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Abstract: Due to the increasing need for subject privacy, the ability to deidentify structural MR images
so that they do not provide full facial detail is desirable. A program was developed that uses models
of nonbrain structures for removing potentially identifying facial features. When a novel image is pre-
sented, the optimal linear transform is computed for the input volume (Fischl et al. [2002]: Neuron
33:341–355; Fischl et al. [2004]: Neuroimage 23 (Suppl 1):S69–S84). A brain mask is constructed by
forming the union of all voxels with nonzero probability of being brain and then morphologically
dilated. All voxels outside the mask with a nonzero probability of being a facial feature are set to 0.
The algorithm was applied to 342 datasets that included two different T1-weighted pulse sequences
and four different diagnoses (depressed, Alzheimer’s, and elderly and young control groups). Visual
inspection showed none had brain tissue removed. In a detailed analysis of the impact of defacing on
skull-stripping, 16 datasets were bias corrected with N3 (Sled et al. [1998]: IEEE Trans Med Imaging
17:87–97), defaced, and then skull-stripped using either a hybrid watershed algorithm (Ségonne et al.
[2004]: Neuroimage 22:1060–1075, in FreeSurfer) or Brain Surface Extractor (Sandor and Leahy [1997]:
IEEE Trans Med Imaging 16:41–54; Shattuck et al. [2001]: Neuroimage 13:856–876); defacing did not
appreciably influence the outcome of skull-stripping. Results suggested that the automatic defacing
algorithm is robust, efficiently removes nonbrain tissue, and does not unduly influence the outcome of
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the processing methods utilized; in some cases, skull-stripping was improved. Analyses support this
algorithm as a viable method to allow data sharing with minimal data alteration within large-scale
multisite projects. Hum Brain Mapp 28:892–903, 2007. VVC 2007 Wiley-Liss, Inc.
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INTRODUCTION

To share human data in compliance with federal, state,
and local regulations, including the recently enacted
Health Insurance Portability and Accountability Act of
1996 (HIPAA, http://www.hhs.gov/ocr/hipaa/), it is cru-
cial to have in place robust practices and procedures that
protect the welfare of the individuals who participate in
the research. These practices must include measures that
ensure the privacy of the individual. For data to qualify as
sharable under the ‘‘safe harbor’’ regulations, one of the
HIPAA-defined identifiers that must be removed is ‘‘full
face photographic images and any comparable images.’’
With the increasing resolution of morphometric MR scans,
it has become possible to reconstruct detailed images
showing facial anatomy (Fig. 1a). Thus, in order to share
unaltered MRI images, both sites are required to provide a
waiver of consent. This becomes problematic in multisite
projects, particularly, those with the goal of making data
available to a larger research community.
The face recognition literature has suggested that internal

facial features (i.e., eyes, nose, and mouth) are particularly
relevant when recognizing a familiar individual [Bruce
et al., 1999; Burton et al., 1999]. Therefore, automated tech-
niques to obscure or remove an individual’s facial features
from structural MR images have become an important part
of the data sharing process for large-scale, multisite projects
such as the Biomedical Informatics Research Network
(BIRN). In addition to reducing the ability to visually iden-
tify a subject, a method must be robust, removing only
nonbrain tissue while leaving brain tissue intact (Fig. 1b
and Fig. 2). It should be insensitive to pulse parameters,
thereby working for a variety of 3D T1-weighted sequen-
ces. Finally, the outcome of such deidentification must not
change the data in such a way as to have debilitating
effects on later data processing and analysis.
Although numerous automated skull-stripping algo-

rithms are available that might be considered for deidenti-
fication purposes, their performance may be influenced by
a variety of factors, such as MR signal inhomogeneities,
gradient performance, and extent of neurodegeneration in
the subjects studied [Smith, 2002]. A detailed study of how
such variables may influence the automated performance
of four common skull-stripping techniques (Brain Surface
Extractor (BSE), Brain Extraction Tool (BET), 3dIntracra-
nial, and a Hybrid Watershed (HWA)) has shown that it is
difficult to achieve satisfactory results for all datasets,
especially, across different subject populations [Fennema-
Notestine et al., 2006]. Even with some level of manual

