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Combined Volumetric and Surface Registration
Gheorghe Postelnicu*, Lilla Zöllei, and Bruce Fischl

Abstract—In this paper, we propose a novel method for the
registration of volumetric images of the brain that optimizes the
alignment of both cortical and subcortical structures. In order to
achieve this, relevant geometrical information is extracted from
a surface-based morph and diffused into the volume using the
Navier operator of elasticity, resulting in a volumetric warp that
aligns cortical folding patterns. This warp field is then refined
with an intensity driven optical flow procedure that registers
noncortical regions, while preserving the cortical alignment. The
result is a combined surface and volume morph (CVS) that accu-
rately registers both cortical and subcortical regions, establishing
a single coordinate system suitable for the entire brain.

Index Terms—Cortical and subcortical alignment, elastic warp,
magnetic resonance imaging (MRI), volumetric registration.

I. INTRODUTION

P AIR-WISE brain image registration is an active area of
research in the medical imaging community. Various al-

gorithms have addressed the generic problem of registering in-
formation from two brain scans using an array of different tech-
niques that can be broadly classified as either volume based or
surface based. Volumetric registration (see [1] for a thorough
survey) seeks a 3-D deformation field that is driven by either
raw intensity information or features derived from image inten-
sities. A different approach is to extract geometric features from
surface models of anatomical structures such as the neocortex,
and to reformulate the complex correspondence problem in a
surface matching framework.

Both of these approaches have advantages and weaknesses.
Surface-based methods [2]–[5] have been shown to accurately
align the highly complex folding pattern of the human cerebral
cortex, and to result in increased statistical power for averaging
of functional data across subjects, presumably due to their align-
ment of functionally homologous regions across subjects [3].
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This accuracy stems from the direct use of geometric informa-
tion that is generally unavailable to volumetric methods, and
the relatively close relationship between folding patterns and
functional properties of the neocortex. Conversely, volumetric
methods [6]–[10] provide a correspondence field across the en-
tire brain, including subcortical and ventricular regions that are
not in the domain of the surface-based alignment procedures,
but typically fail to align corresponding cortical folds across
subjects.

The failure of nonlinear volumetric procedures to align cor-
tical folding patterns stems from the highly nonconvex nature of
the driving energy functionals when initialized with affine trans-
forms. Fundamentally, a 12 parameter affine transform, which
is typically used as an initial estimate of the displacement fields,
does not bring many homologous folds into close enough cor-
respondence to allow nonlinear techniques to align them. In
essence, if the initialization of a volumetric nonlinear warp does
not bring a fold within one half the interfold spacing of the ho-
mologous fold then intensity-based algorithms will converge to
the incorrect solution.

In this paper, we propose a method that combines surface-
based and volumetric approaches, preserving the strengths of
each. This is accomplished by integrating surface-based infor-
mation into a volumetric registration procedure through the use
of a biomechanical deformation model. The result is a 3-D dis-
placement field that aligns both cortical folding patterns and
subcortical structures across subjects. While the idea of using
surface-based registration to drive volumetric registration is not
new [11]–[13], here we focus on the automated and accurate
registration of both cortical folding patterns and noncortical re-
gions in 3-D space.

Regularizing registration procedures by employing biophys-
ical models of the underlying deformable objects is an attractive
approach in the field of medical image registration as it brings to
bear branches of mathematics that allow the generation of corre-
spondence fields with specified properties (e.g., smoothness and
invertibility). One of the first such presentations of this type of
registration was that of Bajcsy et al. [6], who built on the work
of Broit [14], where images were considered to be solid linear
elastic bodies constrained at certain position by applied external
forces. Extensions of this early work have been since proposed
by Davatzikos [7], Ferrant [12], and Toga [13], who use sparse
displacement fields extracted from curves or surfaces to produce
a sparse displacement field on the boundary of the cortex, which
is then diffused using a volumetric elastic model. A drawback
of these methods is that they are accurate close to the boundary
driving the deformation, but they fail to properly align structures
distant from it.

Collins [15] was the first to propose a method that addresses
this problem. He used surface information through manually ex-
tracted sulcal traces together with intensity information to ob-
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tain a deformation field that was accurate both in the cortical
areas as well as in regions distant from the cortex.

Other hybrid methods, such as HAMMER [16] implicitly in-
corporate surface as well as volume information in the align-
ment through the use of feature vectors that represent both inten-
sity as well as geometric information in the registration process.
More recent work extending HAMMER [17] uses the result of
HAMMER as an initialization to further improve cortical sur-
face alignment between the two subjects being registered.

Our current approach [18] is similar to that of Joshi et al.
[19], [20]. These two methods have the same basic ingredients.
First, a surface-based registration algorithm is applied and is
used to derive a volumetric displacement field. Subsequently, an
intensity-based registration is computed to match regions distant
from the surfaces. It is worth pointing out that the surface reg-
istration used in the two approaches differ significantly in that
the surface-based registration method employed by Joshi et al.
is not automated, requiring a trained neuroanatomist to specify
a set of corresponding landmarks across subjects. The current
algorithm extends our preliminary work [18], and uses an auto-
mated algorithm for surface-based registration [21] to obtain an
initial estimate of a displacement field that aligns two individual
brain images. The resulting alignment is based on a biophysical
model of the brain, thus yielding a smooth, invertible deforma-
tion field. Using this deformation as an initialization, we then
apply an intensity-based registration [9] and [22].

Initializing the deformation field by aligning cortical folds
provides an extremely well-constrained alignment of noncor-
tical regions, which can then be brought into register using a
nonlinear intensity-based volumetric deformation.

