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Near-infrared spectroscopy (NIRS) signals have been shown to correlate with resting-state BOLD-fMRI data
across the whole brain volume, particularly at frequencies below 0.1 Hz. While the physiological origins of
this correlation remain unclear, its existence may have a practical application in minimizing the background
physiological noise present in BOLD-fMRI recordings. We performed simultaneous, resting-state fMRI and
28-channel NIRS in seven adult subjects in order to assess the utility of NIRS signals in the regression of
physiological noise from fMRI data. We calculated the variance of the residual error in a general linear
model of the baseline fMRI signal, and the reduction of this variance achieved by including NIRS signals
in the model. In addition, we introduced a sequence of simulated hemodynamic response functions
(HRFs) into the resting-state fMRI data of each subject in order to quantify the effectiveness of NIRS signals
in optimizing the recovery of that HRF. For comparison, these calculations were also performed using a
pulse and respiration RETROICOR model. Our results show that the use of 10 or more NIRS channels can reduce
variance in the residual error by asmuch as 36% on average across the whole cortex. However the same number
of low-pass filtered white noise regressors is shown to produce a reduction of 19%. The RETROICOR model
obtained a variance reduction of 6.4%. Our HRF simulation showed that the mean-squared error (MSE) between
the recovered and trueHRFs is reducedby 21% on averagewhen 10NIRS channels are applied and by introducing
an optimized time lag between the NIRS and fMRI time series, a single NIRS channel can provide an averageMSE
reduction of 14%. The RETROICOR model did not provide a significant change in MSE. By each of the metrics
calculated, NIRS recording is shown to be of significant benefit to the regression of low-frequency physiological
noise from fMRI data.

© 2011 Elsevier Inc. All rights reserved.
Introduction

Near-infrared spectroscopy (NIRS) uses variations in the absorp-
tion of near-infrared light to infer changes in the concentration of
oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) in the cerebral
cortex (Franceschini and Boas, 2004; Gibson et al., 2005; Obrig and
Villringer, 2003). The most common applications of NIRS employ a
back-reflection geometry, such that both the source and detector of
the near-infrared light are positioned on the same surface (Villringer
et al., 1993). This geometry is usually necessary to ensure that an
adequate amount of light can reach both the brain and then the detec-
tor, but it renders NIRS measurements highly sensitive to background
hemodynamic oscillations in superficial tissues. These oscillations, due
to heart rate, respiration and a variety of low-frequency effects, form
the background physiological noise through which changes in cortical
Cooper).
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HbO and HbR must be identified (Diamond et al., 2006; Lina et al.,
2008; Prince et al., 2003).

The blood oxygen level dependent (BOLD) signal of functional
magnetic resonance imaging (fMRI) occurs because of variations in
the local concentration of the paramagnetic deoxyhemoglobinmolecule
(Huettel et al., 2004). As it is a hemodynamic measurement, BOLD-fMRI
is also highly sensitive to background physiological oscillations and
despite the autoregulatory actions of the brain, the effects of heart
rate, respiration rate and low-frequency hemodynamic oscillations
are often present in fMRI data (Hu et al., 1995).

A number of simultaneous NIRS and fMRI experiments have been
performed in the study of functional activation (Huppert et al., 2006;
Steinbrink et al., 2006; Strangman et al., 2002; Toronov et al., 2001).
These studies have sought to investigate the relationship between
the functional NIRS and BOLD signals in common regions of the brain,
and have shown that there is a good correlation between the NIRS-
recorded functional HbR response and the local BOLD signal. Recent
studies have begun to investigate the relationship between NIRS and
fMRI-BOLD during the resting state, i.e. when no stimulation paradigm
is applied. Preliminary work by our group (Greve et al., 2009) and

http://dx.doi.org/10.1016/j.neuroimage.2011.11.028
mailto:rcooper@nmr.mgh.harvard.edu
http://dx.doi.org/10.1016/j.neuroimage.2011.11.028
http://www.sciencedirect.com/science/journal/10538119


3129R.J. Cooper et al. / NeuroImage 59 (2012) 3128–3138
studies by Tong et al. (Tong and Frederick, 2010; Tong et al., 2011)
have described a significant correlation between NIRS signals and
BOLD-fMRI data across the whole brain volume during the resting
state. A NIRS signal, obtained using sources and detectors placed
on the scalp, appears to not only correlate with the BOLD signal present
in the cortical voxels to which it is directly sensitive, but also to the
BOLD signal of a large number of voxels spread throughout the brain.
These resting-state correlations are particularly apparent at frequencies
below 0.1 Hz (Greve et al., 2009; Tong and Frederick, 2010).