intervention, it is difficult to create ‘‘one-size fits all’’ pa-
rameters such that automated skull-stripping deidentifies
the subject without loss of brain tissue; manual tuning for
a particular scanner and/or pulse sequence may not pro-
duce consistent results across datasets collected under that
protocol [Fennema-Notestine et al., 2006; Smith, 2002].
These manually optimized parameters may also be de-
pendent upon area of interest, such that regions not cur-
rently under study (e.g., the superior parietal regions) may
be sacrificed for better results within the regions to be
studied (such as the anterior temporal lobe). This is highly
significant for large multisite projects in which not every
individual who might legitimately have access to images
can be identified when consent is obtained. An example of
this circumstance might occur when meeting government
mandates to make research imaging-data public to the sci-
entific community.
A more recent approach has suggested combining multiple

automated skull-stripping methods within a single meta-algo-

rithm to optimize results [Rex et al., 2004]. While this method
showed improved results over individual algorithms, for opti-

mal results it does require training for data sets with novel
contrast or signal-to-noise characteristics. Further, should new

algorithms be added, determination of the best overall algo-
rithmic combination becomes intractable. Another concern is
that many of these methods may remove certain elements,

such as extracranial cerebrospinal fluid (CSF), which hold
some importance in some fields of research. With recent

advances in combining MRI with EEG/MEG, cranial features
are important for identifying electrode placement with respect

to a structural MRI. These features would be removed when
a skull-stripping algorithm is applied. Skull-stripping method-

ology, then, may not be sufficiently reliable for large-scale,
automated deidentification purposes.
In the current study, we introduce an automated

‘‘defacing’’ algorithm that removes only identifiable facial
features from MR volumes, and we present the results of

an investigation of the performance of this defacing algo-
rithm on image sets that differed by age and diagnosis.

First, image volumes were examined qualitatively for pres-
ervation of brain tissue after defacing. Second, to help

quantify the outcome, we compared skull-stripped vol-
umes, using Hybrid Watershed [Ségonne et al., 2004, in
FreeSurfer] or Brain Surface Extractor [Sandor and Leahy,

1997; Shattuck et al., 2001], with both defaced and non-
defaced datasets. These skull-stripping algorithms were

selected based upon their performance in a previous anal-
ysis [Fennema-Notestine et al., 2006] as being fairly robust
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across diagnoses. After visually inspecting whole brain vol-
umes, we focused upon six slices in regions typically prob-
lematic in differentiating brain from nonbrain for more

detailed quantitative analysis. These slices were compared to
two manually-created gold standards to determine (1) simi-
larity of results across methods; (2) sensitivity to classifica-
tion of tissue as brain; and (3) ability to specify tissue as
nonbrain. We hypothesized that defacing would successfully
remove nonbrain tissue and not appreciably modify the per-
formance of the skull-stripping algorithms employed.

MATERIALS AND METHODS

MR Image Sets

Data collected using a common structural gradient-echo
(SPGR) T1-weighted pulse sequence were examined. The
datasets were collected on a GE 1.5T magnet located at the
VA San Diego Healthcare System MRI Facility that was
subject to regular hardware and software upgrades over
time. Two large datasets were used for the purposes of
qualitative visual inspection: 278 Legacy datasets were col-
lected over 4 years in the mid to late 1990s (June 1994 to
July 1998) using the following parameters: TR ¼ 24 ms; TE
¼ 5 ms; NEX ¼ 2; flip angle ¼ 458; FOV ¼ 24 cm; 1.2-mm
contiguous sagittal sections. Sixty-four Contemporary data-
sets were collected over an 11-month period May 2002 to
April 2003 using the following settings: TR ¼ 20 ms; TE ¼
6 ms; NEX ¼ 1; flip angle ¼ 308; FOV ¼ 25 cm; 1.5-mm
contiguous sagittal sections. A subset of these Contemporary
data was employed in the qualitative skull-stripping
assessment described in more detail later. The University

Figure 1.

An example of a 3-D reconstruction of a T1-weighted dataset (a) before and (b) after applica-

tion of the defacing algorithm. The defacing algorithm removed identifying facial features while

preserving brain tissue for future analyses.

Figure 2.

A sagittal slice from a defaced dataset illustrating how nonbrain

voxels in the face region are set to a fill value of zero.
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of California, San Diego, institutional review board approved
all procedures, and written informed consent for image ac-
quisition was obtained from all subjects.

Diagnostic Groups

Four populations were used throughout the analysis,
consisting of depressed (DEP), Alzheimer’s (AD), young
control (YNC), and elderly control (ENC) groups. AD se-
verity was measured with the Mini-Mental State Examina-
tion [Folstein et al., 1975]. Of the datasets used for qualita-
tive visual inspection, the 278 Legacy datasets included 50
ENC, 92 AD, 96 YNC, and 40 DEP participants, and the 64
Contemporary datasets included 36 ENC, 4 AD, 5 YNC (3
subjects had 2 longitudinal sessions), and 8 DEP (all sub-
jects had 2 longitudinal sessions) participants. From these,
16 Contemporary datasets (4 ENC, 4 AD, 4 YNC, 4 DEP)
were selected for further quantitative statistical analysis.
The YNC and DEP groups were similar on age and educa-
tion, as were the ENC and AD groups (Table I) for this
reduced dataset. Legacy datasets were not used in the sta-
tistical analysis due to their increased need for manual
intervention during the skull-stripping process.

