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Geometrically Accurate Topology-Correction of
Cortical Surfaces Using Nonseparating Loops

Florent Ségonne*, Jenni Pacheco, and Bruce Fischl

Abstract—In this paper, we focus on the retrospective topology
correction of surfaces. We propose a technique to accurately cor-
rect the spherical topology of cortical surfaces. Specifically, we con-
struct a mapping from the original surface onto the sphere to de-
tect topological defects as minimal nonhomeomorphic regions. The
topology of each defect is then corrected by opening and sealing
the surface along a set of nonseparating loops that are selected in
a Bayesian framework. The proposed method is a wholly self-con-
tained topology correction algorithm, which determines geometri-
cally accurate, topologically correct solutions based on the mag-
netic resonance imaging (MRI) intensity profile and the expected
local curvature. Applied to real data, our method provides topo-
logical corrections similar to those made by a trained operator.

Index Terms—Homotopy, human cerebral cortex, nonsepa-
rating loop, Reeb graph, segmentation, topology.

I. THE CORTICAL RECONSTRUCTION PROBLEM

HE human cerebral cortex is a highly folded ribbon of gray

matter (GM) that lies inside the cerebrospinal fluid (CSF)
and outside the white matter (WM) of the brain. Locally, its in-
trinsic “unfolded” structure constitutes a 2-D sheet, which is
several millimeters thick. In the absence of pathology and as-
suming that the midline hemispheric connections are artificially
closed, each cortical hemisphere can be viewed as a simply con-
nected 2-D sheet of neurons that carries the simple topology! of
a sphere? [Fig. 1(a)].
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In mathematical terms, two surfaces have the same topology if they are
homeomorphic.

2The true topology of the gray/white surface is not one of a sphere, as a result
of the midline connections between the left and right hemisphere, such as the
anterior and the posterior commisures.

Fig. 1. (a) The human cerebral cortex is a highly folded ribbon of GM that lies
inside the cerebrospinal build and outside the WM of the brain. The green sur-
face represents the interface between WM and GM, and the red surface (i.e.,
the pial surface) models the interface between GM and CSF. When the midline
connections between the left and right hemisphere are artificially closed, these
two surfaces have the topology of a sphere. (b) Three-dimensional rendering of
the highly folded pial surface. Opposite regions of a sulcus are often contiguous.
(c) As a result of the partial volume effect, it is difficult to distinguish opposite
banks of the GM from one another. (d) Segmentation algorithms that do not con-
strain the topology often create cortical segmentations with certain topological
defects (i.e., handles). Close-up of a topologically incorrect gray/white surface
representation.

Recently, there has been a research focus on the extraction of
accurate and topologically correct models of the brain surface.
The development of these algorithms greatly facilitates the anal-
ysis of cortical data [1], [2], and alleviates many problems of
the 3-D embedding space (such as the underestimation of true
cortical distances or the overestimation of cortical thicknesses).
Certain clinical and research applications depend crucially on
the accuracy and correctness of the representations: visualiza-
tion [1]-[3], spherical coordinate system and surface-based at-
lases [1], [2], [4]-[8], shape analysis [8]-[13], surface-based
processing of functional data [1], and intersubject registration
[51, [14], [15], among others.

Many recent segmentation algorithms for neuroimaging data
are able to identify and precisely locate diverse brain struc-
tures, although typically without ensuring the validity of the
final topology (i.e., that of a sphere). Magnetic resonance im-
ages (MRIs) often contain various artifacts (e.g., image noise,
image intensity inhomogeneity or nonuniformity, caused by RF
inhomogeneities, partial volume averaging effects, and subject
motion) that are difficult to predict and model. In the case of
cortical segmentations, partial volume effects makes the accu-
rate location of the surface of the cortex particularly difficult
(Fig. 1). Because of its highly folded nature, opposite banks of
a sulcus often appear connected, and small gaps between adja-
cent folds of the neocortical GM become invisible in the finite
resolution MRIs [Fig. 1(b) and (c)]. Conversely, thin strips of
WM often appear darker due to neighboring GM,3 and the in-
terface between GM and WM is often pierced by incorrectly
identified GM in many segmentations [Fig. 1(d)]. These topo-
logical defects in the segmentation are hard to detect and correct

3Particularly in the case in the parahippocampal gyrus, where the WM is only
a voxel or two thick.
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Fig. 2. Methods that aim to correct the topology of a segmentation by mini-
mizing the number of modifications in the segmentation might not produce valid
corrections. (a) A topological defect is identified in red on the original topolog-
ically incorrect cortical surface. A topological defect can be interpreted as a
handle (in green) or, equivalently, as a hole (in brown). (b) Cutting the handle:
an incorrect topological correction based only on the size of the defect. In this
case, cutting the handle corresponds to a “smaller” modification of the surface
than filling the corresponding hole. However, this topological correction is not
the right one and brings about an inaccurate cortical representation. (c) Filling
the hole: correct topological correction realized by a trained operator. Note that
the correction filling a hole is equivalent to cutting a “background” handle. An-
other point to note is that the correct modification cannot be determined solely
from the surface—the intensity volume is required in order to assess the correct
location of the true surface.

retrospectively, with the automatic extraction of accurate and
topologically correct cortical surfaces remaining a challenge.

II. STATE OF THE ART IN SEGMENTATION UNDER TOPOLOGICAL
CONSTRAINTS

Segmenting under topological constraints is difficult. Seg-
mentation algorithms (see [16]-[18] for some good reviews),
which operate on the intensity or variations of the texture of
the image, are sensitive to the artifacts produced by the image
acquisition process. Most often, segmentation techniques that
do not integrate any topological constraints generate segmen-
tations that contain small deviations from the true anatomy of
the structures of interest. In the case of cortical segmentations,
these deviations can form handles [or holes, which are topolog-
ically equivalent—Fig. 2(a)] that erroneously connect parts of
the volume.