Tong and Frederick (2010) presented compelling evidence that
the correlation which exists between resting-state NIRS and BOLD-
fMRI is dominated by systemic oscillations in blood pressure which
traverse the cerebral vasculature, rather than being suggestive of
resting-state neural connectivity (Biswal et al., 1995). Systemic
hemodynamic oscillations at 0.1 Hz and below are common to NIRS
and BOLD-fMRI recordings and are thought to have two main sources;
the variations in local vascular dilation known as vaso-motion
(Gustafsson, 1993) and oscillations in arterial blood pressure known as
Mayer waves (Julien, 2006). Although it was not explicitly proven,
Tong and Frederick (2010) suggested that the component of the NIRS
signal which correlates with BOLD-fMRI across the brain is primarily
that derived from superficial tissues (i.e. the scalp) and not from the
brain. While it is beyond doubt that NIRS signals contain a significant
contribution from the cerebral cortex (and that this contribution will
correlate with the local fMRI voxels), this contribution is invariably
smaller than that of the superficial tissues (Boas et al., 2004; Obrig
and Villringer, 2003). The dominance of superficial hemodynamic
oscillations is partly what necessitates the detailed signal analysis
and averaging common to functional NIRS experiments.

Irrelevant of its origin, the existence of a correlation between NIRS
and fMRI-BOLD in the absence of stimulation has an obvious potential
application: the minimization of physiological noise in fMRI experi-
ments. The BOLD hemodynamic response function (HRF) typically
provides a peak signal change of between 1 and 5% (Buxton et al., 1998;
Friston et al., 2000), which can be significantly less than the level of
physiological noise in the BOLD-fMRI signal. In order to maximize the
efficiency with which the HRF can be recovered, fMRI experiments
typically consist of carefully designed paradigms of stimulus repetition
(Dale, 1999; Friston et al., 1999). The reliable identification of the
physiological noise present in the BOLD signal allows for an increase
in signal-to-noise ratio for a given experimental paradigm, or can allow
the same signal-to-noise ratio to be achieved using fewer stimulations,
minimizing the necessary duration of the fMRI scan. This goal is not
insignificant, as fMRI experiments often require a subject to remain
stationary in the scanner for periods of over an hour (Huettel et al.,
2004). In addition to being expensive, this can cause serious discomfort
and makes fMRI experiments less suitable for vulnerable subject
groups.

A common approach to the minimization of fMRI physiological
noise involves the distal measurement of hemodynamic oscillations
and associated factors with a view to including these measurements
in the linear model of the BOLD-fMRI signal. When applied in this
way, such measurements are referred to as ‘nuisance regressors’.
Measurements of heart rate and heart rate variability (Bianciardi et
al., 2009; Chang et al., 2009; Glover et al., 2000) respiration rate and
respiration rate variability (Birn et al., 2006, 2008) and end-tidal carbon
dioxide (Chang and Glover, 2009; Wise et al., 2004) have all been
investigated as nuisance regressors. The most commonly applied
nuisance regression technique is known as RETROspective Image
CORrection (RETROICOR) (Glover et al., 2000). This approach uses
distal measurements of pulse rate (via a pulse oximeter) and respiration
(via a pneumatic chest belt) to enable an image-based correction of
respiration and pulsatile oscillations in the BOLD signal.

For this study, we acquired simultaneous, resting-state fMRI and
28-channel NIRS in seven healthy adults in order to thoroughly assess
the utility of NIRS signals as fMRI nuisance regressors. We calculate
the variance of the residual error in a general linear model of the
baseline fMRI signal, and calculate the reduction in this variance
that can be obtained by employing NIRS signals to regress out low-
frequency physiological noise. To provide a more rigorous assessment,
we simulate an event-related fMRI paradigm by introducing a series
of synthetic HRFs into the resting-state fMRI data of our seven subjects
in order to explicitly quantify the utility of NIRS in the recovery of the
HRF using a finite impulse response (FIR) model (Burock and Dale,
2000). In both cases, we compare each NIRS model with a model
containing both pulse and respiration RETROICOR regressors. We
also asses the utility of a single NIRS channel in groups of voxels
with different NIRS–fMRI correlation in order to quantify the success
of a given NIRS regressor in terms of the baseline correlation between it
and the BOLD-fMRI volume. Finally, we attempt to optimize the recovery
of the HRF using a single NIRS channel by introducing a voxel-specific
time lag between the NIRS and BOLD-fMRI time series.

Methods

Subjects and data acquisition

Seven healthy adult subjectswere recruited to this study,whichwas
approved by the Institutional Review Board of Massachusetts General
Hospital. Each subject provided written, informed consent and under-
went a single scanning session consisting of three resting-state runs
lasting 300 s.

Near-infrared spectroscopy was performed using a bilaterally
symmetric 28-channel probe and the TechEn CW6 continuous wave
NIRS system operating at 690 and 830 nm, with a sample rate of 25 Hz
(Franceschini et al., 2006). The NIRS probe covers a large proportion of
the frontal and temporal lobes and is shown in position in Fig. 1.