The remainder of this paper is organized as follows. In
Section II we give an overview of the preprocessing steps
that lead to accurate and topologically correct cortical surface
models given an MRI image, as well as of the surface-based
registration that brings the geometric features of these surfaces
into register across subjects. The extraction and registration
of the cortical surfaces are performed automatically using
previously described techniques and freely available software
(http://surfer.nmr.mgh.harvard.edu/fswiki), hence, we only
describe them briefly. In Section III we provide details about
the diffusion of the surface-based registration results into the
volume, using the Navier operator derived from the theory
of linear elasticity. We detail the discretization of the Navier
operator, the numerical scheme used in the implementation,
and the technical aspects of working with tetrahedral meshes.
In Section IV, we briefly explain the intensity-based registra-
tion algorithm that was previously presented in [9]. Finally in
Section V we present our results on a varied set of real medical
data sets, showing the accuracy of the resulting registration
procedure both cortically and throughout the brain.

II. SURFACE-BASED REGISTRATION

We present an algorithm for registering two structural brain
scans, arbitrarily denoted target and moving. This registration
involves three main steps. First, cortical folding patterns are reg-
istered using information derived from cortical surface models.
Then this warp is projected back to the volumetric domain and
diffused using linear elasticity constraints. Finally an optical

flow intensity-based registration algorithm is applied, using the
output of the second step as an initialization. This framework
results in a nonlinear displacement field which simultaneously
registers cortical and subcortical structures.

In the preprocessing step, the input brain scans are indepen-
dently processed to obtain accurate, topologically correct recon-
structions of the cortical surfaces (see [21], [23]–[26] for de-
tails). As a result we obtain four detailed cortical surfaces for
each brain scan. For each hemisphere, one of the surfaces is ex-
tracted from the boundary between the gray and white matter
(denoted the white surface), while the other surface is automati-
cally positioned at the pia between cortical gray matter and cere-
brospinal fluid (CSF) (denoted the pial surface).

The reconstruction of the cortical surfaces is a complex
procedure [24] that is broken into a number of subtasks. First,
intensity variations due to magnetic field inhomogeneities are
corrected [27] and a normalized intensity image is created
from a T1-weighted anatomical 3-D MRI data set [9]. Next,
extracerebral voxels are removed, using a “skull-stripping”
procedure [23]. The intensity normalized, skull-stripped image
is segmented based on the geometric structure of the gray-white
interface. Cutting planes are then computed that separate the
cerebral hemispheres and disconnect subcortical structures
from the cortical component [24]. This generates a preliminary
segmentation that is partitioned using a connected components
algorithm. Any interior holes in the white matter components
are filled, resulting in a single filled volume for each cortical
hemisphere. Finally, the resulting volume is covered with a
triangular tessellation and deformed to produce an accurate and
smooth representation of the gray-white interface as well as
the pial surface. This surface departs from a simple spherical
topology due to the presence of subcortical gray matter as well
as various midbrain structures. These topological “defects” are
automatically removed, resulting in a surface that is both geo-
metrically accurate and topologically correct [23], [25], [28].

Each of the corresponding surfaces of the target and moving
scans are then registered in the spherical space [3], [29]. The
algorithm minimizes the following energy functional:

(1)

where measures the alignment, based on cortical depth and
curvature information, while the other two terms act as regular-
izers. is a topology-preservation term, while controls the
amount of metric distortion allowed

(2)

(3)

In (2) and (3), superscripts denote integration time with 0
being the starting point, and are the number of triangles
and vertices in the tessellation, is the position of vertex at
iteration is the set of neighbors of the th vertex and
denotes the oriented area of triangle . The result of the surface
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Fig. 1. Example of the sulcal pattern rendered on the sphere showing the effects
of spherical registration. From left to right: initial pose of subject, registered
subject, target sulcal pattern.

registration is a 1-to-1 mapping that transports all surfaces of
the moving scan to the counterpart surfaces in the target image

, where can be any of the left/right
pial/white surfaces of the brain.

An example of the representation of the sulcal patterns being
registered in spherical space is displayed in Fig. 1. On the left-
hand side it is the subject to be registered, in the middle the al-
ready registered subject and on the right-hand side the target that
is displayed. The colormap we use represents average convexity
information, or the signed distance a point has to move to reach
the inflated surface [21].

III. VOLUMETRIC REGISTRATION OF THE

CORTICAL STRUCTURES

When the surface registration is completed, we obtain a dis-
placement vector field that provides a 1-to-1 mapping between
the hemisphere surfaces of the target and moving brain scans in
Euclidean space. In the following we show how we diffuse this
vector field from the cortical surfaces to the rest of the volume.

Let be the target image domain. We define an ar-
bitrary transformation of the target image as:

where denotes the displacement
field. The goal is to find a function such that ,
for any (one of the left/right pial/white surfaces of brain

), where is the specified displacement through the surface
registration procedure. Since the surfaces represent a space of
co-dimension 1, in order for this problem to be well-posed, we
impose an additional regularity constraint. We require the dis-
placement field to be an elastic deformation, i.e., a smooth, ori-
entation-preserving deformation which satisfies the equations of
static equilibrium in elastic materials. This means that we (ad-
ditionally) require to satisfy

(4)

where is an operator we define below.
The choice of the operator and the discretization method

to numerically extrapolate the displacement field has numerous
solutions that have been proposed in the registration literature.
Some of the widely used ones are the thin plate splines, pro-
posed by Bookstein [30], and the B-splines-based free-form de-
formations proposed by Rueckert et al. [31]. We have chosen to
use the Navier operator from the linear elasticity theory together
with the finite element method. This choice was motivated by

the high level of flexibility needed in order to satisfy the con-
straints imposed by the displacement fields on all four surface
models of the brain (left and right hemisphere white matter and
pial surfaces).