Integrating topological constraints into the segmentation
process significantly complicates the task. Topology is both a
global and a local property; small and local modifications of
a geometric shape can change its global connectivity. At the
same time, topology is intrinsically a continuous concept, and
topological notions are difficult to adapt into a discrete frame-
work. For these reasons, the number of techniques available
and applicable to the segmentation of images is quite limited.

Methods creating topologically correct cortical models can be
divided into two categories: topologically constrained segmen-
tation methods that directly incorporate topological constraints
into the segmentation process, and retrospective topology cor-
rection techniques that aim to correct the topology of already-
segmented images. For a complete review, refer to [19].

A. Topologically Constrained Segmentation

Approaches that integrate the topological constraint di-
rectly into the segmentation process have the advantage of
allowing the user to explicitly specify the topology of the final
segmentation. A model, carrying the desired topology, is itera-
tively deformed onto the cortical surface while preserving its
topology. To this end, active contours [20] (explicit represen-
tations [3], [21]-[26] and implicit representations [27]-[29]),
digital models [30]-[33], and registration methods [34]—[36]
have proven to be extremely useful. Unfortunately, the energy

functionals driving the deformation are highly nonconvex,
and attaining the desired final surface most often requires an
initialization of the model that is close to its final configuration.
In addition, local topological constraints can easily cause
large geometrical inaccuracies that are difficult to identify and
correct.

B. Retrospective Topology Correction

Recently, new approaches have been proposed to retrospec-
tively correct the topology of an already segmented image.
These techniques, which do not enforce any topological con-
straints into the segmentation process, focus on more accurate
models. Many segmentation techniques, using local intensity,
prior probabilities, and/or geometric information, while giving
no consideration to topology, generate accurate cortical surfaces
with few topological inconsistencies. Retrospective techniques
aim to identify and correct these defects in order to produce
geometrically accurate topologically correct surfaces.

Most retrospective methods do not make full use of all avail-
able information. They assume that the topological defects in the
segmentation are located at the thinnest parts of the volume and
aim to correct the topology by minimizing the number of modifi-
cations in the original segmentation [37]—-[40]. These methods,
which rely on the accuracy of the initial segmentations, often
produce accurate topological corrections. Yet, the resulting so-
lutions are rarely geometrically accurate as they do not corre-
spond to the ones that a trained operator would make. Additional
information, such as the expected local curvature or the local in-
tensity distribution, may lead to different corrections, i.e., pos-
sibly comparable to the ones a trained operator would make.
This is illustrated by Fig. 2.

Only a handful of techniques have been proposed to inte-
grate additional information into the topological correction
process [19], [41]-[43]. Yet, for a given topological defect,
these methods fail to generate multiple potential solutions
that are requisite for selecting the expected correction. In
fact, they produce only two candidate solutions. Two poten-
tial solutions that correct a handle are cutting the handle or
filling the corresponding hole (i.e., cutting the “background”
handle). However, the exact location of these potential correc-
tions (i.e., the resulting shape of the potential corrections) is
often determined by criteria that ignore the underlying MRI
intensity profile and/or the local curvature, which means that
the resulting corrections are never optimized relative to these
parameters. Other solutions, such as the ones a trained operator
makes, do not arise. This problem arises when the proposed
framework does not examine multiple candidate solutions.
Fig. 3 illustrates the difficulty of finding the correct solution
when the topological defect is complex.

To our knowledge, only one approach [44] has been pro-
posed to achieve optimal topological corrections integrating a
wide range of information available in the image. Similar to the
approach developed by Fischl et al. [42], we construct a map-
ping from the initial triangulation onto the sphere and locate
topological defects as locally noninvertible regions. We intro-
duce a genetic algorithm to explore the space of possible sur-
face retessellations and to select an optimal configuration. How-
ever, this approach suffers from several drawbacks (described in
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Fig. 3. Some topological defects are complex and extremely hard to correct.
Existing methods (with the exception of [44]) only produce a few potential topo-
logical solutions, with the chosen solution rarely the expected one. (a) A com-
plex topological defect comprised of three handles. (b) One sagittal MRI slice
of the topological defect, illustrating the complexity of the underlying MRI in-

tensity profile. (c) Proper solution realized by a trained operator. (d) sagittal cut
of the MRI volume showing the location of the surface of the corrected defect.

Section II-C), and topological corrections are not always the de-
sired ones. We then propose several extensions that we believe
resolve these issues, yielding an accurate and automated method
for generating topologically correct models of the human cere-
bral cortex.

C. Approach

For a given topological defect, the MRI intensity profile con-
tains important information regarding the location and position
of the potential topological correction. The corrected surface
should be located at the border of the WM and GM, with WM
inside and GM outside the surface. In addition, the smoothness
of the corrected defect should be comparable to the smoothness
of the remainder of the cortical surface. Incorporating this in-
formation into the topology correction procedure can exclude
classes of inaccurate solutions, leading to a significantly more
robust and accurate technique.

Our method is based on the notion that if a surface has
spherical topology it cannot contain any noncontractible curves
(i.e., handles). More technically, this can be restated as “every
closed 2-manifold that is homeomorphic to a sphere is simply
connected” [45]-[47]. This of course is the 2-D analog of the
well-known Poincare conjecture (one of the seven Millennium
Prize Problems selected by the Clay Mathematics Institute
[48]), which appears to have been recently proven by G.
Perelman [49]-[51].

The approach follows from our previous work [44]. Although
the previous method often yields valid solutions, it has some
limitations.

* Spherical mapping: the space of potential retessellations
depends on the initial mapping. In [19], we address this
problem by generating an array of distinct mappings. How-
ever, the resulting procedure is time-consuming and not
well-adapted to large topological defects, such as the ones
that often arise in the medial temporal lobe and temporal
poles.

* Self-intersections: the retessellation procedure, which does
not directly guarantee that the final surface does not inter-
sect itself, creates an excessive number of self-intersecting
candidate solutions that must be discarded.

