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Structural analysis of MRI data on the cortical surface usually focuses on cortical thickness. Cortical surface
area, when considered, has been measured only over gross regions or approached indirectly via comparisons
with a standard brain. Here we demonstrate that direct measurement and comparison of the surface area of
the cerebral cortex at a fine scale is possible using mass conservative interpolation methods. We present a
framework for analyses of the cortical surface area, as well as for any other measurement distributed across
the cortex that is areal by nature. The method consists of the construction of a mesh representation of the
cortex, registration to a common coordinate system and, crucially, interpolation using a pycnophylactic
method. Statistical analysis of surface area is done with power-transformed data to address lognormality,
and inference is done with permutation methods. We introduce the concept of facewise analysis, discuss
its interpretation and potential applications.

© 2012 Elsevier Inc. All rights reserved.
Introduction

The surface area of the cerebral cortex greatly differs across species,
whereas the cortical thickness has remained relatively constant during
evolution (Fish et al., 2008; Mountcastle, 1998). At a microanatomic
scale, regional morphology is closely related to functional specialization
(Roland and Zilles, 1998; Zilles and Amunts, 2010), contrastingwith the
columnar organization of the cortex, in which cells from different layers
respond to the same stimulus (Buxhoeveden and Casanova, 2002;
Jones, 2000). In addition, Rakic (1988) proposed an ontogenetic
model that explains the processes that lead to cortical arealization and
differentiation of cortical layers according to related, yet independent
mechanisms. Supporting evidence for this model has been found in
studies with both rodent and primates, including humans (Chenn and
Walsh, 2002; Rakic et al., 2009), as well as in pathological states
(Bilgüvar et al., 2010; Rimol et al., 2010).

At least some of the variability of the distinct genetic and develop-
mental processes that seem to determine regional cortical area and
inkler).
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thickness can be captured using polygon mesh (surface-based) repre-
sentations of the cortex derived from T1-weighted magnetic reso-
nance imaging (MRI) (Panizzon et al., 2009; Sanabria-Diaz et al.,
2010; Winkler et al., 2010). In contrast, volumetric (voxel-based)
representations, also derived from MRI, were shown to be unable to
readily disentangle these processes (Winkler et al., 2010).

Mesh representations of the brain allow measurements of the cor-
tical thickness at every point in the cortex, as well as estimation of the
average thickness for pre-specified regions. However, to date, analy-
ses of cortical surface area have been generally limited to two types
of studies: (1) vertexwise comparisons with a standard brain, using
some kind of expansion or contraction measurement, either of the
surface itself (Hill et al., 2010; Joyner et al., 2009; Lyttelton et al.,
2009; Palaniyappan et al., 2011; Rimol et al., 2010), of linear distances
between points in the brain (Sun et al., 2009a,b), or of geometric dis-
tortion (Wisco et al., 2007), or (2) analyses of the area of regions of
interest (ROI) defined from postulated hypotheses or from macro-
scopic morphological landmarks (Dickerson et al., 2009; Durazzo
et al., 2011; Eyler et al., 2011; Kähler et al., 2011; Nopoulos et al.,
2010; Schwarzkopf et al., 2011; Chen et al., 2011). Analyses of expan-
sion, however, do not deal with area directly, depending instead on
non-linear functions associated with the warp to match the standard
brain, such as the Jacobian of the transformation. Moreover, by not
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Fig. 1. An example demonstrating differences in the nature of measurements. In this analogy, the depth of the soil is similar to brain cortical thickness, whereas the number of trees
is similar to areal quantities distributed across the cortex. These areal quantities can be the surface area itself (in this case, the area of the terrain), but can also be any other
measurement that is areal by nature (such as the number of trees).

1 A notable exception is the natural neighbor method (Sibson, 1981). However, the
original method needs modification for use with areal analyses.

1429A.M. Winkler et al. / NeuroImage 61 (2012) 1428–1443
quantifying the amount of area, these analyses are only interpretable
with respect to the brain used for the comparisons. ROI-based analy-
ses, on the other hand, entail the assumption that each region is ho-
mogeneous with regard to the feature under study, and have
maximum sensitivity only when the effect of interest is present
throughout the ROI.

These difficulties can be obviated by analyzing each point on the
cortical surface of the mesh representation, a method already well
established for cortical thickness (Fischl and Dale, 2000). Pointwise
measurements, such as thickness, are generally taken at and assigned
to each vertex of the mesh representation of the cortex. This kind of
measurement can be transferred to a common grid and subjected to
statistical analysis. Standard interpolation techniques, such as nearest
neighbor, barycentric (Yiu, 2000), spline-based (De Boor, 1962) or
distance-weighted (Shepard, 1968) can be used for this purpose.
The resampled data can be further spatially smoothed to alleviate
residual interpolation errors. However, this approach is not suitable
for areal measurements, since area is not inherently a point feature.
To illustrate this aspect, an example is given in Fig. 1. Methods that
can be used for interpolation of point features do not necessarily com-
pensate for inclusion or removal of datapoints,1 unduly increasing or
reducing the global or regional sum of the quantities under study,
precluding them for use with measurements that are, by nature,
areal. The main contribution of this article is to address the technical
difficulties in analyzing the local brain surface area, as well as any
other cortical quantity that is areal by nature. We propose a frame-
work to analyze areal quantities and argue that a mass preserving
interpolation method is a necessary step. We also study different pro-
cessing strategies and characterize the distribution of facewise cortical
surface area.

Method

An overview of the method is presented in Fig. 2. Comparisons of
cortical area between subjects require a surface model for the cortex



Fig. 2. Diagram of the steps to analyze the cortical surface area. For clarity, the colors represent the convexity of the surface, as measured in the native geometry.
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to be constructed. A number of approaches are available (Dale et al.,
1999; Kim et al., 2005; Mangin et al., 1995; van Essen et al., 2001)
and, in principle, any could be used. Here we adopt the method of
Dale et al. (1999) and Fischl et al. (1999a), as implemented in the
FreeSurfer software package (FS).2 In this method, the T1-weighted
images are initially corrected for magnetic field inhomogeneities
and skull-stripped (Ségonne et al., 2004). The voxels belonging to
the white matter (WM) are identified based on their locations, on
their intensities, and on the intensities of the neighboring voxels. A
mass of connected WM voxels is produced for each hemisphere,
using a six-neighbors connectivity scheme, and a mesh of triangular
faces is tightly built around this mass, using two triangles per exposed
2 Available at http://surfer.nmr.mgh.harvard.edu.
voxel face. The mesh is smoothed taking into account the local inten-
sity in the original images (Dale and Sereno, 1993), at a subvoxel res-
olution. Topological defects are corrected (Fischl et al., 2001; Ségonne
et al., 2007) ensuring that the surface has the same topological prop-
erties of a sphere. A second iteration of smoothing is applied, result-
ing in a realistic representation of the interface between gray and
white matter (the white surface). The external cortical surface (the
pial surface), which corresponds to the pia mater, is produced by
nudging outwards the white surface towards a point where the tissue
contrast is maximal, maintaining constraints on its smoothness and
on the possibility of self-intersection (Fischl and Dale, 2000). The
white surface is inflated in an area-preserving transformation and
subsequently homeomorphically transformed to a sphere (Fischl
et al., 1999b). After the spherical transformation, there is a one-to-
one mapping between faces and vertices of the surfaces in the native

http://surfer.nmr.mgh.harvard.edu
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geometry (white and pial) and the sphere. These surfaces are
comprised exclusively of triangular faces.

