)

and

∂2
v1,v2

f(w0, Γ
∗(w0) ◦ δΓ(v1) ◦ δΓ(v2))

= ∂2
v1,v2

p(Υ1(v1, Υ2(v2, ~x))). (A.4)

Now that we have gotten the notations out of the way, we will
now show that

∂2
v1

p(Υ(v1, ~x))
∣

∣

∣

v1=0
= ∂2

v1,v2
p(Υ1(v1, Υ2(v2, ~x)))

∣

∣

∣

v1=v2=0

= ∂2
~xp(~x) (A.5)

Hessian.We first compute the1× 3M Jacobian via the chain
rule

∂v1
p(Υ(v1, ~x)) = (∂Υp) (∂v1

Υ) . (A.6)

From the above equation, we can equivalently write down the
j-th component of the1 × 3M Jacobian:

∂v1
p(Υ(v1, ~x)) (j) =

∑

n

(∂Υnp)
(

∂
v

j
1

Υn
)

, (A.7)

whereΥn andv
j
1 denote then-th andj-th components ofΥ

andv1 respectively. Now, we compute the(i, j)-th component
of the 3M × 3M Hessian using the product rule

∂2
v1

p(Υ(v1, ~x))
∣

∣

∣

v1=0
(i, j)

= ∂vi
1

∑

n

(∂Υnp)
(

∂
v

j
1

Υn
)
∣

∣

∣

v1=0
(A.8)

=
∑

n

[(

∂2
vi
1
,Υnp

) (

∂
v

j
1

Υn
)

+ (∂Υnp)
(

∂2
vi
1
v

j

1

Υn
)]
∣

∣

∣

v1=0

(A.9)

=
∑

n,k

(

∂2
ΥkΥnp

)

(

∂vi
1

Υk
) (

∂
v

j
1

Υn
) ∣

∣

∣

v1=0

+
∑

n

(∂Υnp)
(

∂2
vi
1
v

j
1

Υn
) ∣

∣

∣

v1=0
(A.10)

Because∂v1
Υ
∣

∣

∣

v1=0
is the identity matrix and the1×3M Jaco-

bian∂v1
p(Υ(v1, ~x))

∣

∣

∣

v1=0
= (∂Υp) (∂v1

Υ)
∣

∣

∣

v1=0
= 0 (because

derivative is zero at local minimum), we get∂Υp

∣

∣

∣

v1=0
= 0,

and so the second term in Eq. (A.10) is zero.

To simplify the first term of Eq. (A.10), we once again use
the fact that∂v1

Υ
∣

∣

∣

v1=0
is the identity matrix, and so the

summand is zero unlessk = i and n = j. Consequently,
Eq. (A.10) simplifies to

∂2
v1

p(Υ(v1, ~x))
∣

∣

∣

v1=0
(i, j) = ∂2

ΥiΥj p (A.11)

or equivalently,

∂2
v1

p(Υ(v1, ~x))
∣

∣

∣

v1=0
= ∂2

~xp(~x) (A.12)

Mix-Derivatives Matrix. We first compute the1 × 3M
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Jacobian via the chain rule

∂v2
p(Υ1(v1, Υ2(v2, ~x)))

∣

∣

∣

v2=0

= (∂Υ1
p) (∂Υ2

Υ1) (∂v2
Υ2)

∣

∣

∣

v2=0
(A.13)

= (∂Υ1
p) (∂~xΥ1(v1, ~x)) . (A.14)

From the above equation, we can equivalently write down the
j-th component of the1 × 3M Jacobian:

∂v2
p(Υ1(v1, Υ2(v2, ~x)))

∣

∣

∣

v2=0
(j) =

∑

n

(

∂Υn
1
p
)

(∂~xj Υn
1 ) ,

(A.15)

Now, we compute the(i, j)-th component of the3M × 3M

mix-derivatives matrix using the product rule

∂2
v1,v2

p(Υ1(v1, Υ2(v2, ~x)))
∣

∣

∣

v1=v2=0
(i, j)

= ∂vi
1

∑

n

(

∂Υn
1
p
)

(∂~xj Υn
1 )
∣

∣

∣

v1=v2=0

=
∑

n

[(

∂2
vi
1
,Υn

1

p
)

(∂~xj Υn
1 ) +

(

∂Υn
1
p
)

(

∂2
vi
1
,~xj Υ

n
1

)] ∣

∣

∣

v1=v2=0

(A.16)

