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Abstract: Large-scale longitudinal studies of regional brain volume require reliable quantification using
automated segmentation and labeling. However, repeated MR scanning of the same subject, even if using
the same scanner and acquisition parameters, does not result in identical images due to small changes in
image orientation, changes in prescan parameters, and magnetic field instability. These differences may lead
to appreciable changes in estimates of volume for different structures. This study examined scan–rescan reli-
ability of automated segmentation algorithms for measuring several subcortical regions, using both within-
day and across-day comparison sessions in a group of 23 normal participants. We found that the reliability
of volume measures including percent volume difference, percent volume overlap (Dice’s coefficient), and
intraclass correlation coefficient (ICC), varied substantially across brain regions. Low reliability was observed
in some structures such as the amygdala (ICC ¼ 0.6), with higher reliability (ICC ¼ 0.9) for other structures
such as the thalamus and caudate. Patterns of reliability across regions were similar for automated segmenta-
tion with FSL/FIRST and FreeSurfer (longitudinal stream). Reliability was associated with the volume of the
structure, the ratio of volume to surface area for the structure, the magnitude of the interscan interval, and
the method of segmentation. Sample size estimates for detecting changes in brain volume for a range of likely
effect sizes also differed by region. Thus, longitudinal research requires a careful analysis of sample size and
choice of segmentation method combined with a consideration of the brain structure(s) of interest and the
magnitude of the anticipated effects. Hum Brain Mapp 31:1751–1762, 2010. VC 2010 Wiley-Liss, Inc.
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INTRODUCTION

The reliable volumetric assessment of brain structures is
critical for clinical neuroscience research. An important
and evolving body of literature has focused on using lon-
gitudinal within group design. This approach has the
advantage of limiting the variance associated with individ-
ual differences in brain volumetry and morphometry by
using each subject as his or her own control. Longitudinal
studies of the volumes of particular brain structures have
been used to document brain changes related to aging, dis-
ease, treatment regimens, and adverse environmental
exposures (Castellanos et al., 2002; Fotenos et al., 2005;
Mathalon et al., 2001; Resnick et al., 2003). Manual tracing
by experts of magnetic resonance images (MRI) of brain
structures has been the standard for brain volume mea-
surement for many studies due to its high inter-rater reli-
ability for key structures such as the hippocampus and
amygdala (�0.95) (Mervaala et al., 2000; Rojas et al., 2004;
Whitwell et al., 2005). However, this labor-intensive
method becomes impractical for studies that require the
measurement of many subjects or brain regions or that
embody a risk of rater bias. Moreover, variability becomes
exacerbated with repeated sessions, which introduces
additional sources of variability including changes in sub-
ject positioning, variability in prescan and shim settings,
and magnetic field drift. This can greatly reduce reliability
across scans; e.g., for the hippocampus (�0.9) and amyg-
dala (�0.75) (Bartzokis et al., 1993).

Large-scale quantitative assessment of brain anatomy
can only be achieved practicably by using automated brain
segmentation algorithms. Despite the prevalence of these
techniques, the effects of interscan variability on auto-
mated segmentation and labeling algorithms is not well
characterized (Wonderlick et al., 2009), and thus, the
impact of this variability on the statistical power for dis-
cerning differences in brain volumes is largely unknown.
Here, we investigate the reliability of automated brain
measurement methods using data from normal subjects
who were scanned four times: two scans on day 1 and
two scans on day 2 occurring 1 week later.

Our main goals were (i) to characterize variability in
volume measures of different brain structures commonly
studied in clinical neuroscience across repeated anatomical
scans, both within and across days and (ii) to determine
how variability is influenced by the elapsed time between
scans, the size of the brain structure, and the image con-
trast between neighboring structures. We repeated all anal-
yses using two popular noncommercial programs, FSL/
FIRST (FMRIB Integrated Registration and Segmentation
Tool, Oxford University, Oxford, UK) and FreeSurfer
(Martinos Center for Biomedical Imaging, Harvard-MIT,
Boston). As we were interested in scan–rescan reliability of
automated methods, we did not compare the output of
these programs with that obtained via manual segmenta-
tion, and thus, we did not evaluate the accuracy of these
segmentation methods. However, we have recently investi-

gated the accuracy of automated measures of the hippocam-
pal and amygdala volumes compared with the expert
manual segmentation (Morey et al., 2009) as have other
groups (Barnes et al., 2008; Jatzko et al., 2006; Powell et al.,
2008). Finally, because scan–rescan reliability influences ex-
perimental power, we estimated the sample size required to
detect significant differences in the selected brain structures
for a range of likely effect sizes (ES).