Area per face and other areal quantities

The surface area for analysis is computed at the interface between
gray and white matter, i.e. at the white surface. Another possible
choice is to use the middle surface, i.e. a surface that runs at the
mid-distance between white and pial. Although this surface is not
guaranteed to match any specific cortical layer, it does not over or
under-represent gyri or sulci (van Essen, 2005), which might be an
useful property. The white surface, on the other hand, matches direct-
ly a morphological feature and also tends to be less sensitive to corti-
cal thinning or thickening than the middle or pial surfaces. Whenever
methods to produce surfaces that represent biologically meaningful
cortical layers are available, these should be preferred.

In contrast to conventional approaches in which the area of all
faces that meet at a given vertex is summed and divided by three,
producing a measure of the area per vertex, for facewise analysis it is
the area per face that is measured and analyzed. Since for each sub-
ject, each face in the native geometry has its corresponding face on
the sphere, the value that represents area per face, as measured
from the native geometry, can be mapped directly to the sphere, de-
spite any areal distortion introduced by the spherical transformation.

Furthermore, since there is a direct mapping that is independent of
the actual area in the native geometry, any other quantity that is biolog-
ically areal can also be mapped to the spherical surface. Examples of
such quantities, that may potentially be better characterized as areal
processes, are the extent of the neural activation as observedwith func-
tional MRI, the amount of cortical gray matter, the amount of amyloid
deposited in Alzheimer's disease (Clark et al., 2011; Klunk et al.,
2004), or simply the number of cells counted from optic microscopy
images reconstructed to a tri-dimensional space (Schormann and
Zilles, 1998). Since areal interpolation (described below) conserves
locally, regionally and globally the quantities under study, it allows
accurate comparisons and analyses across subjects for measurements
that are areal by nature, or that require mass conservation on the
surface of the mesh representation.

Registration

Registration to a common coordinate system is necessary to allow
comparisons across subjects (Drury et al., 1996). The registration is
performed by shifting vertex positions along the surface of the sphere
until there is a good alignment between subject and template (target)
spheres with respect to certain specific features, usually, but not
necessarily, the cortical folding patterns. As the vertices move, the
areal quantities assigned to the corresponding faces are also moved
along the surface. The target for registration should be the less biased
as possible in relation to the population under study (Thompson and
Toga, 2002).

A registration method that produces a smooth, i.e. spatially differ-
entiable, warp function enables the smooth transfer of areal quanti-
ties. A possible way to accomplish this is by using registration
methods that are diffeomorphic. A diffeomorphism is an invertible
transformation that has the elegant property that it and its inverse
are both continuously differentiable (Christensen et al., 1996; Miller
et al., 1997), minimizing the risk of vagaries that would be introduced
by the non-differentiability of the warp function.

Diffeomorphic methods are available for spherical meshes (Glaunès
et al., 2004; Yeo et al., 2010a), and here we adopt the Spherical Demons
(SD) algorithm3 (Yeo et al., 2010a). SD extends the Diffeomorphic
Demons algorithm (Vercauteren et al., 2009) to spherical surfaces. The
3 Available at http://sites.google.com/site/yeoyeo02/software/sphericaldemonsrelease.
Diffeomorphic Demons algorithm is a diffeomorphic variant of the
efficient, non-parametric Demons registration algorithm (Thirion,
1998). SD exploits spherical vector spline interpolation theory and
efficiently approximates the regularization of the Demons objective
function via spherical iterative smoothing.

Methods that are not diffeomorphic by construction, but in prac-
tice produce invertible and smooth warps could, in principle, be
used for registration for areal analyses. In the Evaluation section we
study the performance of different registration strategies as well as
the impact of the choice of the template.

Areal interpolation

After the registration, the correspondence between each face on
the registered sphere and each face from the native geometry is main-
tained, and the surface area or other areal quantity under study can be
transferred to a common grid, where statistical comparisons between
subjects can be performed. The common grid is a mesh which vertices
lie on the surface of a sphere. A geodesic sphere, which can be con-
structed by iterative subdivision of the faces of a regular icosahedron,
has many advantages for this purpose, namely, ease of computation,
edges of roughly similar sizes and, if the resolution is fine enough,
edge lengths that are much smaller than the diameter of the sphere
(see Appendix A for details). These two spheres, i.e. the registered,
irregular spherical mesh (source), and the common grid (target), typ-
ically have different resolutions. The interpolation method must, nev-
ertheless, conserve the areal quantities, globally, regionally and locally.
In other words, the method has to be pycnophylactic4 (Tobler, 1979).
This is accomplished by assigning, to each face in the target sphere,
the areal quantity of all overlapping faces from the source sphere,
weighted by the fraction of overlap between them (Fig. 3).

More specifically, let Q i
S represent the areal quantity on the i-th

face of the registered, source sphere S, i=1, 2,…, I. This areal quantity
can be directly mapped back to the native geometry, and can be the
area per face as measured in the native geometry, or any other quan-
tity of interest that is areal by nature. Let the actual area of the same
face on the source sphere be indicated by Ai

S. The quantities Q i
S have

to be transferred to a target sphere T, the common grid, which face
areas are given by Aj

T for the j-th face, j=1, 2, …, J, J≠ I. Each target
face j overlaps with K faces of the source sphere, being these overlap-
ping faces indicated by indices k=1, 2, …, K, and the area of each
overlap indicated by Ak

O. The interpolated areal quantity to be
assigned to the j-th target face is then given by:

QT
j ¼

XK
k¼1

AO
k

AS
k

QS
k ð1Þ

Similar interpolation schemes have been devised to solve prob-
lems in geographic information systems (GIS) (Flowerdew et al.,
1991; Goodchild and Lam, 1980; Gregory et al., 2010; Markoff and
Shapiro, 1973). Surface models of the brain impose at least one
additional challenge, which we address in the implementation (see
Appendix B). Differently than in other fields, where interpolation is
performed over geographic territories that are small compared to
Earth and, therefore, can be projected to a plane with acceptable
areal distortion, here we have to interpolate across the whole sphere.
Although other conservative interpolation methods exist for this pur-
pose (Jones, 1999; Lauritzen and Nair, 2008; Ullrich et al., 2009),
these methods either use regular latitude-longitude grids, cubed-
spheres, or require a special treatment of points located above a
certain latitude threshold to avoid singularities at the poles. These
4 From Greek πυκνός (pyknos)=mass, density, and φύλαξις (phylaxis)=guard,
protect, preserve, meaning that the method has to be mass conservative.
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Fig. 3. (a) Areal interpolation between a source and a target face uses the overlapping area as a weighting factor. (b) For a given target face, each overlapping source face contributes
an amount of areal quantity. This amount is determined by the proportion between each overlapping area (represented in different colors) and the area of the respective source
face. (c) The interpolation is performed at multiple faces of the target surface, so that the amount of areal quantity assigned to a given source face is conservatively redistributed
across one or more target faces.
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disadvantages may render these methods suboptimal for direct use in
brain imaging.