* Numerical stability: the method relies on floating-point
arithmetic to constrain the topology of the final surface,
a formulation in which rounding errors can be problem-
atic. More specifically, the topology is constrained onto
the sphere by detecting edge-edge intersections during the
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retessellation process. By the inherent nature of the spher-
ical mapping, which aims to minimize regions with nega-
tive areas (i.e., negative Jacobian), topological defects cor-
respond to extremely dense regions, with vertices poten-
tially being as close as 10™° mm. At this scale, floating-
point rounding errors can occur and bring about “cata-
strophic” results: a nondetected intersection engendering a
topologically inconsistent retessellation with an incorrect
Euler-number.

In this paper we propose a different approach that improves
on our previous work. Specifically, we continue to identify topo-
logical defects as locally noninvertible regions, but no longer
use the spherical mapping to produce candidate solutions. In-
stead, we generate potential solutions using the concept of non-
separating loops and opening operators [39], [52]. Using this
concept, the space of potential solutions is no longer restricted
by the spherical mapping, resulting in a significantly more diver-
sified set of candidate corrections, spanning a broader space. In
addition, we avoid using floating-point arithmetic by working
directly on the graph of the triangulation, thereby using exact
arithmetic computations. Our method proceeds as follows.

1) Generate a mapping from the original cortical surface onto
the sphere that is as close as possible to a homeomorphism
(which was termed a maximally homeomorphic mapping
or a quasi-homeomorphic mapping in [42] and in [44]).
Each topological defect is then identified as a set of over-
lapping triangles on the sphere.

2) For each topological defect, randomly generate sets of non-
separating loops, and correct for the topology of the defect
by opening and sealing the surface. The final maximum a
posteriori configuration is selected in a Bayesian frame-
work.

The method is a wholly self-contained topology correction al-
gorithm, which determines geometrically accurate and topolog-
ically correct solutions based the MRI intensity profiles and the
expected local curvature.

III. IDENTIFICATION OF TOPOLOGICAL DEFECTS

We identify the presence of topological defects in the surface
C by computing its Euler-characteristict x(C). In the presence
of topological defects (i.e., x # 2),5 a mapping from the cor-
tical surface C onto the sphere S that is homeomorphic over the
majority of the manifold is generated, and we identify each de-
fect as a set of overlapping faces. This step is identical to the
approach developed by Fischl et al. in [42] and used in [44].

Briefly, identifying topological defects begins with the infla-
tion and projection of the cortical surface C onto a sphere S. The
next step is to create a mapping M : C — S by minimizing an
energy functional F x4 that directly penalizes regions in which
the determinant of the Jacobian matrix of M becomes zero or
negative; these regions are nonhomeomorphic regions (i.e., lo-
cally noninvertible). The final step is to identify the topological
defects by regions, where the homeomorphism is broken (i.e.,
regions with negative determinant or, equivalently, regions with

4The Euler number of a surface is a topological invariant (For a tessellation,
it can be easily computed as: y = #vertices — #edges + #faces).

5x = 2 does not ensure the accuracy of the initial surface C but this problem
is out of the scope of this paper.
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overlapping faces). To clarify, the following steps in detail are
taken from [42].

A. Initialization of the Mapping: Spherical Inflation

The initial mapping of the cortical surface to that of a sphere
can be made by simply projecting each point of the cortical sur-
face to the closest point on the sphere. In so doing, large regions
of the initial mapping become nonhomeomorphic.

In contrast, we use a simple procedure to unfold and smooth
the folded cortical surface such that it approaches the surface of
a sphere whose origin is the centroid of the initial surface. The
algorithm consists of iteratively updating the position of each
vertex based on a smoothness force Fg, and a radial spherical
force Fgr

xp(t+1) = xx(t) + Fs(t) + ArFr(?) (D

where X, is the position of the kth vertex at iteration number ¢
and the smoothness force Fg is given by

1 1 & ,
Fs =5 > (xj—xk) — v DY (mind) (x; —x))

JENy i=1jEN;
2
where
Ny set of vertices neighboring the kth vertex;
Vv number of vertices in the tessellation;
n; and nj,  surface normals at location & and its transpose,

respectively.

The smoothness term F's moves each vertex in the direction of
the centroid of its neighbors, while projecting out the average in-
ward movement created over the entire surface. The radial term
simply drives each vertex toward the surface of a sphere with
the desired radius R

Fr = (Ri — xx) 3)

where Ry, is the radial projection of x; onto the sphere with
radius R.

We use an R on the order of 100 mm to generate a sphere
with roughly the same total surface area as an average cortex,
and a A of 0.25 to allow for sufficient smoothing to take place
during the spherical inflation. Once the inflation has converged,
the surface is projected to lie precisely on the surface of a sphere
of radius R, and whose origin is the centroid of the initial sur-
face.

B. Quasi-Homeomorphic Mapping

Once the initial spherical configuration has been established,
we generate a mapping M that is as close as possible to a home-
omorphism. A mapping is a homeomorphism if the determinant
of its Jacobian matrix is nonsingular, and the mapping itself is
continuous. This is of course the multidimensional analog of
monotonicity. In creating the mapping M, only its topological

a4 log(1 +e%) n;
I .

Fig. 4. (a) Nonlinearity of the energy functional E (b) Triangle properties.

properties are concerned. To construct the mapping, we min-
imize an energy functional that directly penalizes regions in
which the determinant becomes zero or negative, thus encour-
aging positive definiteness. Note that this is the only term in
the energy functional—no preservation of metric properties is
needed.

1) The Energy Functional: More specifically, noting that the
Jacobian yields a measure of the deformation of an oriented
area element under the mapping M, the energy functional E g
constrains the penalization of compression primarily to negative
semi-definite regions. If the initial area on the folded surface of
the ith face is A?, and the area on the spherical surface S at time
t of the numerical integration is Af, then the energy functional
is given by

t

F
1 At
Em=) :Elog(l—l-ekRi) — R with Ri = -5 (4)
=0 o

0Em -1
DAY~ AV(1 4 ekRi)

(&)

The logarithmic nonlinearity restricts the penalization of com-
pression primarily to negative semi-definite regions, as can be
seen in the plot in Fig. 4(a). R; is an approximation of the Jaco-
bian of the transformation M, R; = Jy = [(0M/0x)]|. The
extent to which highly compressed positive definite regions are
penalized is determined by k. In practice, we used a value for k
of 100.