=
∑

n,k

(

∂2
Υk

1
,Υn

1

p
)(

∂vi
1

Υk
1

)

(∂~xjΥn
1 )

+
∑

n

(

∂Υn
1
p
)

(

∂2
vi
1
,~xj Υ

n
1

) ∣

∣

∣

v1=v2=0

(A.17)

Like before, we have∂Υp
∣

∣

∣

v1=v2=0
= 0, and so the second

term is zero. Because∂v1
Υ
∣

∣

∣

v1=0
is the identity,∂vi

1

Υn
1 is zero

unlessk = i. SinceΥn
1 (v1 = 0, ~x) = ~x, ∂~xj Υn

1 is also equal
to zero unlessn = j. Therefore, we get

∂2
v1,v2

p(Υ1(v1, Υ2(v2, ~x)))
∣

∣

∣

v1=v2=0
(i, j) = ∂2

Υi
1
,Υj

1

p (A.18)

or equivalently,

∂2
v1,v2

p(Υ1(v1, Υ2(v2, ~x)))
∣

∣

∣

v1=v2=0
= ∂2

~xp(~x) (A.19)

B. Completing the Proof of Proposition 2

We now complete the proof of Proposition2. Leth(w, v1) ,

∂v2
f(w, Γ∗(w0) ◦ δΓ(v1) ◦ δΓ(v2))

∣

∣

∣

v2=0
. SinceδΓ(0) = Id,

we have

h(w, v1)
∣

∣

∣

w0,0
= ∂v2

f(w, Γ∗(w0) ◦ δΓ(0) ◦ δΓ(v2))
∣

∣

∣

v2=0

(A.20)

= ∂v2
f(w, Γ∗(w0) ◦ δΓ(v2))

∣

∣

∣

v2=0
(A.21)

= 0 (A.22)

where the last equality comes from the definition ofΓ∗(w0)
being a local minimum for the composition model.

Since the mix-derivatives matrix∂v1
h(w, v1)

∣

∣

v1=0
is invert-

ible by the positive-definite assumption of this proposition,
by the Implicit Function Theorem, there exists anǫ > 0,
such that for allδw, ‖δw‖ < ǫ, there is a unique continuous

function v∗(w0, δw), such thath(w0 + δw, v∗(w0, δw)) = 0
and v∗(w0, 0) = 0. Furthermore,v∗(w0, δw) has the same
order of smoothness asf .

Let k(w, v1) = ∂2
v2

f(w, Γ∗(w0) ◦ δΓ(v1) ◦ δΓ(v2))
∣

∣

∣

v2=0
.

Thenk(w0, 0) is positive definite atv1 = 0 by the assumption
of the proposition. By the smoothness of derivatives and
continuity of eigenvalues, there exists a small neighborhood
around(w0, v1 = 0) in which the eigenvalues ofk(w, v1) are
all greater than zero. ThereforeΓ∗(w0)◦δΓ(v∗(w0, δw)) does
indeed define a new local minimum close toΓ∗(w0).

APPENDIX B
COMPUTING THE DERIVATIVE ∂wv∗

To compute∂wv∗, we perform a Taylor expansion:

∂v2
f(w, Γ∗ ◦ δΓ(v1) ◦ δΓ(v2))

∣

∣

∣

∣

w0+δw,v1,v2=0

=
[

∂2
v1,v2

f(w, Γ∗ ◦ δΓ(v1) ◦ δΓ(v2))v1+ (B.1)

+ ∂2
w,v2

f(w, Γ∗ ◦ δΓ(v1) ◦ δΓ(v2))δw+

+ O(δw2, v2
1)
]

∣

∣

∣

∣

w0,v1=0,v2=0

=
[

∂2
v1,v2

f(w, Γ∗ ◦ δΓ(v1) ◦ δΓ(v2))v1+ (B.2)

+ ∂2
w,v2

f(w, Γ∗ ◦ δΓ(v2))δw+

+ O(δw2, v2
1)
]

∣

∣

∣

∣

w0,v1=0,v2=0

and rearranging the terms forv1 = v∗, we get

∂wv∗ = −
(

∂2
v1,v2

f(w, Γ∗ ◦ δΓ(v1) ◦ δΓ(v2))
)−1

× (B.3)

× ∂2
w,v2

f(w, Γ∗ ◦ δΓ(v2))

∣

∣

∣

∣

w0,v1=0,v2=0
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