We consider this component of the registration framework to
be the most technically significant. The remainder of this sec-
tion is divided as follows. We start with a short presentation of
the partial differential equation of static elasticity. Next, we de-
rive the external forces directly from the output of the surface
registration algorithm, as a set of prescribed displacements. Fi-
nally, technical aspects regarding our discretization method are
presented.

A. Elastic Operator

In order to solve the problem stated above, we use the equi-
librium equation for elastic materials. This states that at equi-
librium, the elastic energy equals the external forces applied to
the body [32]

(5)

Here, denotes the
gradient and the second Piola-Kirchoff stress tensor

is defined as

and

is the Green-St. Venant strain tensor [32]. Here and are the
Lamé elastic constants that characterize the elastic properties
of an isotropic material. The linear approximation to the above
operator uses the Fréchet derivative of

(6)

since no deformation occurs in the absence of external forces.
Finally, is computed by dropping the nonlinear terms in

, which results in

(7)

where is the linearized stress tensor and
is the linearized strain tensor. Hence,

the linear approximation of (4) can be written as

(8)

The main drawback of (8) is that it is only valid for
small-magnitude deformations. To overcome this restriction,
we implement an extension to the linear model, as presented
in [11]. Specifically, given external forces that describe large
displacements, one can iteratively solve for small linear incre-
ments using the linearized Navier equation (8)

(9)
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or, by neglecting the last term

(10)

Using this iterative process, the solution of (10) converges to the
solution of (4) (see [32] for the proof).

The Lamé constants and are specified as functions of
Young’s modulus of elasticity and the Poisson ratio :

and . In all of our
experiments we used and .

B. Finite Element Method

The finite element method (FEM) is a discretization tech-
nique aimed at obtaining approximate solutions to various
partial differential equations. As opposed to finite differences
that discretize the differential operators on a structured grid,
the FEM approach discretizes the solution space of possible
functions. This involves the recasting of one or more equations
to hold in some average sense over subdomains of simple
geometry.

Using FEM, the given continuous domain is subdi-
vided into a set of elements, which constitute a mesh. In our
case, these elements are tetrahedra, which means that the ap-
proximate solution is linear in the interior of each tetrahedron.
The displacement field is built as linear combinations of the dis-
placements observed at the nodes of the mesh.

More precisely, the deformation within one element of the
mesh is approximated through barycentric interpolation of the
shape functions with the -element ( , in our case)
nodal points as coefficients:

(11)

The shape function of node of element el is defined as

(12)

where is the volume of element el and coefficients ,
etc., are computed such that , for the position
of node of element el and being the Kronecker
symbol.

The linearized elasticity (10) can be approximated using a
variational form, which aims at minimizing the elastic potential
energy

(13)

where . Here, represents the
element stiffness matrix, which can be written as [33]

in the above is the symmetric elasticity matrix, defined as

where

is obtained by applying the linearized Navier
operator to the shape function :

and

An important aspect regarding the FEM is the assembly step,
in which all the nodal matrices are inserted into a compact rep-
resentation of the global elastic potential energy

where is a re-sizing function which keeps track of individual
nodes. Similarly, the displacement at any given point inside
the mesh domain can be represented by linear interpolation of
the displacement at nodal points, which is encoded by a vector

. There is a clear correspondence between the order of the
elements of the vector and the rows and columns of the
global elasticity matrix . Thus, components with

represent component of the
nodal displacement . Then (13) becomes

(14)

Finally, it should be noticed that individual displacements at
an arbitrary point can be written as ,
which uses the same resizing function and transcribes (11).
This means, that a point will be inside exactly one tetrahe-
dron, hence its displacement can be expressed using the shape
functions inside that tetrahedron as a function of the nodal dis-
placements.

C. External Forces

The theory presented above resolves the discretization of the
elastic potential energy. One important issue that remains to
be addressed is how the point displacements resulting from the
spherical registration are implemented in (10).

One method that implements point displacements is de-
scribed in [11]. It allows constraining the displacements of
certain mesh nodes by explicitly modifying the rows and
the columns of the unknowns in the displacement vector .
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However, our numerical experiments indicate that this method
of constraining the linear elastic system is too restrictive in
the sense that it can lead to undesirable warps in regions
where anatomical differences exist between the two individual
anatomies being registered (such as a split or extra fold).

An alternative method of introducing surface information is
via the relaxation of the constraints imposed above. We refor-
mulate the problem of finding a mapping
such that and (with the
surfaces of target brain ) as an energy minimization problem.
Assuming that the points of the target surfaces are sampled as

, we solve for a function that minimizes

(15)

where , are the values of the
displacement field obtained from the surface registration in the
spherical space.

This relaxation of hard constraints addresses the concern
of handling qualitative anatomical differences (such as a split
sulcus) between the target and the moving anatomy. When

is large, the constraints are almost perfectly satisfied at the
expense of an under-regularized warp. On the other hand, when

is small, the elastic energy term dominates, so that the overall
strain obtained is small. In our experiments, we typically used

.
As shown before, can be expressed in terms of the un-

knowns as through barycentric interpola-
tion. Since all the terms in (15) are strictly convex functions,
the overall energy is strictly convex. Hence, the minimum is at-
tained when the gradient is null. By differentiation, we obtain
the linear system

(16)

This formulation is well suited for a fast iterative linear solver,
such as the conjugate gradient-based optimizer.

D. Mesh Construction and Surgery

One difficult algorithmic issue that needs to be addressed is
the tetrahedralization of the domain. Beyond the requirements
that the tetrahedra (elements) must create a partition of the do-
main of interest, they must also meet certain quality constraints.