Smoothing

Smoothing can be applied to alleviate residual discontinuities in
the interpolated data due to unfavorable geometric configurations
between faces of source and target spheres. For the purpose of
smoothing, facewise data can be represented either by their barycen-
ters, or converted to vertexwise (see Appendix D for a discussion on
how to convert), and should take into account differences on face
sizes, as larger faces will tend to absorb more areal quantities (see
Appendix A). Smoothing can be applied using the moving weights
method (Lombardi, 2002), defined as

~Q T
n ¼

∑j Q
T
j G g xn;xj

� �� �

∑j G g xn; xj

� �� � ð2Þ

where ~Q T
n is the smoothed areal quantity at the n-th face, Qj

T is the
areal quantity assigned to each of the J faces of the same surface
before smoothing, g(xn, xj) is the scalar-valued distance along the sur-
face between the barycenter xn of the current face and the barycenter
xj of another face, and G(g) is the Gaussian kernel.5

Statistical analysis

After resampling to a common grid, the facewise data is ready for
statistical analysis. The most straightforward method is to use the
general linear model (GLM). The GLM is based on a number of as-
sumptions, including that the observed values have a linear, additive
structure, that the residuals of the model fit have the same variance
and are normally distributed. When these assumptions are not met,
a non-linear transformation can be applied, as long as the true,
biological or physical meaning that underlies the observed data is
preserved. In the Evaluation section, we show empirically that face-
wise cortical surface area is largely not normal. Instead, the distribu-
tion is skewed and can be better characterized as lognormal. A
generic framework that can accommodate arbitrary areal quantities
with skewed distributions is using a power transformation, such as
the Box–Cox transformation (Box and Cox, 1964), which addresses
possible violations of these specific assumptions, allied with per-
mutation methods for inference (Holmes et al., 1996; Nichols and
5 As with other neuroimaging applications, smoothing after registration implies that
the effective filter width is not spatially constant in native space, neither is the same
across subjects. Smoothing on the sphere also contributes to different filter widths
across space due to the deformation during spherical transformation.
Hayasaka, 2003) when the observations can be treated as indepen-
dent, such as in most between-subject analysis.

The application of a statistical test at each face allows the creation
of a statistical map and also introduces the multiple testing problem,
which can also be addressed using permutation methods. These
methods are known to allow exact significance values to be comput-
ed, even when distributional assumptions cannot be guaranteed, and
also to facilitate strong control over family-wise error rate (FWER) if
the distribution of the statistic under the null hypothesis is similar
across tests. If not similar, the result is still valid, yet conservative.
An alternative is to use a relatively assumption-free approach to ad-
dress multiple testing, controlling instead the false discovery rate
(FDR) (Benjamini and Hochberg, 1995; Genovese et al., 2002),
which offers also weak control over FWER. Other approaches for in-
ference, such as the Random Field Theory (RFT) for meshes (Hagler
et al., 2006; Worsley et al., 1999) and the Threshold-Free Cluster
Enhancement (TFCE) (Smith and Nichols, 2009) have potential to be
used, although due to reliance on stringent assumptions or depen-
dence upon specification of certain parameters, these methods need
yet a careful evaluation for facewise areal quantities. Strategies to
present results are discussed in Appendix D.
Evaluation

We illustrate the method using data from the Genetics of Brain
Structure and Function Study, GOBS, a collaborative effort involving
the Texas Biomedical Institute, the University of Texas Health Science
Center at San Antonio (UTHSCSA) and the Yale University School of
Medicine. The participants are members of 42 families, and total sam-
ple size, at the time of the selection for this study, is 868 subjects. We
randomly chose 84 subjects (9.2%), with the sparseness of the selec-
tion minimizing the possibility of drawing related individuals. The
mean age of these subjects was 45.1 years, standard deviation 13.9,
range 18.2–77.5, with 33 males and 51 females. All participants pro-
vided written informed consent on forms approved by each Institu-
tional Review Board. The images were acquired using a Siemens
MAGNETOM Trio 3 T system (Siemens AG, Erlangen, Germany) for
46 participants, or a Siemens MAGNETOM Trio/TIM 3 T system for 38
participants. We used a T1-weighted, MPRAGE sequence with an adia-
batic inversion contrast pulse with the following scan parameters:
TE/TI/TR = 3.04/785/2100 ms, flip angle=13°, voxel size (isotropic)=
0.8 mm. Each subject was scanned 7 (seven) times, consecutively,
using the same protocol, and a single image was obtained by linearly
coregistering these images and computing the average, allowing im-
provement over the signal-to-noise ratio, reduction of motion artifacts
(Kochunov et al., 2006), and ensuring the generation of smooth, accu-
rate meshes with no manual intervention. The image analysis followed
the steps described in the Methods section, with some variation to test
different registration strategies.

image of Fig.�3


Fig. 4. A study-specific template (target for the registration) caused less systematic accumulation of areal quantities across the brain when compared with a non-specific template.
Using default parameters, areal accumulation was less pronounced and unrelated to sulcal patterns using Spherical Demons in comparison with FreeSurfer registration. Gains and
losses refer to the area per face that would be expected for areal quantities being redistributed with no bias, i.e. the zero corresponds to the average total surface area of all subjects,
divided by the number of faces.
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Registration

To isolate and evaluate the effect of registration, we computed the
area per face after the spherical transformation6 and registered each
subject brain hemisphere to a common target using two different reg-
istration methods, the Spherical Demons (Yeo et al., 2010a) and the
FreeSurfer registration algorithm (Fischl et al., 1999b),7 each with
and without a study-specific template as the target, resulting in four
different variants. The study-specific targets for each of these
methods were produced using the respective algorithms for registra-
tion, using all the 84 subjects from the sample. The non-specific target
was derived from an independent set of brain images of 40 subjects,
the details of which have been described elsewhere (Desikan et al.,
2006). Areal interpolation was used to resample the areal quantities
to a common grid, a geodesic sphere produced by seven recursive
subdivisions of a regular icosahedron.

The average area per face across subjects was computed after reg-
istration and interpolation to identify eventual systematic patterns of
6 Note that here the area was computed in the sphere with the aim of evaluating the
registration method. For analyses of areal quantities, these quantities should be de-
fined in the native geometry, as previously described.

