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The human cerebral cortex is made up of a mosaic of structural
areas, frequently referred to as Brodmann areas (BAs). Despite the
widespread use of cortical folding patterns to perform ad hoc
estimations of the locations of the BAs, little is understood
regarding 1) how variable the position of a given BA is with respect
to the folds, 2) whether the location of some BAs is more variable
than others, and 3) whether the variability is related to the level of
a BA in a putative cortical hierarchy. We use whole-brain histology
of 10 postmortem human brains and surface-based analysis to test
how well the folds predict the locations of the BAs. We show that
higher order cortical areas exhibit more variability than primary and
secondary areas and that the folds are much better predictors of
the BAs than had been previously thought. These results further
highlight the significance of cortical folding patterns and suggest
a common mechanism for the development of the folds and the
cytoarchitectonic fields.
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Introduction

The human cerebral cortex is a ribbon of graymatter that is highly

folded in order to enable a large surface area to fit in the limited

volume provided by the human skull. The folds are intriguing in

both their variability and regularity, but little is understood about

their relationship to the microstructural organization of the

cortex. The cortex itself can be parcellated into a mosaic of

microscopically, (i.e., architectonically definable areas) based on

localizable and more or less pronounced changes in the laminar

distribution of neuronal cell bodies (cytoarchitecture) and/or

intracortical myelinated (myeloarchitecture) fibers (Brodmann

1909; Vogt 1911; von Economo 1929; Sarkissov et al. 1955). The

most famous of these parcellations is the one proposed by

Korbinian Brodmann (Brodmann 1909) a century ago. Most

current imaging studies of the human cortex report the location

of effects as a ‘‘Brodmann area’’ (BA). This determination is

typically made by visual comparison of the functional imaging

results with Brodmann’s schematic drawings and thus comes

with no defined estimate of precision or uncertainty.

Cyto- and myeloarchitectonic differences between adjacent

areas that are the basis of the definition of borders between the

BAs vary considerably in terms of their subtlety. For example,

probably the most salient architectural feature of the cortex is

the stria of Gennari, a highly myelinated stripe in layer IV

present only in the primary visual cortex (BA 17). The stria of

Gennari is one of the few architectural features of the cortex

that is detectable in vivo using magnetic resonance imaging

(MRI) (Clark et al. 1992; Barbier et al. 2002; Walters et al. 2003).

Another prominent cytoarchitectonic feature of the cortex is

the layer II islands (Ramon y Cajal 1909; No 1933) in entorhinal

cortex (EC, BA 28) that give rise to the perforant pathway

through which most of the input from neocortical areas travels

to the hippocampus. Using ex vivo MRI at ultrahigh field, we

have recently succeeded in robustly visualizing these cell-

dense regions throughout the extent of EC (Augustinack et al.

2005). Despite these examples, the vast majority of the

architectural characteristics that define borders between

adjacent cortical areas are not visible at the resolutions that

can be achieved by current neuroimaging technologies.

Microscopic analysis of histologically stained brain sections,

therefore, still remains the most powerful and reliable tool for

cortical parcellation and identification of BAs.

Despite the widespread use of cortical folding patterns to

perform ad hoc estimations of the locations of the BAs in

individuals, little is understood regarding the relationship of the

folds to the BAs or whether there is a hierarchy in the

predictability of the BAs. The architectonics are of course

important as the mosaic of functionally defined regions that are

arrayed across the cortical sheet (e.g., Allman and Kaas 1971;

Tootell et al. 1983; Felleman and Van Essen 1991; Sereno and

Allman 1991) are strongly linked to the underlying anatomy.

Here we use whole-brain histology combined with statistically

testable parcellation methods for the identification of cortical

areas (Amunts et al. 1999; Zilles et al. 2002) and surface-based

analysis (Dale et al. 1999; Fischl, Sereno, Dale 1999; Fischl,

Sereno, Tootell et al. 1999) to explicitly test how well the folds

predict the locations of the areas. We show that the accuracy

with which an area can be predicted from folding patterns

appears to be related to its level in the putative cortical

hierarchy, with primary and secondary sensory areas being well

predicted by surrounding folding patterns, and higher level

cognitive areas such as Broca’s area (BAs 44 and 45) the most

variable with respect to the folds. We anticipate that this type
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of mapping will allow a more accurate assessment of the

uncertainty associated with localization of functional or

structural properties of the human brain.

Materials and Methods

Histological Processing Methods
Ten human postmortem brains were processed and analyzed using the

techniques described in Schormann and Zilles (1998), Amunts et al.