The quality of the elements in the mesh directly impacts the
speed and accuracy of the approximate solutions obtained when
solving a partial differential equation. One common measure is
the aspect ratio of the elements, which is the ratio of the max-
imum side length to the shortest edge. For a high-quality mesh,
this value should be as small as possible.

In addition, there are second-order requirements. Since the
basic underlying assumption when meshing a domain is that
the approximate solution being sought is parameterized by
simple functions inside each element, we would like our mesh
to place more elements in regions where the solution varies
more rapidly.

Fig. 2. Example of tetrahedral mesh used for one iteration of the elastic solver.
Notice how the mesh is denser near the input surfaces.

In our implementation, we used a flip-based algorithm for
generating constrained Delaunay tetrahedralizations [34]. We
used the implementation provided by TetGen [35]–[37] to build
a Delaunay tetrahedral mesh that is adapted to the input sur-
faces. We included constraints on the quality of the generated
tetrahedra (which was 1.414) and an upper bound on the volume
of each tetrahedron (which was set to 3 mm ). Additionally, to
meet the conditions stated above, we also required the mesh to
be finer near the input surfaces, in order to give maximum flex-
ibility to the resulting solution. An example of a mesh used at
one iteration of the algorithm is presented in Fig. 2.

1) Fixing Topology Defects: After solving the linear elastic
system of (10) using the numerical scheme in (16), the compo-
nents of the solution vector are distributed as displacements of
the mesh nodes. The resulting displacement field must meet the
usual registration constraint of invertibility. Through the local
inversion theorem, this is equivalent to having a nonnegative Ja-
cobian for each tetrahedron.

In rare cases, the resulting tetrahedra can have negative Ja-
cobians. This is due to the fact that some displacements are too
large and break the implicit assumptions that allowed us to use
the linearized model and then to approximate the solution with
a piecewise linear function.

A few methods have been published that can be used to re-
solve these situations. Conceptually, they follow one or a com-
bination of these two strategies: the first strategy is to apply
smoothing to the mesh nodal positions, while the second general
technique is more local, aiming to fix tangles locally through
an energy minimization approach [38]. Ideally, these techniques
should provide some guarantee that the resulting mesh is not in-
verted. While such proofs exist for 2-D structured meshes, the
same has not been currently shown for the 3-D case.

In the present case, our goal is to remove the tangles in the
deformed mesh (i.e., after applying the displacement field ob-
tained through the linear elastic equation) while modifying the
nodal displacements as little as possible. This task is facilitated
by the fact that, in the absence of displacements, the initial mesh
is guaranteed to be topologically correct.

Our solution is based on local smoothing. After detecting
the topological defects in the deformed configuration of the
mesh, a neighborhood of each defect is considered in the mesh
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Fig. 3. Intuitive representation of a topology defect in 2-D—the blue triangle
has a negative Jacobian; in this case, a neighborhood of size 3 around the tri-
angle is selected. The graph on which this neighborhood is selected is formed by
considering the graph dual to the mesh (namely, elements are nodes and nodes
become the edges). The circled nodes in the figure represent the target points,
which are meant to preserve consistency with the rest of the mesh.

topology and we perform mesh smoothing inside this cropped
region. See Fig. 3 for an intuitive example of a cropped mesh.
To determine the neighborhood of the tangled tetrahedron, the
dual mesh is considered. Then, the local neighborhood where
local smoothing is applied is determined by breadth-first-search
around the problematic node. Typically, we explore a neighbor-
hood of radius 3. The differential operator used for smoothing
is again the linear elastic operator. The challenge when oper-
ating with only a local submesh and changing node positions
is not to create other topological defects. We minimize this po-
tential problem by not allowing nodes with neighbors in both
the cropped mesh and the rest of the original mesh to move.
With these constraints implemented as external forces, we solve
a linear elastic problem inside the cropped mesh.

We iteratively perform this procedure until all the inverted
tetrahedra have been removed. Although there is no formal
proof, in our experience with dozens of brains this algorithm
has resolved all topological problems to date.

E. Implementation

The algorithm effectively used for the diffusion of the surface
registration from the cortical surfaces to the rest of the volume
is now reviewed for clarity. Before proceeding, a few precisions
are necessary: first, in the attempt to equally divide the displace-
ment being covered at each iteration, we divide the remaining
distance to the target in equal sized steps. We can also specify
that there will be iterations and divide the displacements
in equal parts [see the coefficient in (7)]. Then, as shown in
equation (10), through an iterative solution of small linear in-
crements, we can cope with large displacements. However, for
efficiency reasons, it seems reasonable to initialize the diffusion
in a pose that affinely registers the subject to the target. We do
that by minimizing the square distance of a subset of the sur-
face landmarks to be registered. For simplicity, we used a Powell
optimizer.

The iterative process described above results in the following.
1) Using the results of the surface-based spherical registration

for all of the surfaces of the target and moving brain scans,

recover a sparse displacement field in the Euclidean space
.

2) Regress out the affine component from the sparse dis-
placement field obtained above; this results in the updated
sparse displacement field .

3) Apply the linear incremental model in steps; i.e., loop
or until the mean square error of the prescribed

sparse displacements does not decrease anymore.
a) Get current morphed positions

and create sparse displacement
field

(17)

b) Create a tetrahedral mesh based on the current surface
positions and initialize the stiffness matrix and the
external forces.

c) Solve the linear system.
d) Resolve potential topology defects.

In the steps above, , whose
role is to equally split the distance covered in each iteration.
If we choose to perform 1 or more iterations past , this will
usually be done in the attempt to get closer to the target points
(hence the presence of the operator).