Defacing Algorithm

An algorithm was developed that uses models of non-
brain structures for removing facial features that may
potentially allow the identification of a subject/patient from
their MR scan. An atlas of face membership was created
by manually labeling the facial features of 10 subjects.
These facial features comprised the entire front of the head.
To remove facial features from novel images, an optimal
linear transform using both brain and nonbrain was com-
puted for the input volume [Fischl et al., 2002]. Next, a
brain mask was constructed by forming the union of all
voxels whose prior probability of being any brain tissue
was nonzero. This mask was then morphologically dilated
n times (n ¼ 7) to yield a binary volume, the nonzero val-
ues of which indicate the presence of brain tissue within
nx millimeters. Here, x is the size of a voxel in millimeters,
and the volumes were interpolated to ensure isotropic
voxel dimensions. The number of dilations functions as a
buffer and is related to the accuracy of the linear trans-
form. It is essentially the distance from the brain in which

one can be confident the linear transform can localize. The
deidentification procedure involved finding all voxels that
were outside the mask, but had a nonzero probability of
being a facial feature, and setting them to zero. Voxels
within x and 2x of the detected brain mask were removed if
the Mahalanobis distance, using mean and covariances esti-
mated from a manually labeled training set, to any brain tis-
sue was low; that is, if the voxel intensity did not appear
similar to brain tissue intensity. This was particularly useful
for removing fatty tissue from the orbital areas, for example.
As the face atlas was created from T1-weighted images, it
therefore should be used only with T1-weighted datasets.
The defacing algorithm took �25 min per dataset to run on
a Dell Precision Xeon 3.20 GHz with 2 GB RAM.

Automated Skull-Stripping Methods

To quantitatively assess whether the defacing algorithm
removed brain tissue and/or influenced the performance of
commonly used software, two different skull-stripping
methods were applied to (1) 16 normalized, nondefaced
datasets, and (2) the same 16 normalized datasets after
defacing. The two skull-stripping methods employed
included Brain Surface Extractor [Sandor and Leahy, 1997;
Shattuck et al., 2001], a tool shown to have high specificity
in finding the cortical surface, and a Hybrid Watershed
algorithm [Ségonne et al., 2004], a relatively more sensitive
tool that often results in a conservative strip that rarely
removes any brain tissue [Fennema-Notestine et al., 2006].
For image normalization, nonparametric nonuniform inten-
sity normalization [N3; Sled et al., 1998] was used; this
locally adaptive bias correction algorithm was chosen for its
applicability to raw, unstripped datasets and its perform-
ance relative to other methods [Arnold et al., 2001]. The two
skull-stripping algorithms are briefly described as follows:

1. Hybrid Watershed Algorithm (v. 1.21). HWA [Fischl
et al., 2002; Ségonne et al., 2004; in FreeSurfer, http://
surfer.nmr.mgh.harvard.edu] is a hybrid of a water-
shed algorithm [Hahn and Peitgen, 2000]; it assumes
white matter connectivity to determine a local opti-
mum of the intensity gradient, and a deformable sur-
face model [Dale et al., 1999], which is used to apply
corrections when the connectivity assumption does
not hold. Optionally, a statistical atlas can be used to
verify and potentially correct the surface estimate. In
the present study, the atlas-based option was not
finalized for v. 1.21; therefore, for automated process-
ing, the default parameters without the atlas option
were utilized. On average, HWA required less than
8 min of processing time per dataset.