2) Numerical Implementation: In order to complete the def-
inition of the topology term of the energy functional, we con-
sider the sth triangle in the surface tessellation, with edges a;
and b, connecting the vertex x; to two of its neighbors x; and x;
respectively. In the spherical representation, the normal vector
field can be given a consistent orientation on the surface® using
the embedding space, and A; becomes an oriented area, which
may take on negative values—indicating folds in the surface.
The normal vector is chosen to be pointing outward on the sur-
face of the sphere n; = (x;/||x;|) (the sphere is centered at the
origin).

Using the chain rule, the directional derivative of E ¢ with
respect to the position of the kth vertex

OErm OB OA!

T 0A! Oxy ©

an

The first factor is given by (5). The second is the change in
the area of the sth triangle caused by moving the kth vertex,

6This is always possible except in pathological cases, such as the Mobius
strip, that are nonorientable.



522

which can be computed from the prior description of the metric
properties of the tessellation using the chain rule

OAL  0AL 0a; DAl Db, .
8Xk - 831' Bxk 8bl 6xk
with
OA! OA!
8—ai —b,-/\ni, 8bl =n; N\ a,. (8)

The partials of the change in the legs with respect to a change
in the vertex position are dependent on what position the vertex
in question occupies in a given triangle

Oa; [_17_17_1]T7 k=1
5 =< 1,1,1)7, k=1 )
Xk [0,0,0]7, otherwise
T .
ob, —1,-1,-17, k=i
e = 4 L1 k= (10)
Xk [0,0,0]7, otherwise

C. Identification of Topological Defects

The resulting mapping M —from the initial tessellation C to
the sphere S—is homeomorphic over the majority of the man-
ifold. The surface is then examined for regions of noninvert-
ibility, since these are the areas in which the current tessella-
tion must be corrected to ensure proper topology. Multivalued
regions, containing overlapping triangles,’ constitute topolog-
ical defects where the mapping is nonhomeomorphic (these re-
gions contain noncontractible curves, i.e., handles). M asso-
ciates at each vertex v of the initial cortical surface C a vertex
vs = M(v) on the sphere S. Vertices with spherical coordi-
nates that intersect a set of overlapping triangles are marked as
defective, with topological defects identified as connected sets
of defective vertices.

Once a defect D has been identified, we compute its number
of topological defects (i.e., handles). This number g(D) is called
the genus and is related to the Euler number of the defect x(D)
by the formula: g(D) = ((1 — x(D))/2). An Euler number
x(D) = 1 implies that the topology of the defect® is the one
of a disk (i.e., a patch without any handles), and the defect can
be discarded from the list. Note that defects having an Euler
characteristic x(D) = 1 indicates that the spherical mapping
(Section III-B) is not precisely maximally homeomorphic and
that the minimization of the energy functional £, has reached
a local minimum. However, while the method might mistak-
enly identify some topologically planar patches of surfaces that
are subsequently discarded from the list, all topological defects
are discovered. In our experience, the false positive rate of the
spherical mapping is quite low (less than 10% of the defects are
mistakenly identified).

TIn practice, we detect topological defects as sets of self-intersecting edges.

8For a topological defect D with n s faces, n. edges, and n, vertices (out of
which n, are border vertices), we always have the relations: n, — n. + ny; =
X(D) andn. = (3ns/2) 4+ (n,/2).
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IV. GEOMETRICALLY ACCURATE TOPOLOGY CORRECTION

Given a topological defect, our goal is to “optimally” cor-
rect its topology, that is, to generate a defect as geometrically
accurate and topologically correct as possible, given the avail-
able information. Correcting the topology amounts to finding
the handles present in the defect and removing them. In alge-
braic topology, a handle [or, equivalently, a hole—Fig. 2(a)] in
a 2-D smooth manifold is indicated by the presence of a simple
closed curve that cannot be continuously deformed on the man-
ifold into a single point. These noncontractible curves are called
nonseparating loops, since they do not partition the space (i.e.,
the manifold) into two connected components. This concept is
closely related to Morse functions, Reeb graph theory, and ho-
motopy [45]-[47]. The removal of nonseparating loops reduces
the genus of a manifold by cutting/opening the surface along
the closed curves; they have been extensively used in graphics
[39], [53], [54], combinatorial and computational topology [52],
[55]-[58], and medical imaging [40].

Our approach is based on the concept of nonseparating loops:
we correct the topology of each defect by opening and sealing
the surface along an array of nonseparating loops, assessing the
resulting surface for optimality with respect to a Bayesian en-
ergy functional. This method is similar to (and was inspired by)
the approach proposed by Guskov and Wood in [39]. Once a
nonseparating loop has been identified, we simply discard its
faces and close the open mesh by attaching two pretessellated
disks. We randomly generate a set of nonseparating loops and
select the maximum a posteriori correction in a Bayesian frame-
work, monitoring the accuracy as well as the validity? of the so-
lution. For each of the candidate solutions, an active contour op-
timization enhances the accuracy of the topologically corrected
surface.

Algorithm 1 Geometrically Accurate Topology Correction

for all Defect D such that x(D) # 1 do

for1 < n < ¢g(D) do

for 1 < 7 < numbers of attempts do

Random generation of a nonseparating loop £;

Mesh opening by discarding the loop faces D; = D\ £;
Sealing of the mesh D,;.

Smoothing and self-intersection test.