(1999), and Zilles et al. (2002). The silver-stained histological sections

of an individual brain were aligned to the postmortem MR volume of

the same brain using nonlinear warping (Schormann and Zilles 1998) to

build an undistorted 3-dimensional histological volume. The basic steps,

which have been employed in numerous studies, for example, Zilles

et al. 1995; Geyer et al. 1997; Schormann and Zilles 1998; Amunts et al.

2000; Geyer et al. 2000; Rademacher et al. 2002; Amunts et al. 2005, are

as follows.

1. Histological, cell body--stained sections with cortical regions of

interest are imaged under a microscope using a motorized scanning

stage and a camera. For subsequent cytoarchitectonic analysis, the

gray level index (GLI, [Schleicher and Zilles 1990]) is measured as an

index of the volume fraction of cell bodies and GLI images are

obtained. Dark pixels correspond to a low volume fraction of cell

bodies, light pixels to a high one.

2. The cortex is covered by intensity line profiles that traverse the

cortical ribbon from gray/white boundary to pial surface. The shape

of each profile reflects the cytoarchitecture (Schleicher and Zilles

1990).

3. A distance function is computed to determine the degree of

similarity of adjacent blocks of line profiles. A high degree of

dissimilarity (or low similarity) indicates a substantial change in the

laminar profiles and hence in the underlying cytoarchitecture.

4. Significant maxima in dissimilarity are those for which the location

of the maximum does not depend on the block size but remains

stable over large block-size intervals.

Surface-Based Analysis Methods
The reconstructed histological volumes were used to generate surface

models of the gray/white interface. This was accomplished in several

steps. First, a set of ‘‘control points’’ were manually added to the body of

the white matter to guide an intensity normalization step that

resulted in the white matter across most of the volume being close

to a prespecified value (Dale et al. 1999). This volume was then

thresholded and manually edited to separate white matter from other

tissue classes. The resulting binary segmentation was used to generate

topologically correct and geometrically accurate surface models of the

cerebral cortex (Dale et al. 1999; Fischl, Sereno, Dale 1999; Fischl et al.

2001) using a freely available suite of tools (http://surfer.nmr.mgh.

harvard.edu/fswiki). An example of the results of this procedure together

with the locations of the manually selected control points is given in

Figure 1, which shows coronal (top), sagittal (middle), and axial

(bottom) slices of a typical volume with the reconstructed gray/white

surface shown in yellow. Note that small errors in surface positioning,

which would be critical, for example, in a study of cortical thickness,

are mostly irrelevant in this study in which we are more concerned with

the large-scale geometry of the surface models. The 8 labeled BA maps

(areas 2, 4a, 4p, 6, 44, 45, 17, and 18) were sampled onto surface models

for each hemisphere, and errors in this sampling were manually

corrected (e.g., when a label was erroneously assigned to both banks of

a sulcus). A morphological close was then performed on each label.

A close of a binary label is a dilation, in which each point that is 0 and

neighbors a point that is 1 is set to 1, followed by an erosion, in which

each point that is 1 and neighbors a 0 is set to 0. The close was used

to remove small holes that arise due to sampling artifacts without

distorting the boundary of each label.

The 10 left and 10 right hemispheres were morphed into register

using a high-dimensional nonlinear morphing technique that aligns

cortical folding patterns (Fischl, Sereno, Tootell et al. 1999). Briefly, this

technique maps each individual surface model into a spherical space

and then represents the geometry of the surfaces as functions on the

unit sphere. The registration of the surfaces is accomplished by

maximizing the similarity of these spherical functions, while also

constraining the mappings to be invertible and to induce only modest

amounts of metric distortion. For these datasets, specifically we used

3 sets of geometric features to drive the registration. The first was

Figure 1. Image of a representative reconstructed histology dataset with the gray/
white surface overlaid in yellow. Top: coronal, middle: sagittal, bottom: axial. The
green crosses represent the locations of the manually selected control points in the
body of the white matter for these slices. The red cross represents the point in
common for the 3 views.
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the mean curvature of the ‘‘inflated’’ surface (the surfaces displayed in

Fig. 2). This was necessary to account for the large-scale geometric

distortions present in the data. Next we aligned the ‘‘average

convexity,’’ which has been shown to be representative of the primary

folding patterns (Fischl, Sereno, Dale 1999). Finally, the mean curvature

of the gray/white boundary surface was used as the input feature in

order to align secondary and tertiary folds where possible. Each of these

features in turn was matched to the corresponding feature in our

standard in vivo atlas comprised of 40 subjects distributed in age and

pathology (10 with mild Alzheimer’s disease). Note that no specific

optimization was performed for aligning the BAs presented in this

report. Rather, a set of parameters that had been determined to be

optimal for aligning primary visual cortex (V1) in a separate ex vivo

dataset (Hinds OP, Rajendran N, Polimeni JR, Augustinack JC, Wiggins

G, Wald LL, Rosas HD, Potthast A, Schwartz EL, Fischl B, unpublished

data) were used with no modification.