AllMRI datawere acquired using a Siemens Tim Trio 3T system. Prior
to functional imaging, an anatomical MRI was obtained using an MP-
RAGE imaging sequence (TR=2530ms, TI=1100 ms, TE=3.44 ms).
Functional MRI was performed using the Functional Biomedical Infor-
matics Research Network protocol (fBIRN, www.birncommunity.org)
(Greve et al., 2011) such that TR=2 s, flip angle=77°, TE=30ms,
number of slices=30, echo spacing=500 ms, with posterior–anterior
phase encoding and a bandwidth of 2290 Hz/pixel. The in-plane resolu-
tion was 3.43 mmwith a slice thickness of 5 mmwith a 1 mm skip and
axial slices approximately aligned with the AC–PC line. Each functional
run provided an fMRI time course of 150 data points. The scanner trig-
ger pulse was acquired to allow the synchronization of the NIRS and
fMRI recordings.

Cardiac and respiration waveforms were measured for all subjects
using a pulse oximeter and either a pressure monitor or stress gauge
attached to the chest with an elastic belt. Both acquisitions were
sampled at 25 Hz.

NIRS pre-processing

The changes in optical density recorded at each of the 28 channels
were converted to changes in concentration of HbO and HbR using
the modified Beer–Lambert relationship, with a path length correc-
tion factor of 6 and a partial volume correction factor of 50 (Boas et
al., 2004; Huppert et al., 2006) . A NIRS channel was excluded from
subsequent processing if the baseline detected intensity of either
wavelength was below or above the acceptable range of the system
(40 to 70 dB respectively) or if the channel was determined to be
excessively noisy on visual inspection. Previous work has shown that
NIRS–fMRI correlations are dominated by low-frequency components
(Greve et al., 2009; Tong and Frederick, 2010). As a result our HbO
and HbR waveforms were low-pass filtered at 0.1 Hz (Butterworth,
5th order) before being synchronized to the fMRI trigger pulse and
down-sampled to the fMRI sample rate of 0.5 Hz. If no channels were
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Fig. 1. The 28-channel NIRS array is shown in position on one subject in panel a. Panel b shows the schematic arrangement of the array.
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rejected, this process would produce 56 time series (28 for HbO and 28
for HbR), each with 150 data points.

fMRI pre-processing

All fMRI scans were motion corrected to the middle time point
using the AFNI 3dvolreg program (Cox and Jesmanowicz, 1999).
Non-brain voxels were masked out using the FSL Brain Extraction Tool
(Smith, 2002). Anatomical images were analyzed using FreeSurfer
(surfer.nmr.mgh.harvard.edu) (Dale et al., 1999; Fischl et al., 1999)
to construct models of the cortical surface of each individual. Each
fMRI time series was smoothed using a 5 mm full-width at half-
maximum Gaussian in the 3D volume. The middle time point of
each run was registered to the subject's anatomical image using the
FreeSurfer bbregister program (Greve and Fischl, 2009) which
allowed the subject-specific cortical mask to be mapped into the
functional image space. All reported results are from cortical gray
matter.

RETROICOR processing

Pulsatile and respiration regressors were created using the RETRO-
spective Image CORrection (RETROICOR) approach (Glover et al., 2000).
Pulse and respiration waveforms were modeled using a fundamental
and first harmonic sine and cosine function to produce 4 regressors
for pulse and 4 for respiration. These regressor waveforms were
down-sampled to the fMRI acquisition rate on a slice-specific basis, so
as to compensate for the finite delay between the acquisition of consec-
utive slices (Jones et al., 2008). The pulse oximetry data of one run in
one subject was rejected due to a recording error. In this case only
the 4 respiration RETROICOR regressors were used in further
processing.

Linear models and error variance reduction

To assess the utility of NIRS regression of physiological noise, we
constructed a number of linear models of the resting-state fMRI signal.
All regression analyses were performed using FreeSurfer (surfer.nmr.
mgh.harvard.edu) and bespoke Matlab (The Mathworks Inc.) software
functions. The first linear model consisted of 3 regressors corresponding
to the 0th, 1st and 2nd order temporal drift polynomials and a fur-
ther 6 regressors constructed from motion correction parameters.
This ‘reference’ model is used as a comparison throughout, and forms
the basis of all other models.

A slice-specific RETROICOR model was computed by augmenting
the reference model with all 4 pulse and all 4 respiration RETROICOR
waveforms for each slice as defined above. The regressionwas performed
on a slice-specific basis and the results averaged across all cortical
voxels.

The NIRS models were computed by adding one or more of the
down-sampled NIRS signals to the reference model. The NIRS models
are separated into ‘HbO models’ (those containing one or more HbO
regressors), ‘HbR models’ (those containing one or more HbR regres-
sors) and ‘HbO & HbR models’ (those containing both the HbO and
HbR regressors from one or more NIRS channels). To provide a simple
metric of the efficacy of NIRS modelling of resting-state fMRI time
series, we computed the variance of the residual error of each
model and compared it to that of the reference model. The larger
the reduction in variance the better the model of the fMRI time series
(a percentage variance reduction (PVR) of 100%, indicates that
the model is able to remove all the variance in the fMRI time series
unaccounted for by the reference model). The PVR achieved by the
RETROICOR model was also calculated. A general linear model (GLM)
of the fMRI time series (Y), with design matrix (X) has a residual error
(ε) given by:

ε ¼ Y−Xβ̂ ð1Þ

where β̂ is the vector of parameter estimates calculated via:

β̂ ¼ X0X
� �−1X0Y ð2Þ

The residual variance is given by:

var εð Þ ¼ εTε
d

ð3Þ

where d is an estimate of themodel's degrees of freedomand is a function
of the number of regressors included in themodel. As themodel is altered
(for example by adding regressors to the design matrix, X), the residual
variance (var(ε))will change depending on howwell themodel accounts
for data. Note that the variance does not necessarily decrease with
the addition of regressors to the linear model.