2. Brain Surface Extractor (v. 3.3). BSE [Sandor and
Leahy, 1997; Shattuck et al., 2001; in BrainSuite,
http://brainsuite.usc.edu/] uses anisotropic diffusion,
edge detection, and morphologic erosion to segment
the brain. Briefly, the algorithm first detects the
boundary between brain and skull that is then filtered

TABLE I. Diagnostic group information for datasets

used in the statistical analyses

Diagnostic group Age Gender MMSE

Young control 33.0 6 15.1 (21–54) 2F/2M N/A
Elderly control 74.5 6 1.7 (72–76) 2F/2M N/A
Unipolar depressed 40.8 6 10.8 (21–54) 3F/1M N/A
Alzheimer’s disease 75.5 6 1.7 (72–78) 1F/3M 23.2 6 2.5

(22–27)

Values given are mean 6 SD, and values inside parentheses indicate
ranges. N/A: not available.
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with anisotropic diffusion to smooth small image gra-
dients while retaining larger ones that correspond to
strong edges in the image. Because noise in the image
may lead to a result that does not separate the brain
from the rest of the head, morphologic processing
techniques are used to identify and refine the brain
surface. The parameters employed were a sigma of
0.8 for the edge detection, with five iterations of the
anisotropic filter at a diffusion constant of 5.0. BSE
required about 15 s of processing time per dataset.

Manual Skull-Stripping

For more refined analyses, two anatomists manually
stripped six sagittal slices from each of the 16 raw contem-
porary MR datasets to provide a criterion against which to
judge the automated outcomes of skull stripping with/with-
out prior defacing (Fig. 3). Note that whole brain volumes
from which these slices were taken were visually inspected
as described later. Both anatomists (CPC and SM) were
experienced in neuroimaging, with training in both neuro-
science and neuroanatomy. With the guidance of a trained
neuroanatomist (CFN), the anatomists completed four sam-
ple datasets, not included in the present study, to formalize
a set of criteria for skull-stripping. If the anatomists were
unable to definitively classify tissue as brain or nonbrain,
they were instructed to conservatively include the tissue. Six
sagittal slices (three per hemisphere) that passed through
regions that are difficult for both manual and automated
skull-stripping methods were selected. These included slices
passing through the anterior medial temporal, anterior infe-
rior frontal, posterior cerebellar regions, and posterior occipi-
tal regions. These slices were chosen due to their difficulty
in separating brain from nonbrain tissues on T1-weighted
images. On average, it took 1 h for each anatomist to man-
ually strip the six slices (about 10 min per slice) in a given
dataset. The Jaccard similarity coefficient between these two
neuroanatomists was 0.938 across all datasets; more detailed
analyses of the anatomists’ performance has been described
elsewhere [Fennema-Notestine et al., 2006] and will therefore
not be included in this report.

Data Processing

The 16 contemporary datasets selected for statistical
analysis were processed in four ways: (1) the original
images were normalized with N3, followed by skull-strip-
ping with HWA or (2) BSE; (3) the original images were
defaced, followed by image normalization with N3, and
finally skull-stripping with HWA or (4) BSE. Therefore, for
each initial dataset, there were four processed datasets for
subsequent analysis.

Analytical Methods

All datasets were subjected to qualitative review.
Defaced images were visually inspected to determine

whether the defacing mask encroached upon brain tissue.
Visualization was conducted using AFNI [Cox, 1996;
http://afni.nimh.nih.gov/afni/] to examine each subject’s
structural image across all three planes by overlaying the
mask onto the original anatomical image. After visual
inspection to determine if there was a loss of brain tissue,
the image was rendered into a three-dimensional image
and further inspected to determine if facial features were
adequately removed (Fig. 4).
Analyses were conducted by using all sagittal slices in

which each subject’s representative slice contained brain
tissue (total slices per dataset ¼ 86). Within this analysis,
which we will hereafter term the Whole Brain analysis,
comparisons were made between skull-stripped and
defaced þ skull-stripped images, using either BSE or HWA
as the skull-stripping method. This technique was selected

Figure 3.

Standard location of the manually stripped slices as demon-

strated on a coronal image. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]
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due to performance differences between the two automated
methods. As previously stated, HWA tends to be highly sen-
sitive to brain tissue and produces conservative skull-
stripped images, whereas BSE is very specific and comes
closer to the brain surface, although in some cases brain tis-
sue may be removed [Fennema-Notestine et al., 2006].
Because the Whole Brain analysis relied solely upon auto-

mated methods, a second analysis was employed: Six sagit-
tal slices, known to be problematic in skull-stripping, were
selected from the HWA-stripped and the defaced þ HWA-
stripped datasets and compared statistically with manually
stripped images by two trained anatomists (i.e., gold stand-
ard) to determine similarity across methods as well as ability
to correctly classify voxels as brain or nonbrain. HWA was

Figure 4.