Also, as mentioned above, prior to the elastic iterative solver,
we eliminate the linear component , as this greatly reduces
the computational burden. We do this by finding the matrix
which minimizes the expression described in (15)

Our algorithm has been implemented in C++. We used
TetGen [35]–[37] for the tetrahedral mesh generation, and
PETSc [39], [40] for the solving of the linear system through
the Conjugated Gradient method. To speed up computations,
we used MPI to distribute the computations between different
processes.

IV. INTENSITY-BASED REGISTRATION

After completing the diffusion of the surface displacements,
the obtained registration yields a good correspondence of the
cortical sheet, while remaining moderately successful for sub-
cortical structures. To further improve the alignment throughout
the brain, we complete the proposed pipeline by applying an op-
tical flow intensity-based registration with the initial field being
given by the result of the elastic registration.

We emphasize the fact that this particular registration is used
as an example, but that the key is the initialization of any reason-
able nonlinear volumetric registration using surface alignment.
In our experience this type of initialization results in an align-
ment that is close to the true minimum and well into the correct
basin of attraction.

Nonlinear optical flow intensity based registration algorithms
have received significant attention in the past two decades in the
medical imaging community [41]. We use the algorithm first
proposed in [9], which formulates the registration problem as

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 3, 2009 at 17:30 from IEEE Xplore.  Restrictions apply.



514 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 28, NO. 4, APRIL 2009

Fig. 4. Visualization of the resulting warp. From left to right, the first image represents a sample plane mesh to be warped. The plane is chosen in the midcoronal
section of the target brain. The pial surface of the brain is indicated in yellow, while the gray/white surface is in red. The second image renders the same mesh,
warped using the surface-driven elastic warp—the change of frame is due to the affine alignment performed. The last image displays, in addition to the previous
displacement field, the result of the intensity-based registration. The contour lines of the intersection of the target brain cortical surfaces are also morphed along
with the surface.

an energy minimization. The energy being minimized is con-
structed in a manner similar to [3] and contains four terms: one
encouraging smooth deformation fields, one maximizing the log
likelihood of the similarity at each atlas location, one ensuring
invertibility and one minimizing metric distortions

(18)

where is an intensity term, is a topology constraining
one, ensures the metric preservation properties, and is
a smoothness preservation term.

Assuming the atlas is an array of nodes at locations
and we are trying to bring a subject into register with it, the
image likelihood can be written as

(19)

where is the warping function we are
seeking. The topology term encodes the desire to avoid func-
tions with negative Jacobians

(20)

where is the Jacobian of the current mapping. The coefficient
modulates the negative force associated with regions that are

either noninvertible or almost.
The metric distortion of the morph can be computed in a

straightforward manner as the mean squared difference between
the distance of the nodes at time denoted and their original
distance . In a similar manner, the smoothness of the defor-
mation can be quantified as the difference between the vector at
location and the mean of its neighbors. Denoting the closest
six neighbors of each node by , these two terms are then
given by

(21)

Fig. 5. The plots display five traces of the average Euclidean distance (the mean
average distance) between the current position of the warped subject and the
target positions after each iteration of the linear elastic solver for five random
subjects.

Fig. 6. Euclidean distances computed on the left and right hemispheres
between the target and subject surfaces after the spherical registration, elastic
morph and the full CVS registration pipeline.
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Fig. 7. Results of the surface-driven elastic morph between an ex vivo hemisphere and an in vivo scan of the same subject. The top row shows the in vivo brain,
while the bottom row images are snapshots of the registered ex vivo hemisphere. Surfaces are from the in vivo data (pial surface in red and gray/white surface in
yellow).

(22)

V. RESULTS

We apply the pipeline detailed above to three intrasubject
and intersubject registration problems. We start with a chal-
lenging intrasubject registration experiment, after which inter-
subject registration is evaluated using two independent data sets.
The first cross-subject evaluation is based on the work of Fischl
et al. [42]. It has the advantage of containing detailed manual
segmentation labels for both cortical as well as subcortical re-
gions. The second data set was obtained from the publicly avail-
able IBSR database of the Center for Morphometric Analysis at
the Massachusetts General Hospital (http://www.cma.mgh.har-
vard.edu/ibsr/). It contains manually labeled brain acquisitions
where the available labels are mostly subcortical. In both sets
of intersubject registration experiments, we use the segmenta-
tion labels to quantitatively characterize the performance of our
algorithm.

In order to demonstrate the performance of our registration
framework, we compare it to two standard algorithms from
the literature: an affine registration algorithm, implemented in
FLIRT [43] and the publicly available version of HAMMER
[16]1. In all of our experiments, we first arbitrarily select one
of the input brains as a target and then register the rest of

1We note that the version of HAMMER that was available to us uses the gray/
white matter segmentation from FAST [44] exclusively to produce the attribute
vectors. As such, it is possible that results improve with different inputs to the
attribute vector.

Fig. 8. Extended Jaccard coefficient (24) measures computed for Experiment 1
using 20 cortical and 21 subcortical labels listed in Tables I and II, respectively.
The vertical lines represent the standard error of the mean of the measurement.

the data set to it. To quantify the alignment accuracy of each
method, we compute the Jaccard Coefficient metric [45], which
is often referred to as Tanimoto Coefficient in the literature and
is closely related to the Dice overlap measure. It describes the
similarity or overlap between the labels of registered images
( and ) as

(23)

Additionally, in order to assess overall accuracy, we also com-
pute an extended version of this overlap measure. If is a set
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of labels for which we want to compute the overlap, given two
volumes and , this measure is defined as

(24)

where is by definition an abbreviated way of writing
. In (24) it is implicitly assumed, by a slight

abuse of notation, that represents the morphed subject la-
bels in the target frame. (All the volumes are sampled in the
same frame of reference and is the set of coordinate voxels).
This generalized version of the overlap measure is similar to the
generalized pair-wise multilabel Tanimoto Coefficient defined
by Crum et al. for fuzzy labels [46].