METHODS

Subject Data

Twenty-three healthy subjects (nine females) provided
written informed consent for a study approved by the
Institutional Review Board of Duke University Medical
School. The subjects had an average age of 23.4 (SD ¼ 3.3)
and none reported neurologic or psychiatric conditions.
Each subject was scanned on two different days. Two
scans were conducted 1 h apart on day 1 (scans 1A and
1B) and two scans were conducted 1 h apart at a second
session 7–9 days later (scans 2A and 2B). Subjects were
removed from the scanner between scans that were con-
ducted on the same day. All anatomical scans were
obtained as part of an unrelated functional MRI study that
involved an acute tryptophan depletion intervention. Half
the subjects had the active intervention prior to scanning
on day 1 and the other half had it on day 2. There was no
effect of the intervention detected on volumetric results
(data not shown). Data were collected between June 2007
and October 2008 with approximately half the subjects
scanned in 2007 and the remainder in 2008. All scans were
high-resolution T1-weighted images with 1-mm isometric
voxels acquired on the same General Electric 3-Tesla
EXCITE system and eight-channel headcoil using the array
spatial sensitivity encoding technique (ASSET) with 3D
fast spoiled gradient recall (FSPGR). Image parameters
were optimized for contrast between white matter, gray
matter, and CSF (TR/TE/flip angle ¼ 7.484 ms/2.984 ms/
12�, 256-mm FOV, 1-mm slices, 176 slices, 256 � 256 ma-
trix, 1 excitation). Visual inspection of the scans showed
no subjective evidence of motion artifact. Interested read-
ers can access the entire dataset in compressed NIFTI for-
mat at http://duke.edu/�morey005/ScanRescanData/
along with a readme.txt file that provides information on
gender, age, and race/ethnicity for each participant.

Segmentation Methods

Two fully automated segmentation programs, FSL/
FIRST (v1.2) (Patenaude, 2007) and FreeSurfer (v4.5)
(Fischl et al., 2002), were used to measure the volume of
nine brain regions: amygdala, brainstem, hippocampus,
lateral ventricles, nucleus accumbens, caudate, putamen,
pallidum, and thalamus. Summary results using a prior
version of FIRST (v1.0.5) and the FreeSurfer cross-sectional
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stream (v4.4) were also calculated. A brief description of
segmentation procedures and parameters follows. Further
details of these methods are available in Morey et al.
(2009) and in the documentation provided by the develop-
ers of FIRST (http://www.fmrib.ox.ac.uk/fsl/first/index.
html) and FreeSurfer (http://surfer.nmr.mgh.harvard.
edu/).

Prior to initiating the FIRST processing stream, images
from all four time points were coregistered to the image
space of the first scan (1A) using 6 DOF rigid transforma-
tions (translation, rotation) that were sufficient to achieve
alignment between images (1A, 1B, 2A, 2B) from the same
individual. The 1A image was used as the base image
because of its analogy to the baseline scan in an actual lon-
gitudinal study being the most likely candidate for regis-
tering subsequent images. The coregistration was
necessary for postsegmentation computation of volume
overlap. FIRST normalization was then performed with
two-stage affine transformation to the standard space of
MNI 152 at 1-mm resolution. A neck mask was included
to improve the registration of our T1 images; this was the
only nondefault option selected in our processing stream.
The first stage involved a standard 12 degrees-of-freedom
registration to the template, and the second stage applied
12 degrees-of-freedom registration using an MNI 152 sub-
cortical mask to exclude voxels outside the subcortical
regions. Next, automated segmentation proceeded via a
Bayesian probabilistic approach using shape and appear-
ance models. These models were constructed from a
library of manually segmented images, parameterized as
surface meshes and then modeled as point distributions.
Using the learned models, FIRST searches through linear
combinations of shape modes of variation (principal com-
ponents) to find the most probable shape instance given
the observed intensities from the input image. FIRST uses
an empirically determined fixed number of modes (itera-
tions) for each structure. Finally, the vertex information or
models were transformed to the native space where the
boundaries were corrected and volumes (labels) were
generated.