Active Contour Optimization D;.

end for
D = argmax p(D;|C, I)
valid D;
end for
end for

9We ensure that the final solution has the correct topology and does not self-
intersect.
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[42]
90

Fig. 5. (a) Identification of two associated nonseparating loops on a topological defect containing only one single handle. (b)—(f) Topological correction using the
“red” nonseparating loop. Opening (b), sealing (c), and smoothing (relaxation procedure) of the two attached pretessellated disks (c)—(f). This correction amounts
to filling the hole of the defect. (g)—(1) Topological correction using the “purple” nonseparating loop. This correction corresponds to cutting the handle of the defect.
The “purple” loop, which is the shortest one in the defect, is the first selected one.

d)

Fig. 6. Nonseparating loops on an open surface. (a) Patch with three topological defects (i.e., handles). (b) The wavefront intersection is used to identify a handle
on the surface. Note that the remaining faces in the defect are connected and that two associated nonseparating loops are identified: choosing the “green” loop
corrects the topology by cutting the handle, while choosing the “yellow” one fills the corresponding hole. The magnified region illustrates the wavefront intersection
with two triangles (dashed region) intersecting in a single vertex. (c) The front intersection indicates the potential presence of a handle in the defect. In this example,
the rest of the faces are connected but not within the defect: this wavefront evolution can be used to locate only one single nonseparating loop, which, in this case,
corresponds to filling the hole. We note that other wavefront evolutions (i.e., starting from other seed faces) will often produce two nonseparating loops, and not
always one single nonseparating loop. (d) A wavefront intersection does not always imply that a nonseparating loop exists, as this example illustrates: the remaining

faces are not connected. Therefore, we continue evolving the front.

Our method is able to produce topological corrections cor-
responding to cutting the handle or filling the associated hole,
depending on the identified nonseparating loop. Moreover, note
that filling the associated hole is equivalent to cutting the back-
ground handle identified by a nonseparating loop. Fig. 5 illus-
trates this point by showing two nonseparating loops that result
in different topological corrections. In addition, the position of
the loop (the exact path onto the triangulation) determines the
shape of the final corrected surface.

A. Generation of Non-Separating Loops

In the discrete formulation a nonseparating loop is a set of
connected faces that does not divide the rest of the triangulation
into two connected components.!0 The concept of nonseparating
loops on a tessellation was introduced in the graphics commu-
nity for topological noise removal by Guskov and Wood [39]. In
their work, a selected vertex is used to initialize a region growing
algorithm, which detects loops (i.e., topological defects) in the
triangulation where wavefronts meet. Topological corrections
are then obtained through the use of opening and sealing opera-
tors on the triangle mesh. While their method is fast, it depends
on the initially selected vertex and does not guarantee a valid
geometrically accurate surface, as such corrections may create
self-intersections. In addition, their approach, as well as [40],
[52], is limited to triangulations produced by a fast-marching
algorithm [59], [60], while requiring a closed surface.

19For a nonseparating loop £ on a manifold C, x(£) = 0 and x(C) =
X(C\ £).

In contrast, the method we propose is not constrained to spe-
cific types of triangulations, nor does it necessitate a closed sur-
face. The only requirement is that the initial surface be a valid
triangulation, i.e., one for which each vertex possesses only one
ring of connected neighbors. Similar to the approach of Guskov
and Wood, we use a local wave front to locate handles in a de-
fect D. We evolve a front of triangles on the triangulation until
we detect a front intersection. Caution is warranted in dealing
with an open surface (see Fig. 6). Given a randomly selected
seed face f,, we evolve a front of faces by fast-marching on the
triangulation using approximated geodesic distances.!! At each
step, we check if the candidate face induces a front intersec-
tion, detected as the intersection of two triangles, f, and f;,ina
single vertex [Fig. 6(b)—(d)]. Once a front intersection has been
detected, we examine if the remaining faces in the triangulation
are connected. In this case, we have identified a nonseparating
loop in the defect. Additionally, when the remaining faces are
connected inside the defect D, a second nonseparating loop is
identified [Fig. 6(b)], and we randomly select one of them. Oth-
erwise, we resume the front evolution [Fig. 6(d)]. We note that
an efficient implementation of the fast-marching method is at-
tainable using the min-heap data structure, resulting in a com-
plexity of O(n s logny), where n s is the number of faces in the
defect. The identification of a connected path in the remaining
faces of the defect can also be achieved by fast-marching on the
triangulation, starting from two neighboring faces of f,, or f3,

'We approximate the distance between two triangles by the Euclidean dis-
tance in between their center of gravity.
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Fig. 7. (a) Examples of pretessellated disks used in the sealing process. (b)
View of an open surface before attachment. (c)—(d) Attachment operation. (c)
The pretessellated disk (in gray) has five vertices, regularly spaced along a unit
diskZ4(0, 1), and four faces. The yellow triangles are the ones that are necessary
to attach the disk to the open surface. To this end, the defect vertices are spaced
along 1/(0, 2) proportionally to their geodesic distance on the surface and a De-
launay triangulation is generated. (d) The position of the newly attached vertices
(i.e., the five vertices of the pretessellated disk) is first set to the average of the
positions of the vertices constituting the loop. (¢) View of the sealed surface
after a relaxation procedure on the disk vertices.

since f, and f; intersects in a single vertex [magnified region
of Fig. 6(b)].

Once a valid wavefront intersection has been detected, we
extract a nonseparating loop (i.e., a set of connected faces) by
back-tracking the faces starting from the front intersection (i.e.,
fa and fp) until we reach the initial seed face f;. We “close”
the loop at the front intersection [since f, and f; intersects in a
single vertex—Fig. 6(b)] by adding the shortest path of defect
faces that connects f, to f,. Details on the implementation can
be found in [61].

B. Reducing the Genus: Cutting and Sealing the Open Surface

1) Sealing the Cut: once a nonseparating loop has been
found, we discard the faces of the loop and seal the surface
by attaching two pretessellated disks (i.e., patches without
any topological defects) to both open sides of the defect. The
attachment procedure is a graph operation designed to find
a set of connecting edges and corresponding faces between
two rings of vertices formed by one open side of the defect
and the border of the disk. The exact shape of the surface and
the pretessellated disk (i.e., the locations of its vertices) is not
important in the attachment of the two disks.