HRF simulation

To further quantify the utility of NIRS regressors in the removal of
physiological noise, and therefore the improved recovery of a functional
response, we introduced a series of simulated HRFs into the resting-state
fMRI time series of each data set. We produced a simple HRF using a
single-gamma function (Fig. 7) with a peak latency of 6 s, down-
sampled to match TR and scaled to provide a 2% peak increase in the
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BOLD signal of each relevant voxel. A ‘stimulus paradigm’ of ten HRFs
was introduced into each 300-second run in an event-related fashion.
To increase the reliability of our results, 30 different stimulus paradigms
were used in which each inter-HRF-interval was a randomly selected
period between 2 and 24 s. For each stimulus paradigm, subject, run
and linear model, the HRF was estimated using a finite impulse response
approach. For comparison, this process was also performed for the
RETROICOR model. The HRF recovered by each model was compared
to the true HRF time series using two metrics: the mean-squared
error (MSE) and Pearson's correlation coefficient (R2). Within the
context of the GLM, the MSE is given by:

MSE ¼ var εð Þ
ξ

ð4Þ

where the efficiency of the model (ξ) is:

ξ ¼ 1

trace C X
0
X

� �−1C
0

� � ð5Þ

and C is the contrast matrix pertaining to the HRF (Dale, 1999). The
value of the MSE achieved by a given model is thus dependent on
both the residual variance and the efficiency of that model.

As the correlation between a given NIRS channel and the fMRI signal
will vary significantly across the fMRI volume (Tong and Frederick,
2010), the selection of specific regions of interest in which to apply
the simulated functional response so as to best test the use of NIRS
signals as nuisance regressors is not trivial. To estimate the average
effect of NIRS regression, the simulated HRFs were first added to
(and recovered from) the BOLD time series of every cortical voxel,
without any consideration for the correlation between the NIRS signals
and the fMRI volume.

Selected voxels and optimized time lag

This simulation was repeated for models containing only a single
NIRS regressor in groups of 100 voxels selected on the basis of the
value of the correlation between the fMRI time series and each NIRS
regressor. This process was performed in order to quantify the success
of a given NIRS regressor with respect to the value of the baseline corre-
lation between it and the BOLD-fMRI volume. The baseline correlation is
denoted Rbase

2 to distinguish it from the correlation between synthetic
and recoveredHRFs (R2).We calculated Rbase

2 using the fMRI time series
prior to the introduction of the simulated HRF in order to minimize
computational expense. Three groups of 100 voxels, with Rbase

2 in the
range 0–0.1, 0.1–0.2 and 0.2–0.3, were selected for each subject, run
and HbO or HbR signal.

The results of Tong and Frederick (2010) suggest that the NIRS–
fMRI correlation traverses the cerebral vasculature in a wave-like
pattern. In an attempt to take advantage of this phenomenon, the
HRF simulation was also performed across the whole cortex using
models containing a single NIRS regressor, but with a voxel-specific
time lag introduced between that NIRS regressor and the fMRI time
series. Because the NIRS recording time for each run exceeded that
of the fMRI (NIRS recording began ~30 s prior to the fMRI sequence
and continued for~30 s after) we were able to shift the NIRS signals
in time relative to the fMRI recording. We produced 20 different
time lags, from −10 to+10 s in 1-second intervals, relative to the
fMRI time series for every HbO and HbR signal. For every cortical
voxel, HbO signal, HbR signal and for every run,wewere able to compute
the time lag which optimized the baseline correlation (Rbase

2 ). A voxel
and NIRS signal specific linear model was then used to recover the
simulated HRF at each voxel using this optimumtime lag, and the results
were averaged across the cortex.
Synthetic NIRS signals

Near-infrared spectroscopy signals will always contain some noise
contribution from non-physiological sources. When the NIRS signals
are low-pass filtered, this noise is also low-pass filtered. When such
waveforms are used in the general linear model, it is possible that
they could provide a good model of resting-state fMRI oscillations
simply because the constituent noise spans the frequency space below
0.1 Hz. The use of NIRS regressors could therefore produce a significant
reduction in fMRI noise that is not related to the physiological measure-
ments of HbO andHbR. To account for this possibility, our calculations of
variance reduction and our HRF simulations were all repeated using
synthetic NIRS data. These waveforms were obtained by producing
two random vectors and passing them through the entire processing
stream, including the Beer–Lambert transformation and low-pass filter-
ing. This is effectively equivalent to repeating all our processing under
the null hypothesis that there is no relationship between HbO, HbR
and the BOLD signal.