Automated segmentation and labeling was also per-
formed by the FreeSurfer longitudinal stream. Prior to ini-
tiating longitudinal processing, the data were fully
segmented with FreeSurfer’s cross-sectional stream. Free-
Surfer utilizes affine transformations and combines infor-
mation about voxel intensity relative to a probability
distribution for tissue classes with information about the
spatial relationship of the voxel to the location of neigh-
boring structures obtained from a manually labeled atlas
(Fischl et al., 2002). Longitudinal processing began with a
mutual coregistration (rigid with six DOF) of all the four
time points to create a base image that was not biased by
any of the contributing images. The images from each of
the four time points were then registered to the base
image, and the subcortical segmentation of the base image
was used as an initial guess for the segmentation of each
time point image in the longitudinal scheme. The subcorti-

cal segmentation and parcellation procedure in FreeSurfer
involves solving many complex nonlinear optimization
problems using iterative methods. Therefore, the results
are sensitive to the starting point, in this case the base
image. The FreeSurfer developers believe that initializing
the processing of a new data set in a longitudinal series
with the results of the unbiased template can reduce the
random variation in the processing procedure and
improve the robustness and sensitivity of the overall anal-
ysis. The segmented labels were returned to the base
image space using the FreeSurfer library function mri_con-
vert, which applies the inverse transform created during
the longitudinal processing. Nearest neighbor resampling
was applied to prevent interpolation during the transfor-
mation. Individual regions were extracted from the large
segmentation volume that contains all the regions of
interest.

Statistical Measures

Means and standard deviations of volumes from seg-
mentation using FreeSurfer and FIRST were obtained for
each acquisition: 1A, 1B, 2A, and 2B. Separate intraclass
correlation coefficients (ICC) were computed to assess the
contribution of elapsed time to reliability. The four ICCs
included two ICC values for interscan intervals of 1 h (1A
vs. 1B, 2A vs. 2B) and two ICC values for interscan inter-
vals of 1 week (1A vs. 2A, 1B vs. 2B). An ICC was also cal-
culated based on volume measures generated from all four
scans. Reliability analyses were conducted separately for
left and right hemisphere structures except for the brain-
stem which is a midline structure. The ICC was calculated
using two-way mixed model with measures of absolute
agreement (McGraw and Wong, 1996). The mixed model
treats subjects as randomly sampled from a larger popula-
tion and treats the measures from the four scans as a fixed
factor being specific to the scanner hardware, software,
and acquisition parameters of this study.

Reliability based on the method of segmentation, the
interscan interval, and hemisphere was assessed with a
repeated-measures multivariate analysis of variance
(MANOVA). Analysis was performed on the dependent
variable calculated from the ICC values described earlier
using the Fisher r to z transformation, z ¼ 0.5 � [loge(1 þ
r) � loge(1 � r)]. Factors included method (two levels;
FIRST, FreeSurfer), time (two levels; 1 hour interscan, 1
week interscan), and hemisphere (two levels; left, right).

We reasoned that segmentation reliability may be
related to the overall volume of the brain structure, to the
particular shape, and to the surface area or other unique
features of individual structures. Thus, we considered two
possible predictors of reliability, volume, and the ratio of
volume to surface area. To assess volume as a predictor,
the mean volume of structures was parameterized into
three groups: (i) small (<2,000 voxels) that included the
amygdala, accumbens, and pallidum; (ii) medium-sized
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(2,000–4,000 voxels) that included the caudate and hippo-
campus; and (iii) large (>4,000 voxels) that included the
lateral ventricle, brain stem, putamen, and thalamus. Like-
wise, the ratio of volume to surface area was assessed as a
predictor of reliability. Surface area estimation was
derived by computing the area of the triangulated mesh of
each structure for FIRST and FreeSurfer. The calculated
ratios were parameterized into quartiles and the corre-
sponding observations of reliability were allotted into
quartiles according to Altman and Bland (1994). Repeated
measures ANOVA testing was used to assess differences
between groups.

To assess the reliability of volume estimates from
repeated segmentations, we computed (i) percent volume
difference as defined by Eq. (1) and (ii) percent volume
overlap or Dice’s coefficient as defined in Eq. (2) with
repeat scanning. Given labelings L1 and L2 from repeat
scanning and a function V(L), which takes a label and
returns its volume, the percent change in volume
DV(L1,L2) is given by,

DV L1;L2ð Þ ¼ jV L1ð Þ � V L2ð Þj
V L1ð ÞþV L2ð Þ

2

� � � 100 (1)

For labels with identical volume, DV(L1,L2) achieves its
optimal value of zero, with increasing values indicating a
greater volume difference between the two labelings.
Given two different labelings of a structure, L1 and L2,
and a function V(L), which takes a label and returns its
volume, the percent volume overlap is given by:

O L1;L2ð Þ ¼ V L1 \ L2ð Þ
V L1ð ÞþV L2ð Þ

2

� �� 100 (2)

For identical labelings, O(L1,L2) achieves its maximum
value of 100, with decreasing values indicating less perfect
overlap. Note that the overlap between two different label-
ings will be reduced by slight shifts in the spatial location
of one label with respect to another. Percent volume differ-
ence and percent volume overlap were computed for the
following four separate repeat scan comparisons: 1A vs.
1B, 2A vs. 2B, 1A vs. 2A, 1B vs. 2B.