To attach a pretessellated disk to one open side of the defect
[Fig. 7(b)—(d)], we assume that the border vertices of the disk
of the curve are regularly spaced along a unit disk (0, 1). We
also assume that the vertices of the open side of the defect are
spaced along a disk ¢/(0, 2) proportionally to their geodesic dis-
tance on the surface. Attaching the disk to the surface amounts
to finding a triangulation from one to the other. In practice, we
use a Delaunay triangulation.

For visualization purposes, we have set the position of each
attached vertex to the average of the positions of the vertices
constituting the loop [Figs. 5(c) and (h) and 7(b)-(d)]: the ver-
tices of each pretessellated patch have, after attachment, the
same spatial location. The size of the disk used to patch the sur-
face is based on the size of the contour or the defect, with larger
disks used to seal larger patches. Fig. 7(a) shows some typical
patches.

2) Smoothing and Self-Intersection Check: The attachment
operation reduces the genus of the surface by one. Although the
intrinsic topology has been modified, we have not yet produced
an accurate correction since all attached vertices have the same
inaccurate location [the average of the positions of the loop ver-
tices—Fig. 7(d)]. Our goal is to optimize the shape of the surface
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Fig. 8. (a) A complex topological defect with three handles. (b) A large non-
separating loop that leads to a self-intersecting patch (c). Such nonseparating
loops are detected and discarded from the topology correction process. (d) Ge-
ometrically accurate topological correction.

by modifying the position of the defect vertices (particularly the
position of the newly attached vertices) in order to maximize the
goodness of fit of the corrected defect. We also need to ensure
that no self-intersections are created by topological corrections.
In mathematical terms, we can express this condition as

Dfinal = argman(D'ia I, C) (11)

valid D;

where g(D;, I,C) is a measure of the goodness of fit of the can-
didate solution D;, and “valid” D; designates a nonself-inter-
secting patch. This continuous formulation of the problem does
not translate easily into a discrete framework, in which self-in-
tersections are difficult to detect and prevent.

For this reason, we take a somewhat different approach. After
attachment, we iteratively update the positions of the newly
added vertices by iteratively averaging their location with that
of their neighbors (we also include in the relaxation procedure
the two first neighbors of the newly attached vertices). This
process is illustrated by Fig. 5. After convergence, we check
if the sealed surface self-intersects and discard nonseparating
loops that lead to self-intersecting surfaces [Fig. 8(b) and (c)].
We detect self-intersecting faces using a discretized (1-mm
voxels) spatial look-up table to constrain the self-intersection
check to faces in the local neighborhood that have been updated
in the relaxation process.

The relaxation procedure is quite fast (a hundred iterations
sufficient to achieve convergence), and most of the time yields a
valid solution, i.e., a patch that does not self-intersect. In our
experience, less than 5% of the patches self-intersect. Fig. 9
provides some examples of valid candidate patches that have
had their genus reduced by one (i.e., candidate patches with one
handle less than the initial patch). Note the wide range of po-
tential solutions. Finally, once a valid topological correction is
obtained, we improve the accuracy of the correction by max-
imizing a fitness function g(D, I,C) defined in Section IV-C,
using an active contour formulation.

C. Fitness and Likelihood Functions

Many valid topological corrections exist (Fig. 9), and one
would like to select the solution that maximizes both the good-
ness of fit of the final surface given the available image informa-
tion, as well as one that conforms to our prior knowledge about
the cortex. A cortical surface is a smooth manifold C that par-
titions the embedding space into an interior, composed of WM
(as well as deep gray structures and ventricles far from the sur-
face), and an exterior, composed of GM. We characterize the
goodness of a retessellation by measuring the following two:
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Fig. 9. Examples of nonseparating loops (top row) with their associated topological correction (bottom row). Note the wide range of potential solutions that can

be generated (before active contour matching).

1) The smoothness of the resulting surface,

2) the MRI values [ inside and outside the surface.
We define the fitness function as the posterior probability of ob-
serving the corrected defect D; given the MRI intensity values
and the surface C: g(D;, I, S) = p(D;|C, I). Formally, the pos-
terior probability of the ¢th retessellation D; is given by

p(D;|C, I) < p(I|C,D;)p(D;ilC).

The likelihood term p(I|C, D;) encodes information about the
MRI intensities inside and outside the surface. Each corrected
defect separates the underlying MRI volume into two distinct
components,!2 an inside part C~ and an outside part C*. An ac-
ceptable candidate solution should create a space partition with
the majority of its inside and outside voxels corresponding to
WM and GM voxels, respectively. In order to estimate the like-
lihood p(7|C, D;), we assume that the noise is spatially indepen-
dent. This probability can then be rewritten as

p1C,D;) = [] pulI@)C,Di) T] poI(x)IC, Ds)
fGC* rzeCt ,
volume —bas;(; information
Hp gz )|C D; )

v=1

~ v
~~

surface- based information

where p,,(I(2)|C, D;) and py(I(x)|C, D;) are the likelihood of
intensity values at location z in the volume inside and outside
the tessellation respectively, p(g;(v),w;(v)|C,D;) is the joint
likelihood of intensity values inside and outside the tessellation
at vertex v in tessellation D;.

Geometric information can be incorporated via p(D;|C),
which represents priors on the possible retessellation. For
example, p(D;|C) could have the form

p(DilC) = Hp k1(v), K2(v)[C)

12We use the angle-weighted pseudonormal algorithm [62] to compute the
signed distance of the tessellation. The voxel grid is partitioned into inside neg-
ative values and outside positive values

where 11 and k4 are the two principal curvatures of the surface,
computed at vertex v. In our experience, this choice of priors
produces accurate candidate solutions.