7 The software versions used were FS 5.0.0 and SD 1.5.1.
distortion caused by warping. This can be understood by observing
that, as the vertices are shifted along the surface of the sphere, the
faces that they define, and which carry areal quantities, are also
shifted and distorted. The registration, therefore, causes displacement
of areal quantities across the surface, which may accumulate on cer-
tain regions while other become depleted. Ideally, there should be
no net accumulation when many subjects are considered and the tar-
get is unbiased with respect to the population under study. If pockets
of accumulated or depleted areal quantities are present, this means
that some regions are showing a tendency to systematically “receive”
more areal quantities than others, which “donate” quantities. The av-
erage amount of area after the registration estimates this accumula-
tion and, therefore, can be used as a measure of a specific kind of
bias in the registration process, in which some regions consistently
attract more vertices, resulting in these regions receiving more quan-
tities. The result for this analysis is shown in Fig. 4. Using default set-
tings, SD caused less areal displacement across the surface, with less
regional variation when compared to FS. The pattern was also more
randomly distributed for SD, without spatial trends matching ana-
tomical features, whereas FS showed a structure more influenced by
brain morphology. Using a study specific template further helped to
reduce areal shifts and biases. The subsequent analyses we present
are based on the SD registration with a study-specific template.

image of Fig.�4


8 For scale comparison, the sphere has radius fixed and set as 100 mm, such that the
Gaussian filter has an HWMH (half width)=1.59% of the geodesic distance between
the barycenter of any face and its antipode.

9 The three scalar fields can also be treated as a single vector field and the barycentric

interpolation can be performed in a single step as
xP
yP
zP

2
4

3
5 ¼

xA xB xC
yA yB yC
zA zB zC

2
4

3
5

δA
δB
δC

2
4

3
5 where

x, y, z represent the coordinates of the triangular face ABC and of the interpolated point
P, both in native geometry, and δ are the barycentric coordinates of P with respect to
the same face after the spherical transformation.

Fig. 5. (a) The area of the cortical surface is not normally distributed (upper panels).
Instead, it is lognormally distributed throughout most of the brain (middle panels). A
Box–Cox transformation can further improve normality (lower panels). The same pat-
tern is present without (left) or with (right) smoothing (FWHM=10 mm). (b) Spatial
distribution of the parameter λ across the brain. When λ approaches zero, the distribu-
tion is more lognormal. See the Supplemental Material for the other views of the brain
and histograms for λ.
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Distributional characterization

To evaluate the normality for the cortical area at the white surface
of the native geometry, we used the Shapiro–Wilk normality test
(Shapiro and Wilk, 1965), implemented with the approximations
for samples larger than 50 as described by Royston (1993). The test
was applied after each hemisphere of the brain was registered to a
study-specific template using the Spherical Demons and interpolated
to the geodesic sphere using areal interpolation.

For the vast majority of the faces, the area of the white surface is
not normally distributed (Figs. 5a and 6; see also the Supplemental
Material for maps of skewness and kurtosis). Instead, the lognormal
distribution seems to be more appropriate to describe the data in
most parts of the brain, with the test declaring a much larger number
of faces as normally distributed after a simple logarithmic transfor-
mation. A log-transformation is a particular case of the Box–Cox
transformation (Box and Cox, 1964). For a set of values y={y1, y2,
…, yn}, this transformation uses maximum-likelihood methods to
seek a parameter λ that produces a transformed set ~y ¼ ~y1; ~y2;f
…; ~yng that approximately conforms to a normal distribution. The
transformation is a piecewise function given by:

~y ¼
yλ−1
λ

λ≠0ð Þ
lny λ ¼ 0ð Þ

8<
: ð3Þ

Not surprisingly, the Box–Cox transformation rendered the data
more normally distributed than a simple log-transformation. Howev-
er, an interesting aspect of this transformation is that the parameter λ
is allowed to vary continuously, and it approaches unity when the
data are normally distributed, and zero if lognormally distributed,
serving, therefore, as a summary metric of how normally or lognor-
mally distributed the data are. Throughout most of the brain, λ is
close to zero, although with a relatively wide variation (mode=
−0.057, mean=−0.099, sd=0.493 for the analyzed dataset), indi-
cating that, at the resolution used, the white surface cortical area
can be better characterized across the surface as a gradient of skewed
distributions, with the lognormal being the most common case. The
same was observed for facewise data smoothed in the sphere after
interpolation with FWHM=10mm (mode=−0.142, mean=−0.080,
sd=0.578).8 Maps for the parameter λ are shown in Fig. 5b (see also
the Supplemental Material).

Comparison with expansion/contraction methods

A number of studies have analyzed what has been called ex-
pansion or contraction of the cortical surface when compared to a
reference brain. Different studies adopted different operational defi-
nitions for what these terms would be [e.g. compare Joyner et al.
(2009), Sun et al. (2009b), Hill et al. (2010)], and an unified approach
has not been defined. Notwithstanding, the key difference between
these methods and the proposed areal analysis is that, at the end of
the processing pipeline, areal interpolation ensures the preservation
of the amount (mass) of quantities, whereas these methods do not.
Moreover, in the framework we present, a number of potential prob-
lems that may arise along the pipeline are explicitly addressed. These
problems, along with the solutions we propose, are summarized in
Table 1.

With a variety of expansion/contraction methods available, it is
difficult to identify the best to which areal analysis could be com-
pared. Here we retessellate each subject brain in native space using
the method described by Saad et al. (2004). The expansion/contrac-
tion method was implemented using the following steps: (1) from
the native surface geometry, perform the spherical transformation;
(2) perform the spherical registration to a standard brain; (3) treat
the coordinates x, y and z of the vertices from the native geometry
as three independent scalar fields over the registered sphere, and in-
terpolate these values to the common spherical grid using barycentric
interpolation9; (4) use the interpolated coordinates, together with
the same connectivity scheme between vertices as in the common
grid, to construct a newmodel of the brain in a subject-specific geom-
etry (Fig. 7); (5) from this new model, compute the area per vertex
and divide it by the area per vertex of the homologous point in the
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10 Note that an exact measurement of expansion/contraction relative to the template
can be produced simply by dividing the global area in native geometry by the area of
the template geometry. In this case, the points in Fig. 9a would lie in a perfectly straight
line, and nothing could be inferred about the relationship between regional variability
on expansion estimates and global measurements.

Fig. 6. Distribution of the uncorrected p-values of the Shapiro–Wilk normality test. For normally distributed data, 5% of these tests are always expected to be declared as not normal
with a significance level of α=0.05. Without transformation or smoothing, near 80% are found as not normal. Logarithmic and Box–Cox transformations render the data more nor-
mally distributed. Observe that the frequencies are shown in logscale. The dashed line (blue) is at the frequency that would be observed for uniformly distributed p-values.