Means and standard deviations were calculated from
volume data summed over the four scans. Cronbach’s
Alpha, a measure of reliability, and ICC, denoting the ratio
of between-subject variability to total variability, were esti-
mated using SPSS (Release 15.0). Estimated standard devi-
ations and correlation coefficients were used in subsequent
power calculations, using a range of likely ES (0.1, 0.2, 0.3,
0.4, 0.5, 0.75, 1.0). Power calculations determined the num-
ber of subjects required to detect a given ES with 80%
power at an alpha level of 5%. Estimates were calculated
using power analysis and sample size (PASS) software
[NCSS: Kaysville, UT] (Hintze, 2005).

RESULTS

Sample means and standard deviations of volumes for
the nine regions and each of the four scans are summar-
ized in Table I. Scan–rescan ICC values are reported in
Table II by region and segmentation method. The scan–
rescan reliability was higher for FreeSurfer than FIRST;
main effect of method [F(1,17) ¼ 25.8, P < 0.0001]. The
data showed greater ICC variation with FIRST (SD ¼
0.726; variance ¼ 0.528) than FreeSurfer (SD ¼ 0.699; var-
iance ¼ 0.489). The reliability for an interscan interval of 1
h was higher than for an interscan interval of 1 week;
main effect of time [F(1,17) ¼ 17.0, P < 0.001]. No differ-
ence was found between the reliability of left and right
hemisphere segmentation [F(1,17) ¼ 0.31, P > 0.5]. Scan–
rescan reliability for FIRST v1.2, which includes improved
boundary correction, was higher than for FIRST v1.05
[t(16) ¼ 4.2, P < 0.0001]. Scan–rescan reliability obtained
from the longitudinal stream of FreeSurfer was higher
than for the cross-sectional stream [t(16) ¼ 2.7, P < 0.01]
(see Supporting Information Table S1).

The scan–rescan reliability of volume measures differed
across regions regardless of the segmentation method,
main effect for region [F(8, 35) ¼ 81.1, P < 0.0001] (see Ta-
ble II). High reliability was observed in structures such as
the brainstem, lateral ventricle, and thalamus, intermediate
reliability in structures such as the putamen, hippocam-
pus, and caudate, and low reliability in structures such as
the pallidum, accumbens, and amygdala. Reliability was
influenced by both volume [F(2,141) ¼ 75.2, P < 0.0001]
and by the ratio of volume to surface area as calculated by
FIRST [F(3, 60) ¼ 27.4, P < 0.0001] and FreeSurfer [F(3, 60)
¼ 5.4, P < 0.002]. Thus, structures with large volumes
and high volume to surface area ratio had relatively
high reliability; whereas structures with small volumes
and low volume to surface area ratio had relatively low
reliability.

The correlation of amygdala volumes measured in scans
1A and 1B (see Fig. 1) and the hippocampus for scans 1A
and 1B (see Fig. 2) illustrate the scan–rescan reliability.
The percentage volume difference between repeated scan-
ning is shown in Figure 3 for FIRST and FreeSurfer seg-
mentation. Values for percent volume difference represent
the mean of four separate repeat scan comparisons (1A vs.
1B, 2A vs. 2B, 1A vs. 2A, 1B vs. 2B). Examination of vol-
ume difference measures illustrates the inconsistency
across the four scans (see Fig. 3). As examples, the amyg-
dala and nucleus accumbens showed low consistency;
whereas other structures such as hippocampus and thala-
mus showed generally consistent values.

The relationship between volume and particular struc-
tures was further assessed to understand the role of con-
trast between neighboring structures. Comparisons of
regions with similar volumes within the medium-sized
group showed the hippocampus, which has poor contrast
in the anterior boundary with the amygdala (Pruessner
et al., 2000), had a lower ICC than the caudate which has
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boundaries with generally high contrast [t(15) ¼ 2.3, P <
0.02].

However, the volume difference measure does not cap-
ture possible shape variation between segmented regions.
Therefore, reliability was further assessed with percent
volume overlap shown in Figure 4 for FIRST and Free-
Surfer segmentation. The overall mean percent volume
overlap across all structures and repeat scanning sessions
(see Fig. 4) was better for FIRST (91.5 � 0.15) than Free-
Surfer (87.6 � 0.29) [t(67) ¼ 9.7, P < 0.0001]. On the
other hand, percent volume difference (see Fig. 3) was
better for FreeSurfer (3.2 � 0.03) than FIRST (5.5 � 0.02)
[t(67) ¼ 5.2, P < 0.0001]. This suggests that FreeSurfer
segmentations had greater spatial variability over succes-
sive repeat scans than FIRST. In contrast to this, FreeSur-

fer segmentations maintained more reliable volume
measures (volume difference) over successive scans than
FIRST.