Examples of successful application of the defacing algorithm. Top row: elderly control subject (left) and Alzhei-

mer’s patient (right); bottom row: young normal control subject (left) and unipolar depressed patient (right).
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selected due to its ability to generally conserve brain tissue
across a number of patient populations [Fennema-Notestine
et al., 2006]. Given that the six slices chosen were known to be
difficult ones for determining brain vs. nonbrain, we felt it was
prudent to use a conservative skull-stripping algorithm; this
was consistent with the instructions to the trained anatomists,
who were told to retain tissue if it were difficult to classify.
The four statistical methods chosen for both Whole Brain

and Six Slice analyses were as follows:

1. Set-Difference. This technique examined the difference
in the number of voxels left behind by skull-stripping
only to the number of voxels that were removed by
defacing only. The original image volume was skull-
stripped, and the resulting mask was applied to the
defaced image volume. The number of nonzero voxels
was tabulated to determine how many voxels the
defacing algorithm removed that the skull-stripping
algorithm left behind in a stripped, nondefaced vol-
ume. This difference can occur if the defacing algo-
rithm is overly sensitive to nonbrain tissue, or if it
removes brain tissue from the original image.

2. Jaccard Similarity Index. The Jaccard measures the
degree of correspondence, or overlap, for each image
slice. It is formulated as

JSCðA;BÞ ¼ ðA \ BÞ=ðA [ BÞ

where A, the criterion, and B are the images being
compared [Jaccard, 1912]. For Whole Brain, the skull-
stripped only datasets were the criterion, and the
defaced þ skull-stripped datasets were compared
with them. Datasets stripped with HWA were
treated separately from those stripped with BSE. In
the Six Slice experiment, we used the manually
stripped datasets as criterion, comparing the HWA
and defaced þ HWA datasets with them. A score
of 1.0 indicates complete overlap or agreement,
whereas a score of 0.0 indicates no overlap.

3. Hausdorff Distance Comparison. The Hausdorff
examines the degree of mismatch between the con-
tours of two image sets [Huttenlocher et al., 1993].
Given two finite point sets, A ¼ {a1,. . ., am} and B ¼
{b1,. . ., bn}, where A and B are sets of points along the
contour of a skull-stripped brain slice, the Hausdorff
distance is defined as

HðA;BÞ ¼ maxðhðA;BÞ; hðB;AÞÞ

The directed Hausdorff distance from A to B is
defined as

hðA;BÞ ¼ max
a2A

min
b2B

ka� bk

4. Expectation-Maximization Algorithm. This algorithm
calculates the maximum likelihood estimate of the

underlying agreements among all methods [Warfield
et al., 2002]. There are two main outcomes of this
method:
(a) Sensitivity: This metric determines the relative fre-

quency of correct brain classification by one
method relative to all methods.

(b) Specificity: This determines the relative frequency
of correct nonbrain classification by one method
relative to other methods.

The a priori probabilities for all voxels for each slice
of each subject tested were set to 0.5; this indicates
there was no initial knowledge about ground truth.
Initial estimates for sensitivity and specificity were set
to 0.9. The termination criterion for convergence set
the root mean square error to <0.005.

The goal of using a variety of statistical outcomes was to
demonstrate that the findings were robust, converged
across methods, and were sufficiently generalizable. While
it was expected that there would be some correlation
amongst the different methods, inherently these metrics
measure different aspects of the data.
Descriptive statistics (mean and standard error) were

calculated for all analyses, both across and within each
diagnostic group. This provided us with an initial impres-
sion of performance for all datasets, as well as whether a
particular diagnosis produced unusual results with respect
to other patient populations. These were followed by a se-
ries of mixed design analyses at the conventional a of 0.05
for statistical significance. Between-subjects effects were
examined for diagnosis. Where appropriate, univariate
within-subject repeated measures analysis of variance were
examined for Slice (either the 86 slices that contain brain
tissue within each subject or for Slices 1–6 as seen in Fig.
3), to potentially identify region-specific trends in defacing,
and method (BSE for Whole Brain analysis only; HWA for
both Six Slice and Whole Brain analyses; Gold Standard for
Six Slice analysis only). All analyses used the Huynh-Feldt
correction since sphericity could not be assumed. For all
repeated measures reaching significance, partial h-squared
(h2) values were reported as an estimate of effect size.
Because we did not wish to make assumptions regarding
the Six Slice analysis distribution, a rank order analysis
was employed.