Given that the vast majority of the surface is in general
nondefective, we have an ample amount of data to estimate
the correct forms of the distributions p(D;|C), py(I(x)|C, D;),
pw(I(2)|C, D;), and p(g;, w;|C, D;). In particular, the single
tissue distributions py(I(x)|C,D;) and p,(I(z)|C,D;) are
estimated locally around each topological defect, in a region
that excludes the defect itself (the region is taken as a cubic
box containing the defect =5 mm). This makes the procedure
completely adaptive and self-contained, in the sense that no as-
sumptions need to be made about the contrast of the underlying
MRI image(s), and no training or parametric forms are required
for p(D;|C). An example of the estimation of p(g;, w;|C,D;)
and p(D;|C) is given in Fig. 10. Fig. 10(b) shows the joint
distribution of GM and WM given the surface computed,
using the nondefective portion of the gray/white boundary
representation of a single subject. Note the diagonal character
of the distribution that indicates the mutual dependence of the
intensities—brighter WM typically means brighter GM due to
factors such as bias fields induced by RF inhomogeneities and
coil sensitivity profiles, as well as intrinsic tissue variability.
One possible form of the priors on the tessellation is given
by Fig. 10(c), which shows the joint distribution of the two
principal curvatures r; and ko computed over the nondefective
portion of a single surface.

D. Optimization Using Active Contour Patches

During the search, candidate patches D; are selected based
on their fitness value p(D;|C, I). After attachment, smoothing,
and the self-intersection check, each patch defines a valid man-
ifold that can be treated as an active contour with fixed bound-
aries. Each patch is locally deformed in order to maximize the
posterior probability p(D;|C, I). Instead of deriving the exact
Euler-Lagrange equation of the active contour D; for the energy
functional p(D;|C, T), we use an approximation procedure. We
note that the fitness function of a candidate solution measures
the smoothness of the resulting surface and the MRI intensity
profile inside and outside the surface. We simply update the po-
sition of each interior vertex x; of the candidate tessellation
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Fig. 10. (a) Examples of the GM and WM distributions estimated locally from
a given a topological defect. (b) Joint distribution of GM and WM given the
surface computed, using the nondefective portion of the gray/white boundary
representation of a single subject. The GM and WM intensity are two correlated
variables, as indicated by the diagonal structure of the joint distribution. (c) Joint
distribution of two principal curvatures of the surface.
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based on a smoothness force F'g and an MRI intensity-based
force F s

Xp(t+ 1) = xx(t) + Fs(t) + AnFar(t). (12)

The smoothness force is the same as the one defined in (2). The
intrinsic curvature-based force enforces a smoothness constraint
on the deformed active contours and tends to maximize the prior
term p(D;|C). The MRI intensity-based force F,; is designed
to drive the active contour towards the true boundary separating
the GM from the WM

F]u = [Tv - I(Xk)]VI(Xk) (13)
where the targeted value T, is computed from the GM and
WM distributions. The mean intensity and variance of the GM
and WM intensities are estimated from the respective distribu-
tions py and p,,, denoted by p?, o9, u*, and o*, and the local
threshold 7, is computed using the following equation:

T,
ov 4+ g9

(14

At each iteration, we measure the exact fitness function
p(D;|C, I) of the active contour and stop the deformation when
the fitness function is maximized. We ensure that the surface
remains a valid one by preventing self-intersections during the
active contour optimization. The constant A,; is empirically
set to 0.5.

E. Implementation Parameters

The proposed approach is implemented using the following
parameters. A typical topological defect contains on the order
of 100 faces. For a defect containing ny faces, we produce
ny/3 patches per handle by generating nonseparating loops
from “semi-randomly” selected seed faces. We use spatial in-
formation to better distribute randomly selected faces inside the
defect by ensuring that a seed face is not drawn twice and that a
new draw is not neighboring the previous one. This procedure
produces random selection of seed faces that are likely to cover
the defect uniformly. As such, our method samples likely solu-
tions with high probability. In addition, the first nonseparating
loop is always the smallest loop in the defect. To identify the

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 26, NO. 4, APRIL 2007

smallest loop, we simply generate as many loops as there are
faces in the defect and select the shortest one. Note that the loop
generation is computationally fast (in O(nyslogny)), while
detecting self-intersections and the computation of the fitness
function are the slowing factors.

V. VALIDATION

We have applied our proposed approach to 43 real images
(this data set is the same one used for the evaluation of our pre-
vious method [44]). The dataset is comprised of MRI volumes
of differing quality, from varying populations (both patholog-
ical and healthy) scanners (1.5T GE and Siemens), and pulse
sequences (MP-RAGE and SPGR). Results were evaluated by
experts to assess the accuracy of the final corrections.

A. Description of the Data Set

Validation data came from several data sets. They were a mix
of pulse sequence (SPGR, MP-RAGE), scanner types (Siemens
1.5T, GE 1.5T) and pathology (normal control, schizophrenia
and Alhzeimer’s).

Seventeen scans were acquired in 2000/2001 using a Siemens
Sonata system with the following parameters: TR: 7.25 ms;
TE: 3.22 ms; TI: 600.00 ms; flip angle: 7.00°; 1.3-mm sections
(resampled to 1 mm isotropic). This data set consists of eight
young (YNC), seven elderly normal controls (ENC), and two
Alzheimer’s (AD).

The second data set was acquired using a Siemens Vision
system in 1994/1995 with the following parameters: TR: 9.70
ms; TE: 4.00 ms; TI: 621.00 ms; flip angle: 10.00°; 1.25-mm
sections (resampled to 1-mm isotropic). Data comes from
studies reported in Buckner et al. [63] and Logan et al. [64]
and also later subjects imaged using the same anatomic pro-
tocol.13 This data set consists of six Young Normal Control, 14
nondemented and six demented adults.

B. Discussion of the Results

1) Accuracy: methods that do not integrate statistical and
geometric information will often fail to produce solutions com-
parable to those that a trained operator makes. This is illustrated
in Fig. 11(a) and (b), where valid solutions do not always cor-
respond to minimal corrections [i.e., cutting the handles in the
magnified examples of Fig. 11(a) and (b)]. Only general ap-
proaches that integrate additional information can produce cor-
rect solutions.