The images were manually inspected and no gross seg-
mentation errors resulting from image artifact were
detected. For structures where a particular correlation
between two scanning sessions was appreciably lower
than the corresponding pairwise correlations for the same
structure, the images were reexamined in the context of
the inconsistent segmentation volumes. For instance, FIRST
segmentation of the left putamen (see Fig. 5) was dramati-
cally different on the lateral surface for scan 1A (3,777 vox-
els) compared with scan 1B (7,317 voxels). This resulted in
lower intraclass correlations for 1A1B (0.29) and 1A2A
(0.29) when compared with 2A2B (0.96) and 1B2B (0.95).

TABLE I. Mean volume by region, scan, and segmentation methoda

FIRST FreeSurfer

1A 1B 2A 2B 1A 1B 2A 2B

Accumbens Mean L 603 596 572 589 557 550 566 572
SD L 85 84 108 84 69 66 85 61
Mean R 446 458 463 459 506 492 518 513
SD R 114 112 105 86 79 70 71 64

Amygdala Mean L 1,074 1,154 1,133 1,220 1,195 1,208 1,192 1,187
SD L 263 253 241 216 109 96 104 111
Mean R 964 1,070 1,040 1,116 1,284 1,277 1,278 1,278
SD R 238 200 204 255 178 142 145 167

Brain stemb Mean L 22,443 22,530 22,335 22,421 13,087 13,000 13,133 12,928
SD L 2,329 2,410 2,340 2,361 13,349 13,507 13,348 13,488

Caudate Mean L 3,813 3,829 3,754 3,782 3,039 3,038 3,048 3,033
SD L 524 478 536 462 330 334 332 332
Mean R 3,969 3,994 3,996 3,982 3,108 3,114 3,134 3,115
SD R 479 479 435 464 349 409 366 367

Hippocampus Mean L 3,956 3,982 3,976 3,977 3,257 3,278 3,259 3,266
SD L 424 411 416 420 302 302 310 296
Mean R 3,971 3,980 3,993 3,986 3,168 3,196 3,184 3,209
SD R 366 394 381 377 222 234 232 216

Lat. vent. Mean L 6,967 7,145 7,188 7,133 3,844 3,754 3,796 3,765
SD L 2,062 2,232 2,238 2,175 1,780 1,746 1,734 1,718
Mean R 6,427 6,572 6,614 6,595 3,836 3,754 3,815 3,762
SD R 2,095 2,208 2,147 2,154 2,124 2,126 2,126 2,071

Pallidum Mean L 1,810 1,808 1,815 1,791 1,368 1,365 1,363 1,370
SD L 214 230 211 237 149 153 140 138
Mean R 1,885 1,865 1,875 1,869 1,337 1,326 1,340 1,340
SD R 201 177 174 210 150 158 149 146

Putamen Mean L 5,588 5,770 5,769 5,789 4,838 4,820 4,825 4,838
SD L 651 639 587 601 666 677 681 690
Mean R 5,479 5,497 5,522 5,537 4,635 4,613 4,627 4,660
SD R 690 724 661 708 554 562 568 531

Thalamus Mean L 8,830 8,844 8,830 8,854 5,630 5,634 5,654 5,630
SD L 660 619 646 640 478 533 520 510
Mean R 8,581 8,593 8,548 8,599 5,551 5,559 5,572 5,584
SD R 640 622 620 619 468 484 500 479

aThe standard deviation (SD) for each scan is a measure of the variance in volume for the group of 23 subjects. Therefore, the magni-
tude of SD does not necessarily reflect on the accuracy of the mean volume.
bThe FIRST segmentation of the brainstem includes the fourth ventricle but FreeSurfer does not.

r Scan–Rescan Reliability of Subcortical Brain Volumes r

r 1755 r



Again, there seemed to be no artifact or other overt factor
contributing to the discrepancy.

Sample Size Estimation

On the basis of variability observed, we estimated the
sample size required to achieve 80% power and limit Type
1 error to 5%. The sample size for a range of ES from 0.1
to 1.0 is shown for each of the selected regions and seg-
mentation methods in Figure 6. Estimates showed that
structures with ICCs approaching 1 required relatively few
subjects (<10) to power studies of longitudinal or repeated
measures design for the entire range of ES considered. On
the other hand, regions with relatively low ICCs, required
few subjects (�10) for large ES (>0.5), but required much
a larger sample (>100) to power studies with small ES
(<0.2). For example, to detect a change in amygdala vol-
ume corresponding to an ES of 1.0 (�300 voxels) using
FreeSurfer would require eight subjects, whereas detecting
a change corresponding to an ES of 0.1 (�30 voxels) would
require more than 500 subjects. By comparison, a region
with relatively high ICC, such as the thalamus, would
require just 10 subjects to detect a difference with an ES of
0.1 (�70 voxels); whereas an ES of 1.0 (�700 voxels) would
require just three subjects.