RESULTS

Qualitative Review

To date, 342 T1-weighted datasets have been defaced
and visually inspected; none of these defaced datasets
have had brain tissue removed. Three-dimensional render-
ings of the defaced images indicated that identifying facial
features (eyes, nose, mouth, chin) were removed from, on
average, the nasion downward (Fig. 4).
For the 16 contemporary datasets used for subsequent

quantitative analysis, visual inspection showed that defac-
ing prior to automated skull-stripping with HWA tended
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to remove eyes and leave only a small amount of nonbrain
tissue in the ventral anterior temporal lobes, whereas
HWA without prior defacing tended to leave behind eyes
in several datasets. For one dataset (DEP), visual inspec-
tion revealed that the image failed automated skull-strip-
ping; HWA left behind a large amount of nonbrain tissue,
including the face, on the ventral portion of the brain. It
should be noted that when the image was defaced prior
to skull-stripping, the nonbrain tissue present with skull-
stripping only was removed. Thus, in this case, defacing
significantly improved the subsequent performance of
skull-stripping. However, due to the poor performance of
automated HWA on this dataset, it was excluded from the
statistical analyses so as not to skew the outcomes. In gen-
eral, however, defacing the image prior to automated skull
stripping with HWA did visually appear to improve the
quality of skull-stripping (with respect to the removal of
unwanted nonbrain tissue) in most datasets.
Visual inspection of automated skull-stripping with BSE

(without prior defacing) tended to be more specific, but in
some cases nonbrain tissue was left around the parietal
region, and, in one case, some brain tissue was removed
in the orbitofrontal cortex. Three left excessive amounts of
nonbrain tissue. When the image was defaced prior to
skull-stripping with BSE, some cases left extra tissue
around the parietal region, and three left too much non-
brain tissue, typically retaining the skull (but not CSF)
and tissues surrounding the spinal cord. In general, BSE
(with or without prior defacing) removed a significant
portion of brain tissue, although some voxels removed
were close to the brain surface and were visually difficult
to classify as brain or nonbrain. In two subjects (1 YNC, 1
AD), there was a tremendous disparity in the quality of
the skull-stripping with vs. without prior defacing. The
YNC outcome was poor with defacing followed by skull-
stripping, but acceptable when only skull-stripped; defac-
ing þ skull-stripping retained most of the nonbrain tissue.
Conversely, the AD outcome was improved when the
image was defaced and skull-stripped; the nonbrain tissue
left behind with skull-stripping only were removed when
the data were both defaced and skull-stripped. These
datasets were subsequently excluded from the statistical
analyses.

Whole Brain Statistical Comparison

Here, the set difference comparison indicated that 2.612%
(SD 2.433) of the voxels retained by skull stripping with
HWA were removed by defacing. Visual examination indi-
cated that the retained voxels were nonbrain tissue. These
regions tended to be in the vicinity of the eyes. HWA uses
intensity information during the normalization process,
hence the removal of the eyes through defacing, which are
quite bright on T1-weighted images, likely led to an improve-
ment in intensity differentiation of brain from nonbrain. The
more lateral slices tended to look the same with or without
prior defacing.
The subsequent analyses using the Jaccard Similarity,

Hausdorff Distance, and E-M methods were conducted by
comparing the automated (HWA or BSE) stripped datasets
with and without prior defacing. The mean descriptives
for the Hausdorff Distance and Jaccard Similarity were not
appreciably different (Table II). We found a significant
main effect of slice for HWA for the Jaccard Similarity
coefficient (F(3.651, 40.158) ¼ 4.886, P ¼ 0.003, partial g2 ¼
0.308); all other analyses failed to reach significance. These
slice effects were due to the combination of HWA with
defacing performing slightly less conservatively than
HWA alone. As previously noted, defacing prior to HWA
tended to have no appreciable effect on the lateral slices.
The slices around the eyes tended to be more conserva-
tively stripped with HWA alone, such that more nonbrain
tissue remained. None of the main effects or interactions
reached significance for the Hausdorff Distance analyses.
The descriptive statistics for EM Sensitivity and Specific-

ity for both HWA and BSE was at or near ceiling (Table
III), indicating that for either case, defacing did not appre-
ciably interfere with the abilities of HWA or BSE to differ-
entiate brain from nonbrain tissue. Therefore, a repeated
measures analysis was not pursued.

Six Slice Statistical Comparison

Using the set difference comparison, 2.538% (SD, 2.572)
of the voxels retained by skull-stripping (with HWA) were
removed by defacing. Visual examination showed these
retained voxels were nonbrain tissue, and that defacing
prior to skull-stripping tended to remove more nonbrain

TABLE II. Mean and standard error for the

Jaccard Similarity and Hausdorff Distance analyses

(Whole Brain analysis)

Method HWA vs. DEF þ HWA BSE vs. DEF þ BSE

Jaccard similarity 0.965 (0.001) 0.967 (0.002)
Hausdorff distance 3.204 (0.075) 2.76 (0.245)

The skull-stripped only datasets were employed as criterion, with
HWA as criterion for the DEF þ HWA comparison, and BSE for
the DEF þ BSE comparison, respectively. BSE: Brain surface ex-
tractor; DEF: defaced; HWA: hybrid watershed.