A. Deformation Fields and Convergence

Before describing the specifics of our three sets of different
registration experiments, we show an example deformation field
and a graph of the residual distance (in the elastic phase) from
one of our experiments. These figures provide a visual intuition
of the deformation characteristics of CVS and they can be taken
as a good representation of the remainder of our results.

We start by showing an example deformation field obtained
by forward morphing a surface in the midcoronal plane section
of the target space in Fig. 4. As expected, the surface-driven
elastic displacement field smoothly diffuses from the cortical
surfaces, and it is reasonably smooth in the ventricular areas.
On the contrary, the intensity-driven morph mostly deforms the
ventricular areas, with almost no contribution in the cortical
areas. For all of our warps we constrained the Jacobian at the
mesh node locations to be positive definite, therefore prohibiting
self-intersection. As the alignment of folding patterns in the
spherical registration step requires a weakly regularized warp, it
is somewhat sensitive to noise and thus the 2-D slices displayed
in Fig. 4 has regions with apparently degenerate morph compo-
nents. We emphasize, however, that the warp is constrained to
be diffeomorphic and these regions are not discontinuities.

In Fig. 5, we include five plots of average Euclidean distances
between the current position of the warped subject and the target
positions (based on information provided by the surface regis-
tration) computed after each iteration of the linear solver corre-
sponding to five random subjects. These traces empirically show
that our numerical method converges. The number of iterations
of the linear solver used in these cases is (the number
of total steps, as presented in Section III-E).

And finally we display a plot of Euclidean distances com-
puted on the left and right hemispheres between the target and
subject surfaces after the spherical registration, elastic morph
and the full CVS registration pipeline in Fig. 6. The distances
computed for 35 subjects confirm that the elastic warp manages
to keep corresponding surfaces at a sufficiently close distance
( mm on average). Even though the intensity-based volu-
metric step worsens somewhat that accuracy ( mm on av-
erage), as we show in the below discussion, the label overlap
accuracy still remains almost unaffected. That observation is
important, as in our registration framework we do not fix the
solution resulting from the surface-based registration step, so it

TABLE I
MEAN JACCARD COEFFICIENTS AND STANDARD ERROR COMPUTED FOR

20 CORTICAL LABELS ACROSS SUBJECTS IN INTERSUBJECT REGISTRATION

EXPERIMENT 1. WE INCLUDE THE RESULTS OF FLIRT (AFFINE), HAMMER,
AND CVS. MANUAL SEGMENTATION LABELS FOR THE LEFT (L) AND RIGHT

(R) HEMISPHERES ARE: SUPERIORFRONTAL (SUPFR), INFERIORPARIETAL

(INFPAR), ROSTRALMIDDLEFRONTAL (ROSTMIFR), PRECENTRAL

(PRECNT), MIDDLETEMPORAL (MITEMP), LATERALOCCIPITAL (LATOCC),
SUPERIORPARIETAL (SUPPAR), SUPERIORTEMPORAL (SUPTEMP), POSTCENTRAL

(POSTCNT), INFERIORTEMPORAL (INFTEMP), FUSIFORM, AND PRECUNEUS.
STATISTICALLY SIGNIFICANT DIFFERENCES BETWEEN HAMMER AND CVS

ARE INDICATED BY BOLD TYPESETTING

TABLE II
MEAN JACCARD COEFFICIENT AND STANDARD ERROR COMPUTED FOR 21
SUBCORTICAL LABELS ACROSS SUBJECTS IN INTERSUBJECT REGISTRATION

EXPERIMENT 1. WE INCLUDE THE RESULTS OF FLIRT (AFFINE), HAMMER,
AND CVS. MANUAL SEGMENTATION LABELS ARE: BRAIN STEM (BRSTEM),
LEFT AND RIGHT (L/R) CEREBRAL WHITE MATTER (CRWM), CEREBRAL

CORTEX (CRCTX), LATERAL VENTRICLE (LTVENT), THALAMUS PROPER

(THAL), CAUDATE (CAUD), PUTAMEN (PUT), PALLIDUM (PALL), HIPPOCAMPUS

(HIPP), AMYGDALA (AMYG). STATISTICALLY SIGNIFICANT DIFFERENCES

BETWEEN HAMMER AND CVS ARE INDICATED BY BOLD TYPESETTING

could potentially be possible for the subsequent operations to
decrease the already achieved alignment accuracy in the cortex.
As our results show, however, that does not happen.
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Fig. 9. Experiment 1: Mean Jaccard Coefficient measures computed for individual labels (left: subcortical; right: cortical). The vertical lines represent the standard
error for the measurement.

B. Intrasubject Registration of Ex Vivo and In Vivo Scans

In the case of our intrasubject registration experiments, we
use the first two stages of the CVS framework to align an
ex vivo scan with the same hemisphere scanned in vivo. The
imaging protocol for the ex vivo tissue is different from that of
the in vivo. The former images are acquired using a multiecho
flash protocol due to the reduced T1 contrast observed post-
mortem. This makes the preprocessing step required to obtain
the surfaces for the ex vivo images more challenging, however,
it does not affect the surfaces being used in the registration
process.