DISCUSSION

This study examined the reliability of two fully auto-
matic segmentation and labeling programs for measuring
the volumes of subcortical and other brain structures in a
group of normal subjects who were repeatedly scanned
within a 7–9 day interval. Overall, there was consistent
and large-magnitude scan–rescan variability that was exa-

cerbated for small structures such as the amygdala, accum-
bens, and pallidum. The choice of software (FreeSurfer or
FSL/FIRST) did not strongly influence reliability; however,
FIRST produced higher reliability for the small structures
measured here. Consistent with the observed main effects,
sample size estimates for longitudinal studies were great-
est for regions with poor or moderate rescan reliability,
particularly when detecting small effects.

We found a difference in reliability between 1 hour and 1
week interscan intervals. (although, for some brain struc-
tures, such as the right hippocampus, the 1 hour reliability
(2A–2B; ICC ¼ 0.82) was lower than the 1 week reliability
(1B–2B; ICC ¼ 0.89). Higher reliability might be expected
for shorter interscan intervals due to magnetic field instabil-
ities or drift. Other sources of variance were similar for the 1
hour and 1-week interscan interval such as the effect of sub-
ject repositioning. The Duke scanning site, where these
images were obtained, uses rigorous and regular QA proce-
dures (Friedman and Glover, 2006; Keator et al., 2008) that
may have diminished some sources of scanner variability.

The goal of our article is to inform longitudinal studies
where the selected group is assessed at two different time
points and volume data from the two time points are com-
pared. If perfect scan–rescan reliability was achieved then
the true change in any structure (e.g., volume) could
be measured perfectly in a longitudinal setup. We have
approached this problem by examining the special case
where the true change of the structure is assumed to be
zero and then the measured departure from perfect reli-
ability. The change observed in the selected group of cases
can be compared with the longitudinal change in a control
group to characterize the effects of the treatment or pro-
cess (e.g., aging) in question. Although a longitudinal
design has the advantage of limiting individual variability
with each subject acting as its own control, other sources

TABLE II. Intraclass correlation coefficients for segmentation volumes

Region (L,R)

FreeSurfer FIRST

1A–1B 2A–2B 1A–2A 1B–2B 4-scan 1A–1B 2A–2B 1A–2A 1B–2B 4-scan

Accumbens 0.782 0.739 0.753 0.540 0.684 0.741 0.704 0.598 0.671 0.678
0.877 0.799 0.909 0.838 0.856 0.710 0.643 0.647 0.651 0.647

Pallidum 0.902 0.969 0.925 0.911 0.922 0.952 0.924 0.969 0.893 0.933
0.895 0.948 0.902 0.885 0.910 0.922 0.879 0.814 0.912 0.889

Amygdala 0.889 0.873 0.843 0.806 0.866 0.728 0.712 0.791 0.679 0.749
0.823 0.754 0.881 0.776 0.815 0.690 0.506 0.390 0.427 0.522

Caudate 0.987 0.977 0.974 0.963 0.975 0.963 0.919 0.950 0.919 0.927
0.968 0.984 0.979 0.969 0.975 0.864 0.978 0.834 0.944 0.895

Hippocampus 0.982 0.977 0.982 0.977 0.979 0.932 0.913 0.927 0.974 0.928
0.924 0.952 0.924 0.934 0.935 0.809 0.863 0.822 0.886 0.855

Lat. vent. 0.998 0.997 0.993 0.994 0.995 0.977 0.998 0.976 0.993 0.987
0.999 0.998 0.997 0.997 0.997 0.994 0.998 0.994 0.994 0.995

Putamen 0.972 0.984 0.972 0.974 0.973 0.287 0.970 0.293 0.952 0.613
0.980 0.943 0.962 0.961 0.958 0.977 0.940 0.952 0.912 0.936

Thalamus 0.971 0.981 0.978 0.980 0.976 0.973 0.990 0.986 0.985 0.981
0.983 0.980 0.973 0.967 0.975 0.975 0.978 0.968 0.975 0.975

Brain stem 0.991 0.996 0.988 0.992 0.991 0.970 0.967 0.943 0.972 0.962
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of variability persist with repeated scanning of the same
subject on the same scanner using the same acquisition pa-
rameters even with relatively short time duration between
scans. These sources of variability include small changes
in image orientation, changes in prescan parameters, and
instability in the magnetic field.