Results

The average proportion of the cortex found to be significantly cor-
related with a givenNIRS regressor (using a two-tailed, voxel-wise t-test,
pb0.01) was 17.8% for HbR signals and 16.8% for HbO signals, with
subject means ranging from 5 to 22%. Subject 6 showed very little
correlation despite there being no obvious issues with either the NIRS
or fMRI recordings. Fig. 2 shows an example of a significance map for
a single, well-correlated HbO regressor. The average proportion of the
cortex significantly correlated with the synthetic NIRS signals was 3.7%.

Whole-cortex variance reduction

The percentage variance reduction (PVR) was computed for the
HbO, HbR, HbO & HbR, RETROICOR and synthetic NIRS models. The
results of this process are shown in Fig. 3a as a function of the number
of NIRS channels (n) in each linear model.

Each data point in Fig. 3a corresponds to the mean PVR achieved
over the whole cortex and averaged over all runs and either every
possible combination of n channels or 28 random combinations of n
channels, whichever is smaller. For example, the HbO data point cor-
responding to 1 NIRS channel is the average PVR obtained across
every possible model containing a single HbO regressor (if no chan-
nels were excluded, there would be 28 possible models), for each
subject and run. For the HbO data point corresponding to 2 NIRS
channels, 28 pairs of non-excluded HbO regressors were randomly
selected, and the average PVR achieved by those pairs of regressors
is presented. The upper limit on the number of random combinations
was set at 28, as it was computationally prohibitive to use every possible
model in most cases (for example, 28 choose 2=378 possible models).
This process was performed in order to minimize the sensitivity of the
results to channel selection. This same process was applied to obtain
the HbR model PVR results in Fig. 3. For the HbO & HbR models, 1
NIRS channel corresponds to 2 regressors (the HbO and HbR regressors
corresponding to each singleNIRS channel), 2NIRS channels corresponds
to 4 regressors and so on. This randomized selection approach was also
applied for the whole-cortex HRF simulation results below.

As shown in Fig. 3a, the PVR increases with the addition of NIRS
regressors for all models until 15 NIRS channels are applied, at
which point the PVR is equal to 36% for the HbO & HbR model. The
PVR is significantly larger than zero for all models (one-tail t-test,
pb0.01). The addition of the slice-specific respiration and pulse
RETROICOR regressors to the referencemodel also produces a significant
reduction in variance, averaging 6.4%. The PVR achieved by the HbO &
HbR model becomes significantly larger than that of the RETROICOR
model when 2 NIRS channels are applied (one-tail, paired t-test,
pb0.01). It is worth noting that the use of 8 synthetic NIRS regressors



Fig. 2. An example of the significance map for a single subject, run and NIRS-HbO regressor. Note that significantly correlated voxels are spread throughout the cortex as well as in
deeper regions of the brain.
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(the same number of regressors used in the RETROICORmodel) produces
an average PVR of 4.7%.

Fig. 3b shows the corrected PVR, achieved by subtraction of the
variance reduction calculated using the synthetic NIRS waveforms.
This provides a lower-bound estimate of the average PVR attributable
to each NIRS model. A peak value of 17.0% is achieved for the HbO &
HbR model incorporating 9 NIRS channels. The PVR remains signifi-
cantly larger than zero for all models after subtraction of the synthetic
NIRS results (one-tail t-test, pb0.01).

Whole-cortex HRF simulation

Fig. 4a shows the average mean-squared error (MSE) between the
synthetic and recovered HRFs for HbO, HbR, HbO & HbR, RETROICOR
and the synthetic HbO & HbR models (synthetic HbO and synthetic
HbRmodels were also calculated but for simplicity are not displayed).
Fig. 3. The percentage variance reduction obtained by the HbO, HbR and HbO & HbR model
PVR are obtained in comparison to the reference model. The corresponding results for the p
PVR values, which were obtained by subtracting the PVR achieved using synthetic NIRS regre
to which the variance of the BOLD-fMRI signal can be modeled by the physiological conten
model) represent the standard deviation across all runs.
These data are normalized to the value obtained using the reference
model (i.e. that without NIRS regressors) and are shown as a function
of the number of NIRS channels applied (n). For each NIRS model,
either all possible combinations, or 28 combinations of nNIRS channels
were randomly selected and the results provided are an average of all
combinations, as described above for Fig. 3. The MSE decreases with
the addition of NIRS regressors for HbO, HbR and HbO & HbR models.
This decrease reaches significance (one-tail paired t-test, pb0.01)
with the use of a single NIRS channel for the HbO & HbR model and
with the use of 2 NIRS channels for both the HbO and HbR models.
The minimum, equal to reduction of 21%, is found for the HbO & HbR
model when 10 NIRS channels are applied.