In order to quantify the accuracy of the alignment of the underlying

BAs, the spherical registration was used to transform each of the 8 BAs

for each individual into each of the other individual coordinate systems,

and a modified Hausdorff distance was computed. (Note that areas 4a,

4p, and 6 were obtained for only 8 of the 10 total subjects. Each of the

other areas was present for every subject.) Specifically, for each point

on the boundary of each subject’s area in the individual subject space,

we computed the minimum distance to the boundary of each other

subject projected into the individual subject’s original white matter

surface model and then computed the average of these. The results of

this analysis are displayed in Figure 4. The advantage of this procedure

is that it provides a measure in millimeter of the uncertainty of

localization and is invariant to the size of an area, a well-known problem

for other similarity measures such as the Dice or Jaccard coefficient,

which compute the degree of overlap of binary labels, a measure that is

affected by the size of the label, with larger labels typically evidencing

greater overlap than smaller one.

Results

We constructed spatial probability maps for 8 BAs across 10

human brains (both left and right hemispheres) as shown in

Figure 2, which displays the average convexity of the in vivo

atlas that is used as a common space. These include the primary

and secondary visual areas BA 17 and BA 18, respectively; BA 44

and BA 45 (subdivisions of Broca’s area); the somatosensory

area BA 2; the primary motor areas 4a and 4p; and finally the

premotor area BA 6 (note that these last 3 areas were only

analyzed in 8 of the 10 datasets). Frequency estimates of the

probability that each point was part of each BA were

constructed in a surface-based coordinate system by counting

the number of times that a label occurred at a given point and

dividing by the total number of subjects for each label. Each

point in the surface-based coordinate system can then be

probed to determine the probability that it is part of any of the

set of labeled BAs.

To assess the accuracy of the surface-based results relative to

more standard volumetric procedures, we used the publicly

available volumetric probability maps (http://www.fz-juelich.

de/inb/inb-3//spm_anatomy_toolbox) constructed using a

high-dimensional nonlinear fluid warp (Schormann and Zilles

1998). The accuracy of the 2 techniques was quantified by

constructing cumulative histograms of the probability for each

nonzero voxel (or vertex) in each probability map for each of

the 8 areas, as shown in Figure 3. Each bar represents the

probability that a point will be at least that accurate. Because

the minimum accuracy would be if the label of only one subject

Figure 2. Spatial probability maps of different BAs. Top row: left hemisphere areas 17, 18, 4p, and 2 (from left to right). Second row: areas 4a, 6, 44, and 45. Third and fourth
rows are same as first and second for the right hemisphere. Fifth row: color scale used for spatial probability maps.

Cerebral Cortex Page 3 of 8



Figure 3. Cumulative histograms of surface (white) and nonlinear volume (black) accuracy. From left to right: top row: V1 and V2, second row: 4p and 2, third row: 4a and 6,
fourth row: 44 and 45. Bottom: mean across the set of areas (left), black bars are standard errors of the mean, and ratio of surface to volume (right).
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occurred at each location, the smallest value on the x-axis is 0.1

(1 subject out of 10). The histograms always achieve their

maximum value of 1 at an accuracy of 0.1 indicating that the

entire surface/volume is at least this accurate. Subsequent bars

then represent the percent of the surface/volume that is at

least this accurate. Thus, the bar at 0.2 represents the portion

of the data with an accuracy > 0.2. Ideally, if the normalization

perfectly aligns the underlying architectonics, these maps will

be binary, with ones in the interior of the region and zeros

elsewhere, resulting a flat histogram with the rightmost bin

(P > 1) containing as many points as the leftmost (P > 0). The

level of the histogram in the high-accuracy bins (more overlap

across subjects, toward the right in the histograms) then

measures the accuracy with which the underlying coordinate

system aligns the borders of the BAs. The accuracy of the

surface-based alignment in also aligning the architectonics is

summarized in the bottom row, which shows the average of

the histograms across the 8 areas (left) and the ratio of the

surface and volume histograms on the right. For example, the

surface-based coordinate system has greater than 7 times more

locations of perfect accuracy than the volumetric one and

outperforms the volume at every accuracy level. We believe

that this type of result does not reflect the details of the

volumetric procedure but rather that surface-based techniques

use intrinsically more predictive features—cortical folding

patterns—which are not available in the volume. Note that

the more commonly used linear alignment procedures (12

parameter affine, not shown) have significantly lower accuracy

than the fluid warps.