Table 1
The proposed framework for areal analyses addresses a number of potential problems that may arise along the processing pipeline.

Processing step Problem Solution

Measurements assigned to vertices at the beginning
of the analysis.

Vertices do not hold or convey the same spatial information
as the original faces.

Analyze the faces directly.

Registration methods that not necessarily produce
smooth and invertible warps.

Discontinuities on expansion or contraction that are not
present in the actual brain.

Use diffeomorphic registration methods.

Interpolation based on points. Areal quantities are not preserved at any scale (local,
regional or global).

Use areal interpolation.

Use of a standard brain to compute the same
measurement that is later analyzed.

Results are interpretable only with respect to that same
reference brain.

Measure and analyze absolute quantities, not relative
to some reference.

Statistical analysis based on assumption of
normality.

The local surface area follows a lognormal distribution. Apply a data transformation. Use non-parametric
methods.
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template. Call this measurement expansion/contraction; (6) optional-
ly, smooth this quantity.

For comparison with the expansion/contraction method, the orig-
inal facewise area was converted to vertexwise, therefore halving the
spatial resolution of the areal data (see Appendix C). In this compar-
ison, we addressed some of the problems presented in Table 1, name-
ly, we registered using Spherical Demons, therefore ensuring smooth
and invertible warps, and as target for registration, we used the
study-specific template that produced the best results in Fig. 4. Fur-
thermore, the measurements were taken at the white surface, rather
than the middle surface, as the last is more prone to be influenced by
the cortical thickness. It is unclear if, when applicable, these aspects
were taken care of in all the different studies that analyzed some
form of expansion/contraction.

After establishing an expansion/contraction procedure, there are
still different ways to compare with areal analysis. The comparison
can be made across subjects or across space, can be global or regional,
and may or may not include smoothing. In Fig. 8 we show that the
average amount of area at each vertex did not produce a similar
spatial map as the average expansion/contraction. Although the two
methods follow remarkably different overall spatial patterns, when
vertices across space were pooled together to produce a global mea-
surement, they produced very similar results. Fig. 9a shows the relation-
ship between the global cortical surface area, computed from the sumof
the area at each vertex, and a globalmeasure of expansion computed by
averaging the expansion/contraction at each vertex across space.10 The
correlation was very high and helps to validate both methods as a
whole. Likewise, when each vertex was analyzed separately, the corre-
lation across subjects was also very high, as shown in Fig. 10, with an R2

above 0.9 throughout virtually the whole cortex. A spatial comparison
of the average maps, on the other hand, showed a very poor relation-
ship between both approaches, as shown in Fig. 9b. When looking at
each individual subject, rather than at the average, the correlation
across space was still relatively low, albeit not as poor: for the 168
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Fig. 7. After barycentric interpolation of the coordinates in the surface of the sphere, a
new, subject-specific retessellated model is constructed. Areas can be computed
directly from the retessellated model and, once divided by the areas of the homologous
vertices or faces of the reference brain, constitute the measurement of expansion/
contraction.
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hemispheres analyzed, we found an average linear R2=0.572, sd=
0.044 without smoothing, and R2=0.491, sd=0.065 after smoothing.

These results suggest that, if each vertex is analyzed in isolation,
analysis of surface area and analysis of expansion/contraction tend
to produce similar results. This is the case, for instance, using mass
univariate GLM-based approaches. However, for analysis that involve
spatial information or that combine information across neighboring
vertices, the results are expected to be rather dissimilar. The difference
Fig. 8. Average area (left panels) or expansion/contraction (right panels) per vertex, witho
contraction differ across space. Smoothing has little global impact.
stems from the different units of measurement: areal analyses pro-
duce measurements in absolute units of area (e.g. mm2), whereas ex-
pansion/contraction is relative to the given reference. The result
shown in Fig. 10, left panel, also demonstrates, indirectly, that areas
measured in the retessellated brain with the resolution used correlate
reasonably well with the areas obtained using areal interpolation, and
so, have potential to be used as a fast approximation to areal interpo-
lation (Appendix B). Conversely, expansion/contraction measure-
ments can be obtained after areal interpolation simply by dividing
the area per face (or per vertex) by its homologous in the reference
brain.

Validation and stability

Measurements of surface area are valid as long as the surface re-
construction from MR images produces accurate representations of
the cortex. The suggested reconstruction method has been previously
validated (Fischl and Dale, 2000), and is widely used for cortical thick-
ness measurements. Comparison between subjects at the face level
depends on goodmatching of homologies and the registrationmethod
we suggest has, likewise, been previously validated (Klein et al., 2010;
Yeo et al., 2010a). As methods evolve, novel approaches for construct-
ing surface representations of the cortex and for registration have
ut (upper panels) and with smoothing (lower panels). Areal analyses and expansion/
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Fig. 9. (a) The sum of the area per vertex correlates well with the average across space of the expansion/contraction at each vertex (i.e. equivalent to a weighed sum considering
each vertex as having the same initial area) for the 168 hemispheres analyzed. For the expansion/contraction, this is not the same as computing the ratio between the global surface
area in native geometry and of the template, in which case, the result would be a perfectly straight line. The high correlation implies that the regional differences in general com-
pensate each other to produce a similar global effect. (b) The correlation between average spatial maps across the 84 subjects, both hemispheres, is very poor between the methods.
[Note that, for (b), attempts to simultaneously plot all the > 300 thousand vertices would not produce meaningful plots in a small space; for this reason only 5% of the vertices were
randomly selected for plotting. The R2 were computed from all vertices and, for both (a) and (b), the value corresponds to the goodness of a linear fit.].
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potential to improve the overall quality of areal analyses. The validity
of areal measurements other than surface area itself depends on each
particular measurement technique.

To assess the stability across sessions and scanners, we compared
MR images of the same subject acquired in three different sessions
collected within a 1 year interval. The imaging protocol varied in
Fig. 10. For each isolated vertex, the linear relationship between areal analyses and expans
whole cortex.
terms of acquisition parameters, as well as the number of images
used for averaging and improvements on signal and contrast-to-
noise ratio. The details are summarized in Table 2. The estimated sur-
face area produced by summing the facewise areas over the cortex
after interpolation was very similar across tests, with the largest
difference being 8.2% between Tests A and C (see Table 2), with or
ion/contraction is very high across subjects, being above R2= 0.90 virtually across the
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Table 2
Stability and robustness of measurements after registration and interpolation were assessed using three test images of the same subject. The measurements were similar across
tests, with similar variability across space and high spatial correlation.