The slice-specific RETROICOR results are highly variable but on aver-
age the RETROICORmodel fails to reduce theMSE between the synthetic
and recovered HRFs, and results in an average increase in MSE of 0.1%
(standard deviation of 14%) compared to the reference model.
s as a function of the number of NIRS channels incorporated into each model. Values of
ulse and respiration RETROICOR model are also included. Panel b shows the corrected
ssors from that of the real NIRS regressors. These corrected results represent the extent
t of the NIRS data. In each figure the error bars (and shaded region for the RETROICOR

image of Fig.�2
image of Fig.�3


Fig. 4. The result of the HRF simulation applied across all cortical voxels for HbO, HbR, HbO & HbR and synthetic NIRS models as a function of the number of NIRS channels applied.
The corresponding results for the pulse and respiration RETROICOR model are also included. Fig. 4a shows the mean-squared error (MSE) between the synthetic and recovered
HRFs, normalized to the value obtained by the reference model. For clarity, the normalized MSE for up to ten NIRS channels are shown on a larger scale on the inserted axes.
Panel b shows Pearson's correlation coefficient (R2) between the synthetic and recovered HRFs. The mean changes in MSE and R2 for the RETROICOR model compared to the reference
model are negligible. In each figure the error bars (and shaded region for the RETROICOR model) represent the standard deviation across all runs.
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Fig. 4b shows the corresponding results for the correlation coefficient
(R2) between the synthetic and recovered HRFs. Again, the data are
normalized to the reference model. The value of R2 between the
synthetic and recoveredHRFs follows a similar pattern to that observed
in the MSE results; an improvement is observed with the number of
NIRS channels applied for all models up to 10 NIRS channels, at which
point the HbO & HbR model produced an increase in R2 of 2.0%.
This increase in R2 above the reference model achieves significance
for all NIRS models when a single NIRS channel is applied (one-tail
paired t-test, pb0.01). The RETROICOR model also fails, on average,
to produce an improvement in R2, producing a mean decrease of 0.04%
(standard deviation 0.4%).

The equivalent results calculated using the synthetic NIRS data
show an approximately exponential increase in MSE and decrease
in R2 as synthetic regressors are added. This detrimental effect reaches
significance for both MSE and R2 metrics for all synthetic NIRS models
using a single NIRS channel.

Selected voxels and optimized time lag

Figs. 5a-c show scatter plots of the MSE for single-regressor HbO
and HbRmodels plotted against the correspondingMSEof the reference
model. Data points on the 45° line correspond to instances where the
NIRS regressor model has had no effect on the MSE. These simulations
were performed in 100 voxels specific to each subject, run and HbO or
HbR regressor such that Rbase

2 lies between 0–0.1, 0.1–0.2 and 0.2–0.3
for Figs. 5a-c respectively. This process was not repeated for the
synthetic NIRS signals because their correlation with the fMRI data
was insufficient.
For voxels in the 0-0.1 baseline correlation band (Fig. 5a), NIRS
regression provides no significant change in MSE for either the HbO
or HbR models when compared to the baseline model (two-tailed
t-test, p=0.53). Both the 0.1–0.2 and 0.2–0.3 baseline correlation
bands (Figs. 5b and c) show a significant decrease in MSE for both
HbO and HbR models (pb0.01). Fig. 5d shows the mean percentage
change in MSE for each of these three bands. Figs. 6a–d are equivalent
to Figs. 5a–d but present the value of the correlation coefficient
(R2) between the synthetic and recovered HRF instead of the MSE.
Fig. 6d shows that the mean value of R2 increases as a function of
the baseline correlation Rbase

2 . Fig. 7 provides one example of the effect
of HbO (Fig. 7a) and HbR (Fig. 7b) regressors in well-correlated voxels
(0.2bRbase

2 b0.3), for a single run and subject.
Fig. 8 shows the results of the HRF simulation where the optimum

time lag has been introduced between each NIRS-HbO or HbR signal and
the fMRI time series of each voxel. Figs. 8a and b respectively show the
MSE and R2 between the synthetic and recovered HRFs, normalized to
the values obtained by the reference model. In each case the result of
the comparable zero-time lagmodels (equivalent to the first data points
of Figs. 4a and b) is provided for comparison. The use of the optimum
time lag causes a significant reduction in MSE (one-tailed paired t-test,
pb0.01) for all models compared to the zero-time lag equivalent,
including the synthetic NIRS model. The reduction in MSE obtained
for the optimum time-lag HbO & HbR model is 13.6% compared to
6.3% for zero time lag. Correspondingly, there is an increase in R2

when the optimum time lag regressors are applied, but this does
not quite reach significance for the HbO (p=0.011), HbR (p=0.014)
or HbO & HbR (p=0.10) models. The improvement is very significant
for the synthetic NIRS data (pb10−6). For both metrics, the use of
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Fig. 5. The single-regressor NIRS model MSE plotted against the reference model MSE for 100 voxels selected using the value of the baseline NIRS–fMRI correlation for each voxel.
The data is separated into three bands on the basis of Rbase

2 . The average reduction in MSE for all data points is shown in panel d. The MSE between the synthetic and recovered HRFs
decreases as a function of Rbase

2 . The error bars in panel d show the standard deviation across all data points of panels a–c.
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optimum time lag produces a greater improvement for HbO regressors
than for HbR regressors.