We emphasize that registering these two modalities is a chal-
lenging problem given the differences between the intensities
exhibited by the ex vivo and in vivo scans, together with the large
scale deformations induced in the ex vivo hemisphere during
the autopsy process, as well as the fact that we are registering
a single hemisphere image to one with an entire head. We are
currently implementing a cross-contrast intensity procedure that
could complement the current intensity-based morph compo-
nent of our CVS framework. However, as the results show, the
elastic volume morph initialized by the surface-based registra-
tion already produces highly promising results.

In Fig. 7 we present the results of the surface-driven elastic
morph applied to the ex vivo image so that it matches the in
vivo one. The resulting correspondence is almost perfect, since
the underlying anatomy is the same and the deformation is truly
a biomechanical one. However, we remind the reader that the
correspondence does contain some inaccuracies near the lateral
ventricles. This is because none of the cortical surfaces used to
initialize the deformation field are near this region.

C. Intersubject Registration Experiment 1

In our first set of inter-subject registration experiments, we
used a data set of 36 brains from the work of Fischl et al.
[42]. All the input data were individually morphed to a ran-
domly chosen individual considered to be the target. In order
to evaluate the quality of the registration, we sampled the set

of corresponding cortical segmentation labels into the volume
and merged them with the subcortical ones. We used 20 cor-
tical2 and 21 subcortical labels. The numbers shown in Fig. 8
present the mean extended overlap measures (with standard
error as vertical black lines) for the labels divided into two
sets: cortical and subcortical labels. Here, besides the three
registration algorithms to be compared (FLIRT, HAMMER,
and CVS), we also include results for the elastic registra-
tion without using intensity-based volumetric alignment. In
the case of both cortical and subcortical labels, it is the affine
method that performs most poorly, followed by HAMMER.
CVS clearly outperforms the simply elastic method in the
case of subcortical labels and retains the same high level of
accuracy for the cortical labels. We emphasize that outper-
forming HAMMER by such a margin with both our elastic
and our combined registration frameworks, especially in the
case of the subcortical segmentation labels, has great signif-
icance. That is because HAMMER, a volumetric registration
tool, should intuitively align subcortical structure more accu-
rately than a method relying on a surface-based component.
We note that although the relationship between the folds and
subcortical structures is poorly understood, given the mas-
sive connectivity with cortex, their position is unlikely to be
independent of cortex [47]. Therefore, we believe that the sur-
face-based registration establishes a robust initialization for the
elastic (and intensity-based registration) steps and thus helps
avoiding local optima. We leave the study of the relationship
between the folds and subcortical structures to future work.

The poor accuracy of the affine alignment of FLIRT (which,
we believe, would be true of any 12 parameter transform, in
general) is indicative of the difficulty encountered by nonlinear
volumetric procedures initialized with affine transforms. Essen-
tially, the affine initialization is poor over much of the cortex
so the nonlinear energy functionals are not in the basin of at-
traction containing the true minima, and hence do not converge

2The selected 20 cortical labels correspond to the labels with the largest
surface areas and their results are representative of the remaining of the 46
labels.
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Fig. 10. Intersubject registration results of Experiment 1 applied to intensity images. The first column displays the target, the second the subject after affine
registration (using FLIRT), the third the subject after the surface-driven elastic registration and the fourth the results of the complete CVS registration pipeline. In
all the images, the surfaces shown are those of the target (pial surfaces in red and gray/white surfaces in yellow). The intensity-based morph mostly affects areas
away from the cortical ribbon, such as the ventricles.

to the correct solution. Initializing HAMMER in a more robust
way, we believe, could remove most of its performance differ-
ences with our methods.

In Table I, we include the mean and standard error results
(indicated in parenthesis) of the Jaccard Coefficient overlap
metric computed for all the selected labels individually over all
subjects. The labels are superiorfrontal, inferiorparietal, ros-
tralmiddlefrontal, precentral, middletemporal, lateraloccipital,
superiorparietal, superiortemporal, postcentral, inferiortem-
poral, fusiform, and precuneus. The three columns of the
table correspond to alignment achieved with FLIRT (Affine),
HAMMER, and CVS. Statistically significant
differences between HAMMER and CVS are indicated by bold
typesetting. Similarly, the mean and standard error overlap
measures for the 21 subcortical labels are included in Table II.
We point out that in the case of cortical labels, all the selected
labels perform statistically significantly better than HAMMER
and in the case of subcortical labels, out of 12 cases where
statistically significant differences are established between
HAMMER and CVS, the latter is superior on nine occasions.
Identical information, the Jaccard overlap metric computed for

individual subcortical and cortical manual segmentation labels
is displayed in the bar plots of Fig. 9.

We show registration results for these intersubject registration
experiments in two figures. Fig. 10 displays deformed intensity
images of a subject and the target and Fig. 11 demonstrates the
corresponding deformed manual segmentation volumes (same
slice as before). The first column, on both of the figures, displays
the target; the second represents the subject after affine registra-
tion (using FLIRT); the third displays the subject after the sur-
face-driven elastic registration; and the fourth column shows the
results of our combined surface-based and intensity-based reg-
istration. In all the images, the surfaces shown are those of the
target (pial surfaces in red and gray/white surfaces in yellow).
The intensity-based morph mostly affects areas away from the
cortical ribbon, such as the ventricles.

D. Intersubject Registration Experiment 2

In our second set of intersubject registration experiments, we
used MRI acquisitions from eleven subjects of the IBSR
data set. This data set was collected by the Center for
Morphometric Analysis, MGH and is publicly available
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Fig. 11. Intersubject registration results of Experiment 1 applied to manual segmentations. The first column displays the target, the second the subject after affine
registration (using FLIRT), the third the subject after the surface-driven elastic registration, and the fourth the results of the complete CVS registration pipeline. In
all the images, the surfaces shown are those of the target (pial surfaces in red and gray/white surfaces in yellow). The intensity-based morph mostly affects areas
away from the cortical ribbon, such as the ventricles.