In order to assess the accuracy of the proposed method, we
rely on experts to evaluate the solutions. All solutions matched
the ones produced by a trained expert. Then, we compare our re-
sults with the ones obtained in [44]. To our knowledge, these two
methods are the only ones proposed to explore the space of po-
tential solutions for selecting the best correction to a topological
defect. In most cases, both approaches produced almost-iden-
tical, correct solutions that other methods failed to produce.
However, for some complex topological defects, our approach
outperformed the genetic-search approach. As we previously

13We thank Randy Buckner and the Washington University Alzheimer’s Dis-
ease Research Center for providing the data set.
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Fig. 11. (a) Original cortical surface with a magnified region. (b) Topologically corrected surface and corresponding magnified regions. (c) Coronal, horizontal,
and sagittal MRI view of the cortical surfaces before (in green) and after (in red) topology correction. The topological inconsistencies correspond to the magnified

region in (a) and (b). (d) Another example of a topological correction.

a) ‘

c)

@ o)

Fig. 12. (a) Original defect: red and green vertices represent inside and border vertices respectively. (b) One sagittal view of the defect. (c) Original defect. The
vertices in the circled regions have by the spherical mapping the same location on the sphere. (d) Incorrect solution generated by the genetic algorithm using the
spherical mapping. This solution corresponds to the best candidate within the space of potential retessellation constrained by the initial spherical mapping. (e)
Solution generated by our approach. One can check the similarity of our solution with the one generated by a trained operator in Fig. 3(c).

noted, the space of potential retessellation explored by the ge-
netic algorithm depends strongly on the initial spherical map-
ping. For some large and complex topological defects, the ge-
netic search does not develop correct solutions (i.e., the ones
that a trained operator produces). The current approach, which
does not rely on the spherical mapping to obtain candidate so-
lutions, is more likely to generate the correct ones, as Fig. 12
illustrates.

Finally, to evaluate the quality of the corrections, we compute
for each defect the average Hausdorff distance between auto-
matically corrected surfaces (using our method) and manually
corrected surfaces produced by a trained operator. The average
Hausdorff distance is less than 0.2 mm (similar to the results
obtained in our previous method [44]).

2) Numerical Implementation and Computational Time: An
average cortical surface contains on the order of 50 topological
defects, most of which are relatively small: most defects con-
tain less than 50 vertices (approximately 100 faces),!4 and are
corrected in a few seconds.

Larger defects, with more than 100 vertices, can take a few
minutes, due to the self-intersection check and the computa-
tion of the fitness associated with each defect. However, the
overall process is no longer quadratic in the number of vertices
contained in the convex hull of each defect, as in our previous
method [44], and a full brain is corrected in approximately 20
min on a 1-GHz Pentium IV machine.!5 More importantly, we
stress that the whole process could be parallelized, as each de-

14For a topological defect with ¢ handles and ., vertices out of which n;, are
border vertices, the number of faces is ny = 2(n, — 1+ 2g) — n,

I5This time estimate disregards the generation of the spherical mapping which
takes itself approximately 20 min.

fect is independent of one another, thus providing the potential
for two order of magnitude increase in the speed of the proce-
dure with parallelization.

In addition, our approach produces few self-intersecting
patches (less than 5% of all generated patches). Most of the
computation time is taken up by the calculation of the fitness
and the self-intersection test, with a complexity approximately
proportional to the size of the defect.

Finally, we emphasize that all of the topological operations
(i.e., operations that lead to the correction of the topology) are
exact arithmetic operations that manipulate the graph of the tri-
angulation. In contrast to our previous genetic search approach
that used the spherical mapping to constrain the topology of
the final solution, and as such was sensitive to floating-point
rounding errors, the current method always produces a valid
final surface, i.e., one with the Euler-characteristic of a sphere
X = 2.

3) Limitations: It is important to state the limitations of the
proposed approach. While the current algorithm is no longer
constrained by the spherical mapping, not all configurations can
be attained. The obvious explanation is the local behavior of our
topological corrections, which, having identified potential cuts,
optimize the shape of the surface locally by using a gradient de-
scent within the active contour framework. Therefore, our ap-
proach may not be able to produce geometrically accurate solu-
tions in the event of extremely noisy MRI images.

However, in our experience such configurations are quite
unlikely. Topological inconsistencies are often the result of
very few mislabeled ambiguous voxels during the segmentation
process, and local topological corrections are usually sufficient
to produce geometrically accurate solutions. While aware of
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these limitations, we do not believe this to be a real restriction
to the geometrically accurate topology correction of cortical
surfaces from standard structural MRI acquisitions.

VI. CONCLUSION

We have proposed an automated method to accurately cor-
rect the topology of cortical representations. Our approach inte-
grates statistical and geometric information in selecting the best
correction for each defect. Non-separating loops locate handles
present in the volume, and produce topologically corrected can-
didate solutions by discarding the faces that form the loops and
by sealing the open mesh. The accuracy of each candidate solu-
tion is then maximized by active contour optimization. Finally,
randomly generated candidate solutions are selected based on
their goodness of fit in a Bayesian framework. The fitness of
a retessellation is measured by the smoothness of the resulting
surface and the local MRI intensity profiles inside and outside
the surface. The resulting procedure is a wholly adaptative and
self-contained topology correction algorithm, which determines
geometrically accurate, topologically correct solutions based on
the MRI intensity profiles and the expected local curvature.

The topology correction is fast, and a full brain can be cor-
rected in about 20 min on a current (1-GHz Pentium IV) ma-
chine (approximately 40 min taking into account the generation
of the spherical mapping). Exact arithmetic operations on the
graph of the triangulation ensure that no floating-point rounding
errors occur during the topology-correction process, at the same
time guaranteeing that the final surface exhibits the topology of
a sphere. To our knowledge, this approach has been the only one
proposed thus far to explore the full space of potential solutions
in order to select the best correction of a topological defect.

Finally, note that the proposed approach is not restricted
to spherical topologies, and can be used to correct the planar
topology of any triangulations.

This algorithm is part of the cortical surface reconstruction
and flattening software Freesurfer, associated with [3], [5], [6],
[10]. Source code for the generation of nonseparating loops, the
opening and the sealing of topological defects is available at
http://cermics.enpc.fr/~segonne/research/topologycorrection/.
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