Discussion

Our results confirm that low-frequency oscillations present in near-
infrared spectroscopy data correlate significantly with a large proportion
of BOLD-fMRI voxels, spread throughout the cortex. At frequencies
below 0.1 Hz, NIRS signals are subject to a range of physiological
oscillations. These include the spontaneous changes in vascular dilation
referred to as vaso-motion (Gustafsson, 1993) and the global oscillations
in arterial blood pressure known as Mayer waves (Julien, 2006). As the
effects of vaso-motion tend to be location-specific, the systemic oscilla-
tions caused by Mayer waves affecting both the scalp-dominated
resting-state NIRS signal and BOLD-fMRI voxels across the brain seem
the most likely source of this correlation.

Whole-cortex PVR and HRF simulation

The utility of NIRS signals in the regression of physiological noise can
be established in a variety of ways. A simple assessment of the efficacy
of a given linearmodel is the variance of thatmodel's residual error. Our
results indicate that the inclusion of NIRS signals in the model can re-
duce this variance by as much as 36%. To achieve this, a large number
of NIRS channels (>15) are required. NIRS regression produces an
average PVR of 6.0% for a single NIRS channel, comparable to that
achieved by the slice-specific RETROICOR approach (6.4%), (Fig. 3a).

As is clear from Fig. 3, a significant proportion of the variance re-
duction achieved by NIRS regression is not due to the physiological
information present in the NIRS data, but can equally be achieved
by the regression of random vectors occupying the same frequency
space. However, even when this effect is taken into account, an aver-
age PVR of 17% can still be achieved by the HbO & HbR model
(Fig. 3b). These corrected PVR results suggest that applying 10 NIRS
channels provides the best model of physiological noise in the
BOLD signal. The value of 17% represents a lower-bound estimate
on the average PVR which can be obtained by a model containing
10 or more NIRS channels.

The results of our explicit simulation of an event-related BOLD-
fMRI experiment confirm that NIRS can be used to improve the recovery
of the HRF time course. There is a significant improvement in both the
mean-squared error (MSE) and the correlation coefficient (R2) between
the synthetic and recovered HRFs when NIRS regressors are applied.
Note that both the HbO and HbR models provide an improvement in
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Fig. 6. The single-regressor NIRS model R2 plotted against the reference model R2 for 100 voxels selected using the value of the baseline NIRS–fMRI correlation for each voxel. The
data is separated into three bands on the basis of Rbase

2 . The average increase in R2 for all data points is shown in panel d. The value of R2 between the synthetic and recovered HRFs
increases as a function of Rbase

2 . The error bars in panel d show the standard deviation across all data points of panels a–c.
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MSE and R2 and that the HbO &HbRmodel is consistently better than
either single-chromophore model. This may suggest that the HbO
and HbR signals provide independent contributions to the model of
resting-state fMRI fluctuations, but could also be the result of spatial
averaging if the HbO andHbR signals are correlated with different re-
gions of the cortex.

Fig. 4 shows that recovery of the HRF improves even if regressors
are applied in a ‘blind’ fashion; across the whole cortex and without
consideration for the baseline NIRS–fMRI correlation. The minimum
MSE and maximum R2 are achieved across the whole cortex when
approximately 10 NIRS channels are included in the linear model.
The MSE does not monotonically decrease (as the PVR increases in
Fig. 3a) because the MSE is dependent on both variance and efficiency.
Although adding NIRS regressors decreases the residual variance, it can
also decrease the model's efficiency. As the number of NIRS channels
increases beyond 10, the decrease in efficiency overcomes the decrease
in residual variance, and the MSE begins to increase.

As stated previously, we believe that the majority of the low-
frequency contribution to the resting-state NIRS signal (and therefore
to the NIRS–fMRI correlation) originates in the superficial layers of
the head. As a result, the acquisition of NIRS signals suitable for regres-
sion could be performed using channels which only sample superficial
tissues. Because of the improved signal-to-noise ratio associated
with short separation channels, superficial NIRS acquisition is often
significantly easier than standard NIRS. Obtaining multi-channel,
superficial NIRS during fMRI experiments is therefore entirely feasible,
and may be particularly useful in experiments which require precise
recovery of the HRF time course and where the number of stimuli or
the scanning duration are limited. Examples of such cases include the
study of the hemodynamic response to inter-ictal epileptic activity
with fMRI (Bénar et al., 2002) or the computation of the cerebral meta-
bolic rate of oxygen from combined NIRS–fMRI (Huppert et al., 2009). It
is important to note that the HRF simulation data presented here are
the average results obtained from 30 pseudo-random event-related
paradigm designs. It was necessary to use a large number of different
designs in order to produce a robust result, which suggests that the
efficacy of NIRS regression may be sensitive to experimental design.
An investigation of the utility of NIRS in the regression of fMRI noise
for different experimental paradigms (including block designs) will
therefore be necessary to establish which fMRI experiments will
benefit from simultaneous NIRS recording.