TABLE III. Mean and standard error for the

expectation–maximization algorithm for the sensitivity

and specificity analyses (Whole Brain analysis)

Method HWA DEF þ HWA BSE DEF þ BSE

EM
sensitivity

0.895 (0.008) 0.879 (0.008) 0.859 (0.009) 0.842 (0.009)

EM
specificity

1.000 (0.000) 1.000 (0.000) 0.999 (0.000) 1.000 (0.000)

BSE: Brain surface extractor; DEF: defaced; HWA: hybrid watershed.
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voxels in the ventral frontal areas than skull-stripping
alone. Additionally, defacing prior to skull-stripping
resulted in more nonbrain tissue removal in areas such as
along the cerebellum ventrally and in superior frontal
areas.
Descriptive analyses of the Jaccard Similarity and Haus-

dorff Distance methods (Table IV) suggest the results were
similar both across methods (HWA with and without prior
defacing) and across anatomists. However, defacing tended
to improve performance, particularly in patient popula-
tions (Fig. 5). We compared the outcome of HWA with
and without prior defacing with the gold standards (Anat-
omist 1 and Anatomist 2). A rank order analysis was used
to determine if there were significant differences between
methods (1) across all slices, and (2) on a slice by slice ba-
sis (Table V). For the Jaccard Similarity method, the across
slices analysis revealed significance by anatomist (Anato-
mist 1: P ¼ 0.001; Anatomist 2: P ¼ 0.009), but only Slice
5 for Anatomist 2 (P ¼ 0.04) was significant within slice.
The Hausdorff Distance method likewise revealed across
slice significance (Anatomist 1: P ¼ 0.007; Anatomist 2:
P ¼ 0.02), but no within slice analysis reached significance
(although it did approach significance for Slice 2 for both
anatomists).
The descriptive analyses for EM sensitivity and specific-

ity were at or near ceiling for the two methods (Table VI).
Thus, defacing did not appreciably influence HWA in its
ability to correctly classify tissue as brain or nonbrain. Due
to the inherent difficulty in differentiating results with
essentially no standard error, rank order analyses were not
pursued.

DISCUSSION

During recent years, there has been an increase in the
number of large-scale projects that entail sharing of data
across sites. NIH has initiated a data sharing policy, which
requires researchers with NIH-funded grants above a cer-
tain monetary threshold to make their final research data
available to other investigators. These data include human
subject data acquired for basic or clinical research. With
the recent enactment of HIPAA, researchers in the neuroi-
maging field have the added complication of removing
identifying facial features from morphometric scans, in
order to make the images unlike a facial photograph, with-
out the removal or distortion of brain tissue. Most univer-
sity institutional review boards require HIPAA compli-
ance; therefore, in order to share data it must be deidenti-
fied as described by the Privacy Rule. These rules include
the omission of ‘‘full facial photographic images and any
comparable images,’’ unless informed consent is obtained
from the subject to share facial images. One solution has
been to apply skull-stripping to the data, as is suggested
by the fMRI Data Center, a neuroimaging data repository
at Dartmouth College (http://www.fmridc.org). However,
our experience has shown that automated skull-stripping

algorithms are far from perfect and might remove brain
tissue due to a variety of issues, including the subject pop-
ulation and scanner performance during data acquisition
[Fennema-Notestine et al., 2006; Smith, 2002]. Human
intervention is often required to minimize brain tissue
loss, a time consuming process that is untenable when
working with large datasets. Additionally, the variation in
the performance of different automated skull-stripping
algorithms further brings into question whether potentially
vital information may be retained with one algorithm but
removed by another. Therefore, as part of the BIRN initia-
tive, we explored a possible solution to automate the dei-
dentification of morphometric T1-weighted images that
would not remove brain tissue or extracranial CSF. The
defacing algorithm has been approved by the Institutional
Review Boards within the BIRN consortium as sufficient
for deidentification of anatomical MRI images, thus allow-
ing for the sharing of neuroimaging data across research
sites associated with the project. Our algorithm protects
against casual identification of subjects. While skull-strip-
ping takes the anonymization one step further than defac-
ing, it may not be useful under all conditions. The loss of
cranial features interferes with research combining MRI
and EEG/MEG, and the technique may remove certain tis-
sues and fluids, such as extracranial CSF, that are of inter-
est for some fields of research.
The defacing algorithm employed herein has been con-