Previous work examined interscanner reliability, where
field strength and manufacturer were varied (Jovicich
et al., 2006; Reig et al., 2009; Schnack et al., 2004). Only

two studies, to our knowledge, examined rescan reliability
(intrascanner) with automated segmentation, with the first
study limited to basic tissue class segmentation (GM, WM,
CSF) (Agartz et al., 2001). The second study, by Wonder-
lick et al. (2009), reported somewhat similar reliability
using FreeSurfer (version 4.0.1) to what we found in this
study. For example, similar reliability was obtained in the
amygdala (0.85 for Wonderlick et al. vs. 0.87 (left) and 0.82
(right) for this study), caudate (0.99 vs. 0.98 and 0.98),

Figure 2.

Scatter plots showing correlation between segmented hippocampus volumes (mm3) from scan 1A and

1B for FSL/FIRSTand FreeSurfer. Left hemisphere volumes are in green and right hemisphere volumes in

orange. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 1.

Scatter plots showing correlation between segmented amygdala volumes (mm3) from scan 1A and 1B

for FSL/FIRSTand FreeSurfer. Left hemisphere volumes are in green and right hemisphere volumes in or-

ange. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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hippocampus (0.96 vs. 0.98 and 0.94), pallidum (0.87 vs.
0.92 and 0.91), putamen (0.95 vs. 0.97 and 0.96), and thala-
mus (0.97 vs. 0.98 and 0.97). However, these values
obtained by Wonderlick et al. were from FreeSurfer 4.0.1
and much higher than those we obtained with the cross-
sectional stream of FreeSurfer (v4.4) as seen in Supporting
Information Table S1. There are several factors that may
have contributed to these differences including differences
in scanner manufacturer, scanner hardware (Siemens 3T
TIM Trio in their study vs. GE 3T EXCITE in our study),
headcoil (12 channel vs. 8 channel), pulse sequence (MP-
RAGE vs. FSPGR with ASSET), sample size (11 vs. 23),
age profile of participants (young subgroup and old sub-
group vs. young group), and interscan interval (2 weeks
vs. 1 h and 1 week).

We did not undertake an experimental study of the vari-
ables that may have contributed to the scan–rescan differ-
ences in our brain volumes. One factor that is difficult to
control is the precise position of the subject’s head within

the head coil. A slightly different orientation can result in
partial volume effects for different tissue types along the
boundary of a brain structure that could change the con-
trast of the surface boundary with neighboring structures.
Such effects are most relevant for boundary voxels, but of
lesser consequence for voxels located in the interior of a
structure. When the boundary is distinct, meaning there is
a minimal overlap in the probability distribution of signal
intensity between adjacent structures, this variance has a
minor effect on the resulting segmentation. However,
when the boundary with a neighboring structure is less
distinct, and has a larger overlap in probability distribu-
tions of signal intensity, this variance can derail automated
segmentation and dramatically change outcome. Reliability
may differ across brain structures due to variability in tis-
sue contrast profiles and divergent modeling algorithms
(e.g., cortical surface-based or voxel-based segmentation
methods). A host of other factors specific to the segmenta-
tion algorithm and the atlas being used are likely to alter

Figure 3.

Percent volume difference for scans with a 1-h and 1-week interscan interval for nine subcortical

brain structures segmented with FIRST and FreeSurfer. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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the outcome of segmentation and its vulnerability to MR
signal variance in difficult-to-segment regions (Shattuck
et al., 2008). Thus, depending on its location, a small
change in MR signal may lead to a large and sometimes
unpredictable difference in the outcome of the segmenta-
tion algorithm as suggested by Figure 5. The reliability
measurements observed in this sample of young healthy
adults are therefore unlikely to limited by the atlases asso-
ciated with FreeSurfer and FIRST that contain a wide
range of demography and pathology. Additional concerns
related to the participant sample are covered in the Limita-
tions section that follows.

Rescan reliability was investigated for manual tracing
by Bartzokis et al. (1993) and showed slightly lower reli-
ability than for automated segmentation for a number of

regions such as hippocampus (0.91 for Bartzokis et al. vs.
0.98 (left) and 0.94 (right) for this study with FreeSurfer)
and amygdala (0.75 vs. 0.87 and 0.82 for this study with
FreeSurfer). Similarly, rescan reliability of intracranial vol-
ume with manual tracing (ICC ¼ 0.95) was slightly lower
than for intra-rater (same scan) reliability (ICC ¼ 0.96)
(Nandigam et al., 2007). Most volumetric studies that use
manual tracing report high intra-rater reliability even on
challenging regions such as the hippocampus and amyg-
dala (ICC ¼ 0.95) (Mervaala et al., 2000; Rojas et al., 2004;
Whitwell et al., 2005). When a baseline manual segmenta-
tion is performed, fluid registration can be used to attain
highly reliable segmentation of repeat scans that is supe-
rior to a subsequent manual segmentation (Crum et al.,
2001). This approach is especially advantageous when

Figure 4.