Test A Test B Test C

Manufacturer and model Siemens MAGNETOM Trio 3 T Siemens MAGNETOM Trio/TIM 3 T Siemens MAGNETOM Allegra 3 T
Sequence MPRAGE MPRAGE MPRAGE
TE/TI/TR (ms) 3.04/785/2100 2.83/766/2200 2.74/900/2500
Flip angle 13° 13° 8°
Voxel size (mm) 0.8×0.8×0.8 0.8×0.8×0.8 1.0×1.0×1.0
Number of acquisitions 14 7 1
Scan date March 2008 March 2008 April 2009
Cortical surface area (mm2) 176,996 177,098 180,949

Not smoothed
Average area per face (mm2) 0.2937 0.2939 0.3003
Standard deviation 0.0938 0.0910 0.0962
Correlation with Test A – 0.8218 0.7589
Correlation with Test B 0.8218 – 0.7863
Correlation with Test C 0.7589 0.7863 –

Smoothed (FWHM=10 mm)
Average area per face (mm2) 0.2935 0.2936 0.3000
Standard deviation 0.0746 0.0712 0.0748
Correlation with Test A – 0.9509 0.9074
Correlation with Test B 0.9509 – 0.9353
Correlation with Test C 0.9047 0.9353 –
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without smoothing. The mean and standard deviation for facewise
areas were virtually identical across tests, again regardless of smooth-
ing. The pairwise Pearson correlation between the tests for the facewise
data after registration and interpolation was above 0.80 without
smoothing, and above 0.90 after smoothing with FWHM=10 mm,
showing that the procedure is robust at the face level, even under dif-
ferent scanning conditions and degrees of smoothing.

Discussion

Registration

To be valid, facewise analyses rely on the assumption that micro-
scopic structures can be localized using as reference the features that
are identifiable with MRI and which drive the registration. Features
with such localizing power are important because they help to ensure
good overlap of homologous areas between subjects. Despite an implicit
assumption already present in most imaging studies, only recently it
has been demonstrated valid for some cytoarchitetonic areas when
the references are the cortical folding patterns, even though for non-
primary regions, the mismatch may still be substantial (Da Costa et al.,
2011; Fischl et al., 2008, 2009; Hinds et al., 2008, 2009). Other features,
some microscopic and detectable only under ultra-high field strengths
(Augustinack et al., 2005; Bridge and Clare, 2006; Duyn et al., 2007;
Kim et al., 2009), have the potential to be used as the reference as
long as they are demonstrated to be markers of histologically or func-
tionally defined areas, possibly replacing folding patterns altogether,
or used to provide ancillary information. Myeloarchitectural features
may be particularly useful for this application, for being responsible
for most of the contrast observed with MRI (Geyer et al., 2011).
Likewise, areal analyses can be conducted after registration based on
features derived from functional MRI (Sabuncu et al., 2010).

Good matching of homologies, however, depends not only on the
features used to guide the registration, but also on the registration
method itself. For facewise areal analyses, invertibility is necessary
to prevent faces from being folded over others. In addition, methods
that produce smooth warps are necessary to ensure that areal quan-
tities are transferred smoothly, without abrupt variations. Such
abrupt variations would only be acceptable if matching perfectly
with areas where structure and/or function also changes abruptly. A
spatial transformation that allows such perfect matching, however,
cannot be obtained easily in practice, since these borders usually
cannot be observed with current, conventional MRI methods, and im-
portantly, since many of the differences between regions are subtle
and the transitions are gradual. However, invertibility and smooth-
ness, as guaranteed by diffeomorphic methods, albeit important,
may not suffice. Our results show that even methods that produce
smooth varying warps can differ substantially with respect to how
the areal quantities are shifted across the surface. It is possible that
performance differences between these methods might be due to
choices on regularization strategies and associated parameters
(Fischl et al., 1999b; Yeo et al., 2010a), instigating further research
on selections that may produce the most accurate results (Yeo et al.,
2010b). Our experiments also demonstrate that the choice of the tar-
get used for registration affects the distortion in areal measurements.

Areal interpolation

Areal interpolation allows direct analysis of areal quantities in abso-
lute values, including the surface area itself. This is because it is the areal
quantity proper that is conservatively transferred between grids. There-
fore, there is no need to apply corrections due to stretches or shrink-
ages, such as using the Jacobian of the transformation (Good et al.,
2001), nor due to the choice of the parametrizable surface (Thompson
and Toga, 1999). Moreover, the results are interpretable directly with
regard to the actual amount of tissue or other measurement under
study, rather than relative to concepts as expansion/contraction,
which are always relative to a given reference, and can create difficulties
in interpretation and comparison across studies, either due to different
definitions adopted by different authors, or due to the need of a
reference brain. Notwithstanding, after areal interpolation, it continues
to be possible to divide the areas by the areas of the homologous faces
or vertices of a reference brain, and so, obtain an expansion/contraction
measurement. Moreover, areal quantities that are not area itself can
also be divided by the area of each face or vertex in native geometry,
thus converting these quantities to densities if necessary.

It should be emphasized that, as with other interpolation strategies,
areal interpolation is not perfectly reversible, i.e. once the cortical area
of a subject is transferred to a different grid, remapping back to the
subject surface will not produce locally identical results, although the
global areal quantity is always conserved. This is because within each
face, the areal quantity is implicitly assumed to be homogeneously dis-
tributed. This only becomes a problem if low resolution meshes are
used and if several back-and-forth iterations are performed.
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Statistical analysis of areal quantities

There are a number of reasons that go beyond purely methodolog-
ical considerations to justify the transformation of the data before sta-
tistical analysis. Measurements related to biological morphology,
such as lengths, areas, volumes or weights, are well known to follow
non-normal distributions. If the diameter of a structure, for instance,
is normally distributed, inevitably both its cross section and its sur-
face area follow skewed distributions, whereas its volume follows
an even more skewed (Gaddum, 1945; Kapteyn and van Uven,
1916). All these related measurements cannot be normally distribut-
ed simultaneously. The skewness is higher when the variability is
relatively large in comparison to the measure of central tendency
that best describes the data, such as the arithmetic or the geometric
mean. If the non-normality is not considered, statistical models are
likely to produce inaccurate results. In this scenario, a power transfor-
mation, such as the Box–Cox transformation, helps to identify subja-
cent, possibly causative, normally distributed effects.

The lognormal distribution, more specifically, is known to arise in
a variety of biological processes. Of particular interest is the autocat-
alytic growth of tissue over time. The number of cells present on a tis-
sue that grows in an unrestricted way can be given by the familiar
formula N=N0e

ct, where N0 is the initial number of cells, and t is
the amount of time in which the cell grows under the circumstances
represented by the constant c, a factor that incorporates a variety of
influences, such as genetic and environmental. N will be lognormally
distributed if either c or t are normally distributed (Koch, 1966;
Limpert et al., 2001). The finding that the facewise cortical surface
area follows mostly lognormal distributions may suggest that the
method may capture these biological effects. Such interpretation
can only subsist under the tenets of accurate and smooth registration.