(http://www.cma.mgh.harvard.edu/ibsr/). It includes manual
segmentation results for 19 principal gray and white matter
structures: brain stem, left and right cerebral white matter,
cerebral cortex, lateral ventricle, thalamus proper, caudate,
putamen, pallidum, hippocampus, and amygdala. We note that
this data set is not ideal to convey the improved performance
of our algorithm both in the cortical and subcortical domains,
given that most of the available labels identify subcortical areas.
Nonetheless, as a recently published registration method similar
to our work [19] relied on these acquisitions for validation, we
decided to include it as well for easier comparison.

The overlap measures in Table III are computed for each of
the available segmentation labels. Again, we evaluated the
mean Jaccard Coefficient for the three different alignment
algorithms: affine alignment with FLIRT (Affine), HAMMER,
and CVS. The standard error (SE) of the measurements is
indicated in parenthesis. The same information in bar plot
format is presented in Fig. 12. The plot on the top displays
the extended Jaccard overlap metric, while the plots on the
bottom display the overlap measures computed for each label

individually in a bar- and a scatter-plot format, respectively.
The latter aids the reader to more easily asses significance of
individual measures.

As in the previous experiments, for most of the labels, our
method outperforms the affine and HAMMER algorithm and
also has a reduced standard error, indicating the stability of
the registration. In six cases, the difference between the per-
formance of HAMMER and CVS are also statistically signif-
icant (as indicated by the bold typesetting). In the case of four
of those CVS outperforms HAMMER. Again, as the majority of
the IBSR labels are subcortical, we cannot demonstrate on this
data set the accuracy of the cortical alignment.

We show registration results for these intersubject registration
experiments as well. Fig. 13 displays the segmentation volume
of the target and the deformed segmentation volumes of a sub-
ject using the three different registration algorithms. The first
column displays the target segmentation and the second, third,
and fourth columns represent the deformed segmentation vol-
umes resulting from FLIRT (affine), HAMMER, and our new
CVS registration. In all the images, the surfaces shown are those
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Fig. 12. Experiment 2: Top: Mean extended Jaccard coefficient measures. Bottom: Mean Jaccard coefficient measures computed for individual labels. The vertical
lines represent the standard error for the measurement.

TABLE III
MEAN JACCARD COEFFICIENT AND STANDARD ERROR COMPUTED ACROSS

SUBJECTS FOR EXPERIMENT 2. WE INCLUDE THE RESULTS OF FLIRT (AFFINE),
HAMMER, AND CVS. MANUAL SEGMENTATION LABELS ARE: BRAIN STEM

(BRSTEM), LEFT AND RIGHT (L/R) CEREBRAL WHITE MATTER (CRWM),
CEREBRAL CORTEX (CRCTX), LATERAL VENTRICLE (LTVENT), THALAMUS

PROPER (THAL), CAUDATE (CAUD), PUTAMEN (PUT), PALLIDUM (PALL),
HIPPOCAMPUS (HIPP), AMYGDALA (AMYG). STATISTICALLY SIGNIFICANT

DIFFERENCES BETWEEN HAMMER AND CVS ARE INDICATED BY

BOLD TYPESETTING

of the target (pial surfaces in red and gray/white surfaces in
yellow).

VI. CONCLUSION

In this paper, we have presented a novel method for the
registration of volumetric images of the brain that optimizes
the alignment of both cortical and subcortical structures. Given
two brain scans, the method consists of two steps. First, a sur-
face-based registration algorithm computes correspondences
between the input surfaces. These correspondences are then
translated into a sparse displacement field in Euclidean space,
and diffused into the volume using the Navier operator of elas-
ticity. In a second step, an optical flow registration algorithm
refines the alignment obtained after the first step-resulting in
the alignment of noncortical structures, such as the ventricles,
thalamus, basal ganglia, etc., which are not near the surfaces
used in the first step.

To assess the accuracy of our method, we performed both
intrasubject and intersubject registration experiments. First,
we used the surface correspondence to solve the challenging
problem of accurately aligning in vivo and ex vivo acquisitions
of the same brain. The challenge here was to recover the large
deformation during the extraction the brain from the skull
and the subsequent fixation. Our results demonstrate that the
surface-based component of our newly introduced registration
framework is independent of the intensities of the underlying
images, as it only relies on the geometrical features extracted
through the surface registration.
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Fig. 13. Examples of results obtained in intersubject Experiment 2. The first column displays the target segmentation and the second, third, and fourth columns
represent the deformed segmentation volumes resulting from FLIRT (affine), HAMMER, and our new combined surface-based and intensity-based registration. In
all the images, the surfaces shown are those of the target (pial surfaces in red and gray/white surfaces in yellow).

Second, we used two different data sets with manually
segmented labels to quantify the accuracy of intersubject reg-
istration. We provided quantitative performance measures of
our method against two other well-known registration methods,
FLIRT and HAMMER. In general, we conclude that our
registration framework outperformed these methods both in
accuracy and robustness.

The importance of the type of automated procedure presented
in this paper is that it allows the establishment of a coordinate
system across the entire brain that is accurate for both cortical
and noncortical regions. This result should facilitate the analysis
of structural and functional imaging data in a unified fashion,
and make the techniques more easily used by the broader neu-
roimaging community.

We are in the process of making this software freely avail-
able as part of the FreeSurfer software suite (http://surfer.nmr.
mgh.harvard.edu/). That release, we believe, will prove the ro-
bustness and reproducibility of our registration approach with
respect to parameter settings and types of image data.
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