Percent volume overlap for scans with a 1-h and 1-week interscan interval for nine subcortical

brain structures segmented with FIRST and FreeSurfer. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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Figure 5.

The T1 images and segmentations for subject 7 are shown for

scan 1A (left panel) and for scan 1B (center panel). Segmenta-

tion of the L-putamen (circled) is dramatically different on the

lateral surface for scan 1A (3,777 voxels) compared to scan 1B

(7,317 voxels). This resulted in lower intraclass correlations for

1A1B (0.29) and 1A2A (0.29) as compared to 2A2B (0.96) and

1B2B (0.95). There is no obvious artifact visible in scan 1A that

might explain this discrepancy. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

Figure 6.

Sample size requirements (y-axis) for FreeSurfer (left) and FSL/FIRST (right) assuming a within

subject design with two observations to achieve 80% power and 5% alpha level are shown for a

range of effect sizes (x-axis) and each of the nine subcortical structures. Note that the sample

size is scaled by log10 to enhance visualization of curves at higher effect sizes. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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multiple repeat scans are performed longitudinally
because it requires manual segmentation of only the first
scan. However, the introduction of lesions or rapid degen-
eration between scans can compromise the fluid registra-
tion approach. Thus, fluid registration may be preferred
for regions such as the amygdala that are unreliably seg-
mented with the fully automated methods.

The exact sample size recommendations from our power
analyses are specific to the hardware, software, segmenta-
tion method, pulse sequence, and other parameters used
in this study. However, our procedures are typical for aca-
demic imaging at many major research institutions, and
thus the relative effects across brain regions are likely to
generalize. Improvements in multichannel imaging by
combining T1, T2, and PD sequences that optimize auto-
mated segmentation may improve rescan reliability when
compared with single channel acquisition. Such multichan-
nel acquisitions also offer substantial invariance to acquisi-
tion parameters (Fischl et al., 2004). Pulse sequences such
as high bandwidth multiecho FLASH have a high signal
to noise ratio and minimal image distortion from B0 effects
have been shown to improve reliability. Wonderlick et al.
examined the performance of scan–rescan segmentation
with FreeSurfer using recent advances in MR acquisition
including high resolution (1 mm isotropic), parallel acqui-
sition (phased array headcoil), and a multiecho T1
weighted sequence using MP-rage sequence (1.3 � 1.0 �
1.3 mm) for comparison testing (Wonderlick et al., 2009).
Even when using these advanced approaches, the effect of
MR signal variance on automated segmentation was not
eliminated.

Our findings may be specific to FreeSurfer and FIRST—
two popular noncommercial software programs used at
many research institutions. It is important to emphasize
that we did not evaluate the validity or accuracy of the
measurements from these two programs. It is possible an
accurate measure might result from a given segmentation
obtained from a single scan but does not provide informa-
tion about how consistently it can produce accurate seg-
mentation when the same brain is scanned repeatedly and
is generally not assessed in studies of segmentation accu-
racy. Indeed we show that for certain regions, scan–rescan
reliability of automatically segmented brain regions is of
concern.

Limitations

The demographic sample of healthy young participants
limits the ability to generalize the present findings. Our
demographic is unlikely to contain extremes of the popula-
tion distribution, and one might expect higher scan–rescan
reliability in our sample than in a sample representative of
a more diverse population. The intriguing point is that de-
spite the limited demographic attributes of this group, the
reliability is surprisingly low in some instances and might
be even lower in a more diverse sample with respect to

demography (e.g., age) or neuropsychiatric pathology.
Similarly, our power analyses for estimating sample size
are likely to be underestimates of the actual number of
subjects required for conducting longitudinal studies in
more diverse groups. Studies with a case-control design
are likely to encounter greater variance related to individ-
ual differences that are avoided in a longitudinal design
where each participant serves as its own control.

CONCLUSIONS

Research based on MR imaging and automated segmen-
tation-based volumetry requires careful characterization of
the reliability and precision of observations and propaga-
tion of errors. Initially, small error can introduce substan-
tial variability across repeated observations each feeding
into algorithms with multistage signal processing and
probabilistic computation. Size and surface contrast fea-
tures are important factors that influence rescan reliability
of regional brain volumes obtained from automated seg-
mentation programs.
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