From a statistical perspective, permutation methods do not rely on
normality, rendering them appropriate in a variety of situations in
which this assumption is not tenable. Nevertheless, the data should,
still, undergo a transformation. As discussed above, the reason is not
merely to conform to normality, although that comes as a bonus,
but also to ensure that underlying biological effects, either multiplica-
tive or proportionally dependent upon an initial value, can be treated
as additive in a linear model (Christensen, 2002). Areal quantities
that are not the cortical surface area itself can, notwithstanding, be
distributed differently, and the framework for statistical analysis out-
lined in the Methods section appears generic enough to accommo-
date a variety cases. The Box–Cox transformation has yet another
advantage when used in combination with permutation methods
under multiple testing conditions: the more stable variance after
the transformation allows the distribution of the statistic under null
hypothesis to become more similar across tests, allowing FWER to
be controlled at a level closer to its nominal value using the distribu-
tion of the maximum statistic.

Further developments and potential applications

Facewise analyses offer the possibility of studying surface area at a
much finer scale than previously. This is a feature of interest in many
research fields across the neurosciences, as well as in medicine. Al-
though the same applies to vertexwise cortical thickness, thickness
and area provide different and complementary insights into process-
es underlying the development of the brain and disorders (Sanabria-
Diaz et al., 2010; Voets et al., 2008; Winkler et al., 2010).

Provided that the neurons in the cortex retain largely their same rel-
ative positions as the progenitor cells in the embryo (Clowry et al.,
2010; Pierani and Wassef, 2009; Rakic, 1988, 2009), facewise compari-
son of surface area allows one to hypothesize about ontogenetic
processes to the extent that they can be observed and localized with
MRI, even long after the end of phases of massive tangential cellular
proliferation. Until now, this kind of study could not be performed,
either due to lack of methods to analyze cortical surface area without
the constrains imposed by regions of interest, or due to inherent limita-
tions of methods based on expansion or contraction.

The study of local cortical surface area offers, moreover, new possi-
bilities for connectivity analyses, as the need for parcellations based
onmacroscopic anatomy is obviated. Indeed, the results of connectivity
analyses are known to be influenced by the choice of the parcellation
that define nodes of putative neuronal networks (Butts, 2009;
Rubinov and Sporns, 2010). Notwithstanding, if a given set of regions
is derived from a different method (Beckmann et al., 2009; Nelson et
al., 2010), these can be directly associated with their corresponding
surface-based areas or areal quantities by means of areal interpolation.

Another potential application is for genetic analyses. Given that
cortical surface area and thickness are both heritable, yet genetically
not correlated (Panizzon et al., 2009; Winkler et al., 2010), these
traits, separately, can be used in a framework similar to voxelwise
genome-wide association studies (vGWAS) (Stein et al., 2010). Iden-
tification of genes that influence surface area has potential to eluci-
date a myriad of developmental, neurologic and psychiatric disorders.

Conclusion

We presented an interpolation method for between-subject anal-
yses of cortical surface area. The method is also suitable for other
quantities that are areal by nature and which require mass conserva-
tion (pycnophylactic property) during interpolation and analysis. We
demonstrated that, when the quantity under study is surface area it-
self, the distribution of the data does not follow a normal distribution,
being instead better characterized as lognormal, and proposed a
framework for statistical analysis and inference. An Octave/MATLAB
implementation of areal interpolation is available from the authors
at http://brainder.org.

Supplementary materials related to this article can be found
online at doi:10.1016/j.neuroimage.2012.03.026.
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Appendix A. Geodesic spheres and areal inequalities

The only required feature for the common grid used for the areal
interpolation is that all its vertices must lie on the surface of a sphere.
The algorithmwe present in Appendix B requires further that all faces
of the sphere are triangular and that all edges of all faces are much
smaller than the radius, so that areal distortion is minimized when
projecting to a plane.

http://brainder.org
doi:10.1016/j.neuroimage.2012.03.026


Fig. 11. (a) The common grid can be a geodesic sphere produced from recursive subdivision of a regular icosahedron. At each iteration, the number of faces is quadrupled. (b) After
the first iteration, however, the faces no longer have regular sizes, with the largest face being approximately 1.3 times larger than the smallest as n increases.
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A common grid that meet these demands is a sufficiently fine
geodesic sphere. There are different ways to construct such a sphere
(Kenner, 1976). One method is to subdivide each face of a regular
polyhedron with triangular faces, such as the icosahedron, into four
new triangles. The new vertices are projected to the surface of the (vir-
tual) circumscribed sphere along its radius and the process is repeated
recursively a number of times (Lauchner et al., 1969). For the n-th
iteration, the number of faces is given by F=4nF0, the number of
vertices by V=4n(V0−2)+2, and the number of edges by E=4nE0,
where F0, V0 and E0 are, respectively, the number of faces, vertices and
edges of the polyhedron with triangular faces used for the initial subdi-
vision. For the icosahedron, F0=20, V0=12 and E0=30 (Fig. 11a). For
the analyses in this manuscript, we used n=7, producing geodesic
spheres with 327680 faces and 163842 vertices.

These faces, however, do not have identical edge lengths and areas
(Kenner, 1976), even though the initial icosahedron was perfectly
regular. This is important for areal interpolation, as larger faces on
the target grid do overlap with more faces from the source surfaces,
absorbing larger amounts of areal quantities, possibly causing confu-
sion if one attempts to color-encode the interpolated image according
to the actual areal quantities, in which case, geometric patterns such
as in Fig. 11b will become evident. Moreover, smoothing can cause
quantities that are arbitrarily large or small due to face sizes to be
blurred into the neighbors. Both potential problems can be addressed
by multiplying the areal quantity at each face j, after interpolation, by
a constant given by 4πr2/(Aj

TF), where Aj
T is the area of the same face

of the geodesic sphere, F is the number of faces, and r is the radius of
the sphere.

Appendix B. Implementation

The areal interpolation for spheres is implemented in two parts. In
the first, we compute inside of which source faces the target vertices
are located, creating a lookup table to be used in the second part. This
is the point-in-polygon problem found in vector graphics applications
(Vince, 2005). Here we calculate the area of each source face, Ai