Selected voxels and optimized time lag

The results summarized in Figs. 5 and 6 provide a measure of the
importance of the baseline correlation (Rbase

2 ) to the success of each
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Fig. 7. An example of the HRFs recovered using the reference model, pulse and respiration RETROICOR model and by single-regressor HbO (panel a) and HbR (panel b) models for a
single subject, run and NIRS channel for voxels well correlated each NIRS regressor (0.2bRbase

2 b0.3). The true, single-gamma HRF is also shown in both panels.
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NIRS model. Although it is difficult to obtain the statistical power
required to provide exact quantification of this relationship (due
to variation in BOLD noise in different groups of voxels for example),
the use of a single NIRS regressor in voxels where Rbase

2 > 0.1 will,
on average, produce a significant improvement in HRF recovery.

It is also important to note that even in cases of low baseline cor-
relation (Figs. 5a and 6a), the use of a single NIRS regressor does not,
on average, worsen the recovery of the HRF. This is consistent with
Fig. 4, which shows that a significant improvement is observed
even when NIRS regression is applied across the whole cortex,
which must include regions and channels which exhibit a poor
NIRS–fMRI correlation. This does not appear to be the case for the
synthetic NIRS signals, as the whole-cortex simulation shows that
HRF recovery worsens significantly with the use of a single synthetic
regressor.

The results of employing the optimum time lag between each NIRS
and fMRI time series show a significant decrease in MSE and a modest
increase in R2 for HbO, HbR and HbO & HbR models. A comparable
improvement in HRF recovery is seen for the synthetic NIRS regressors
(Fig. 8). An improvement inHRF recovery is clearly expected because by
selecting the optimum time lag we are maximizing the value of the
baseline correlation between each NIRS signal and the fMRI data.
The fact that the synthetic NIRS regressors (even when optimized
for time lag) do not provide the reduction in MSE achieved by the
real NIRS signals is further evidence that low-frequency physiologi-
cal oscillations are common to both fMRI and NIRS recordings. These
results are also consistent with the hypothesis that the NIRS–fMRI
correlation follows a low-frequency wave pattern throughout the
cerebral vasculature, but the improvement this affords to HRF recov-
ery is relatively small; comparable to the addition of a second NIRS
channel.
The results of our simulations in pre-selected voxels, and the results
of our time-lag optimization are both reliant on a calculation of
the baseline correlation (Rbase

2 ) between each NIRS signal and the
fMRI data prior to the introduction of the simulated HRF series.
The improvement in the recovery of the HRF associated with a
higher baseline correlation is therefore to be expected. However,
the introduction of the HRF series into the fMRI data produced a
negligible change in Rbase

2 ; 0.0058 for HbO and 0.0059 for HbR signals.
It is therefore reasonable to suggest that NIRS regression could be
optimized in a real fMRI study by maximizing Rbase

2 , as calculated
using the fMRI data during the stimulation period, with little risk of
removing the HRF itself. This would obviously require that the NIRS
channels are arranged so as not to sample the activated regions of
the cortex. Alternatively, Rbase

2 could be calculated for a period of
NIRS–fMRI data where no stimulation occurs (i.e. during a rest period),
but this assumes that the scale and spatial distribution of theNIRS–fMRI
correlationwill remain constant in time, the veracity ofwhich has yet to
be determined.

Conclusions

We have demonstrated that NIRS recordings can be employed to
reduce the variance of the residual error in a general linear model of
the resting-state BOLD-fMRI. Our results show that the use of a single
NIRS channel will reduce variance in the residual error by an average
of 6.0%, comparable to that achieved by RETROICOR methods. The use
of 10 NIRS channels can reduce variance by as much as 36% on average
across the whole cortex, though the same number of low-pass filtered
white noise regressors can achieve a PVR of 19%.Wehave also explicitly
shown that the use of even a single NIRS channel can significantly
improve the recovery of a simulated hemodynamic response function
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Fig. 8. The values of the MSE and R2 between the synthetic and recovered HRFs for the zero time lag and optimum time lag, single-channel HbO, HbR, HbO & HbR and synthetic NIRS
models, are normalized to the equivalent values of the reference model. A significant (two-tailed paired t-test, pb0.01) improvement is apparent for both metrics and all models,
though the improvement is more distinct for HbO models than for HbR models. In each case the error bars represent the standard deviation across all runs.
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from BOLD-fMRI data, compared to standard fMRI and RETROICOR
approaches. The MSE between the recovered and synthetic HRFs can
be reduced by as much as 21% when 10 NIRS channels are applied.
While the exact physiological origins and the inter-subject (and
intra-subject) variability of NIRS–fMRI correlations must be examined
further, it is clear that they have an important application in the
enhancement of fMRI experiments.
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