clusively shown to remove identifying facial features with-
out disturbing brain tissue, and provides a reliable method
that can be applied automatically with little human inter-
vention required to review the outcome. The algorithm is
very robust; our visual inspection of 342 datasets (some of
them of poor quality) failed to find datasets in which brain
tissue was removed. While the processing time is greater
than that of the more widely used skull-stripping algo-
rithms [25 min, compared with 15 s to 8 min as reported
by Fennema-Notestine et al., 2006], our experience has
been that it often takes far longer to skull-strip images due
to manual tuning of the parameters. The algorithm can
handle a variety of data formats (DICOM, AFNI, ANA-
LYZE, etc.), and optional parameters allow users to, for
example, adjust the defacing radius (i.e., distance from the
brain that is stripped), as well as the intensity values of
the removed voxels.

TABLE IV. Mean and standard error for the

Jaccard similarity and Hausdorff distance analyses

(Six Slice analysis)

Method Anatomist HWA DEF þ HWA

Jaccard similarity Anatomist 1 0.861 (0.010) 0.876 (0.010)
Anatomist 2 0.871 (0.010) 0.887 (0.010)

Hausdorff distance Anatomist 1 11.453 (0.128) 10.138 (0.113)
Anatomist 2 11.383 (0.127) 9.952 (0.111)

DEF: defaced; HWA: hybrid watershed.
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While our primary goal was to determine that the defac-
ing algorithm did not remove brain tissue, it is worthwhile
noting that defacing did not have a detrimental effect on
subsequent data processing. Overall, defacing prior to
automated skull-stripping did not interfere with the cho-

sen skull-stripping techniques. In some cases, defacing
prior to skull stripping improved the quality of automated
skull-stripping, such that more nonbrain tissue was
removed. In one case, defacing prior to skull-stripping
achieved poor results; this is not a limitation of defacing

Figure 5.

Mean (standard error bars) for (a) Jaccard Similarity Coefficient (JSC) and (b) Hausdorff Dis-

tance for Diagnosis by Method relative to the manually stripped slices for Anatomist 1 (Six Slice

analysis). DEF: defaced; HWA: Hybrid Watershed. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]
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per se, but does clearly suggest one be mindful of the
skull-stripping methodologies applied following defacing.
Defacing likely influenced BSE’s edge-detection algorithm;
selecting a different set of parameters may have improved
the outcome. Because the purpose of this experiment was
to determine if defacing removed brain tissue by using
automated skull-stripping as a metric for analysis, manual
intervention to improve results was not pursued.
It should also be made clear that the two skull-stripping

algorithms used, HWA and BSE, use different methodolo-
gies to remove skull and nonbrain tissue, and hence have
different outcomes whether or not defacing was applied
before automated skull-stripping. These differences would
influence the whole-brain analyses; HWA showed a main
effect of slice when comparing automated skull stripping
with and without prior defacing. Because HWA tends to
be conservative to the point of leaving nonbrain tissue,
including CSF, behind, whereas defacing operates primar-
ily on the slices in which prominent facial features are
present (e.g., eyes vs. cheek), the effect of slice is no doubt
related to the voxels that defacing removed which HWA
might retain. This was supported by the set-difference
comparison. The voxels retained by skull-stripping with
HWA that were removed by defacing were generally
located in the regions surrounding the eye. These differen-
ces may be reduced had we chosen to manually select pa-
rameters that would give the best skull-stripping perform-
ance; however, our goal was not to review the merits of
skull-stripping algorithms, nor examine their capabilities
with and without human intervention.
One limitation of the proposed algorithm is that it can

only be applied to T1-weighted datasets since the face atlas
was constructed with T1-weighted images. However, if a
T1-weighted image is acquired in addition to other image

types (e.g., proton density or T2-weighted images), the
mask generated during the defacing process of the T1-
weighted image may be used to deface these other co-reg-
istered image types as well. Our preliminary exploration
with defacing non-T1-weighted data has shown that a
minimal amount of effort on the part of the researcher is
required, and that visual inspection of these non-T1-weighted
images indicated that brain tissue was untouched. An
improvement to this algorithm would be the creation of
T2-weighted and proton density atlases to enable it to
function on differently weighted acquisitions.
Overall, we determined that the defacing algorithm does

an effective job of removing facial features without sacrific-
ing brain tissue. The results of defacing do not interfere
with subsequent data processing, and in fact in some cases
appears to make subsequent skull stripping more robust.
The algorithm is fully automated and can be scripted to
process large quantities of data, making it easy to deiden-
tify data for subsequent sharing in multisite projects.
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