S, and
the subsequent steps proceed iteratively for each face in the source.
The barycentric coordinates of each candidate vertex in relation to
the current face i is computed; if their sum equals to unity, the
point is labeled as inside. However, to test if all vertices are inside
every face would needlessly waste computational time. Moreover,
since all points are on the surface of a sphere, the vertices in the target
are never expected to be coplanar to the source triangular faces, so
the test would always fail. The first problem is treated by testing
only the vertices located within a bounding box defined, still in the
3D space, from the source face extreme coordinates. The second
could naïvely be treated by converting the 3D Cartesian coordinates
to 2D spherical coordinates, which allow a fast flattening of the
sphere to the popular plate carrée cylindrical projection. However,
latitude is ill-defined at the poles in cylindrical projections. Moreover,
cylindrical projections introduce a specific type of deformation that is
undesired here: straight lines on the surface (geodesic lines) are dis-
torted. The solution we adopt is to rotate the Cartesian coordinate
system so that the barycenter of the current source face lies at the
point (r, 0, 0), where r is the radius of the source and target spheres.
The barycenter is used for ease of calculation and for being always in-
side the triangle. After rotation, the current face and the nearby can-
didate target vertices are projected to a plane using the azimuthal
gnomonic projection (Snyder, 1987), centered at the barycenter of
the face. The point-in-polygon test can then be applied successfully.
The key advantage of the gnomonic projection is that all geodesics
project as straight lines, rather than loxodromic or other complex
paths as with other projections, which would cause many target ver-
tices to be incorrectly labeled. This projection can be obtained trivially
after the rotation of the 3D Cartesian coordinate system as ϕ=y/x
and θ=z/x, where (x, y, z) are the 3D coordinates of the point being
projected. A potential disadvantage of the gnomonic projection is
the remarkable areal distortion for regions distant from the center
of the projection. Since in typical neuroimaging applications the
source and target spheres are composed of a tessellation of approxi-
mately 3×106 faces, Ai

S≪4πr2, and the distortion becomes negligible.
In the second part, the areal interpolation is performed, with the

overlapping areas being calculated and used toweigh the areal quantity
under study. The identification of intersections between two sets of
polygons is also a well studied problem in vector graphics (Chazelle
et al., 1994; Guibas and Seidel, 1987), which solution depends on opti-
mally finding crossings between multiple line segments (Balaban,
1995; Bentley and Ottmann, 1979; Chazelle and Edelsbrunner, 1992).
Most of the efficient available algorithms assume that the polygons
are all coplanar; those that work in the surface of a sphere use
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Fig. 12. Differences between presentation of facewise and vertexwise data can be
observed in this zoomed portion of the mesh representation of the cortex. Vertices
are dimensionless and, to display vertexwise data, the faces have to be colored using
linear interpolation. This is not necessary for facewise data, which can be shown direct-
ly in the uniform colors that represent the underlying data. In either case, the presen-
tation can be improved by using a shading model, such as Gouraud in this example.
Although the vertexwise presentation may be visually more appealing, it contains
only half the resolution of the facewise image.
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coordinates expressed in latitude and longitude and require special
treatment of the polar regions. The solution we adopt obviates these
problems by first computing the area of each target face, AjT; the subse-
quent steps are performed iteratively for each face in the target sphere,
using the azimuthal gnomonic projection, similarly as in the first part,
but now centered at the barycenter of the current target face at every it-
eration. The areal quantities assigned to the faces in the target sphere
are initialized as zero before the loop begins. If all three vertices of the
current target face j lie inside the same source face k, as known from
the lookup table produced in the first part, then to the current face
the areal quantity given by Qj

T=Q k
SAj

T/AkS is assigned. Otherwise, the
source faces that surround the target are examined to find overlaps.
This is done by considering the edges of the current target face as vec-
tors organized in counter-clockwise orientation, and testing if the verti-
ces of the candidate faces lie on the left, right or if they coincidewith the
edge. If all the three vertices of any candidate face are on the right of any
edge, there is no overlap and the candidate face is removed from further
consideration. If all the three vertices are on the left of all three edges,
then the candidate source face is entirely inside the target, which has
then its areal quantity incremented as Q j

T←Q j
T+Qk

S. The remaining
faces are those that contain some vertices on the left and some on the
right of the edges of the current, target face. The intersections between
these source and target edges are computed and false intersections be-
tween edge extensions are ignored. A list containing the vertices for
each candidate source face that are inside the target face (known for
being on the left of the three target edges), the target vertices that are
inside each of the source faces (known from the lookup table) and the
coordinates of the intersections between face edges, is used to compute
the convex hull, using the Quickhull algorithm (Barber et al., 1996). The
convex hull delimits the overlapping region between the current target
face j and the candidate source face k, which area, AkO, is used to
increment the areal quantity assigned to the target face as Q j

T←Q j
T+

Qk
SAk

O/AkS.
The algorithm runs in O nð Þ for n faces, as opposed to O n2

� �
that

would be obtained by naïve search. Nevertheless, the current imple-
mentation in Octave/MATLAB, a dynamically typed, interpreted lan-
guage, requires about 24 hours to run in a computer with 2.66 GHz
Intel Xeon processors.

Appendix C. Conversion from facewise to vertexwise

Whenever it is necessary to perform analyses that include mea-
surements taken at each vertex (such as some areal quantity versus
cortical thickness) or when only software that can display vertexwise
data is available (Appendix D), it may be necessary to convert the
areal quantities from facewise to vertexwise. The conversion can be
done by redistributing the quantities at each face to their three con-
stituent vertices. The areal values assigned to the faces that meet at
a given vertex are summed, and divided by three, and reassigned to
this vertex. Importantly, this procedure has to be done after the
areal interpolation, since interpolation methods for vertexwise data
are not appropriate for areal quantities, and before the statistical anal-
ysis, since the average of the results of the statistics of a test is not
necessarily the same as the statistic for the average of the original
data. It should also be observed that conversion from facewise to ver-
texwise data implies a loss of resolution to approximately half of the
original and, therefore, should be performed only if resolution is not a
concern and there is no other way to analyze, visualize, or present
facewise data or results. The conversion does not change the underly-
ing distribution, provided that the resolution of the initial mesh is suf-
ficiently fine.

Appendix D. Presentation of results

To display results, facewise data can be projected from the com-
mon grid to the template geometry, which helps to visually identify
anatomical landmarks and name structures. Projecting data from
one surface to another is trivial as there is a one-to-one mapping be-
tween faces of the grid and the template geometry. The statistics and
associated p-values can be encoded in colors, and a color scale can be
shown along with the surface model.

However, the presentation of facewise data has conceptual dif-
ferences in comparison with the presentation vertexwise data. For
vertexwise data, each vertex cannot be directly colored, for being
dimensionless. Instead, to display data per vertex, typically each
face has its color interpolated according to the colors of its three
defining vertices, forming a linear gradient that covers the whole
face. For facewise data there is no need to perform such interpolation
of colors, since the faces can be shown directly on the 3D space, each
one in the uniform color that represents the underlying data. The
difference is shown in Fig. 12.

Interpolation of colors for vertexwise data should not be confused
with the related, yet different concept of lightning and shading using
interpolation. Both vertexwise and facewise data can be shaded to
produce more realistic images. In Fig. 12 we give an example of
simple flat shading and shading based on linear interpolation of the
lightning at each vertex (Gouraud, 1971).

Currently available software allow the presentation of color-
encoded vertexwise data on the surface of meshes. However, only
very few software applications can handle a large number of colors
per 3D object, being one color per face. One example is Blender
(Blender Foundation, Amsterdam, The Netherlands), which we used
to produce the figures presented in this article. Another option, for in-
stance, is to use low-level mesh commands in MATLAB, such as patch.
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