In order to explicitly quantify how well the folding patterns

that were used to construct the surface-based coordinate

system predict the locations of the various BAs, we computed

the average distance between the boundaries of each individual

instance of each BA in its native space to every other individual

instance of that BA mapped into that subject’s coordinate

system, as described in the Materials and Methods section. The

results of this analysis are shown in Figure 4. This measure

allows both an estimate of the absolute accuracy of locali-

zation of each BA as well as a means for comparing how well

predicted the boundaries of each BA are relative to the others.

Note that errors in the surface reconstructions due to the

reduced contrast to noise in the underlying images relative to

what can be routinely obtained in vivo only strengthens these

findings, as this type of error will only artificially increase our

estimates of the variability. Examining Figure 4, it is clear that

1) primary and secondary sensory areas are extremely well

predicted by the surrounding geometry and 2) there appears to

be progression of accuracy, with the level of predictability

diminishing as one moves away from areas devoted to

processing sensory inputs and into cortical regions implicated

in more cognitive domains.

Discussion

The most widely used coordinate system in neuroimaging is

the one developed by Talairach and Tournoux (Talairach et al.

1967; Talairach and Tournoux 1988), which provides stereo-

taxic maps for inferring the architectonic localization of

cortical effects (e.g., functional or structural differences

between populations or conditions). Unfortunately, although

popular tools exist for estimating BA from Talairach coordinate

(Lancaster et al. 1997; Lancaster et al. 2000), this coordinate

system has been shown to be a poor predictor of the locations

of both primary sensory (Rademacher et al. 1992; Rademacher

et al. 1993; Amunts et al. 2000; Geyer et al. 2000; Morosan et al.

2001; Rademacher et al. 2001) as well as higher order cortical

areas (Amunts et al. 1999; Amunts et al. 2005). An alternative

and even more widespread approach is to make an ad hoc

estimation of the BA containing a given cortical effect by

visually comparing individual folding patterns with those in

Brodmann’s drawings. This procedure, however, is also

problematic, because Brodmann’s maps are schematized draw-

ings, and thus do not reflect a real individual brain with its

folding pattern. Further, Brodmann’s drawings give no means of

assessing the variability of the relationship between the folds

and the cytoarchitectonic boundaries.

The variability of the architectonics has been characterized

in several studies, particularly the landmark work of Rajkowska

Figure 4. Box plot of the accuracy of the predicted location of the borders of a set of BAs as estimated by the average distance between boundaries of the corresponding areas
in millimeter, using a modified Hausdorff distance (y-axis). The higher the accuracy, the lower the distance. Left: 8 BAs in the left hemisphere, right: 8 BAs in the right
hemisphere. Blue boxes indicate the lower and upper quartiles; red lines are the medians. The lines extend to 1.5 times the interquartile spacing. Data points outside of the lines
are outliers.
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and Goldman-Rakic, in which 7 human left hemispheres

were analyzed to characterize the variability in areas 9 and

46 (Rajkowska and Goldman-Rakic 1995a; Rajkowska and

Goldman-Rakic 1995b), with reconstructions of the lateral

portion of the hemispheres carried out in 5 cases. In this study,

considerable variability was found in the morphology of frontal

sulcal patterns. Further, by overlaying their architectonic maps

on the Talairach atlas, Rajkowska and Goldman-Rakic were able

to point out the ambiguity in other published results that

reported findings in a particular BA (e.g., an effect reported in

area 9 could have been in 45 or 46 also). It has not been clear

whether the well-documented inaccuracy of the use of the

Talairach coordinate system for localizing BAs reflects the true

variability of the underlying architectonic areas or if higher

dimensional nonlinear coordinate systems based on other types

of macroscopically observable features could be used in order

to increase the accuracy of the localization of the underlying

cyto- and myeloarchitecture.

In this work, we have shown that computational techniques

that explicitly drive folding patterns into register across

subjects are also surprisingly accurate at aligning histologically

defined BAs, despite having no access to the microscopic

properties used to define them. This is particularly true in the

primary cortical areas we have investigated, with primary visual

cortex (BA 17) being the most predictable, exhibiting in the

order of 2.7 mm of median variability in the location of its

boundary in both hemispheres across all subjects. In fact, the

predictability of all the primary motor and sensory areas that

we studied, including BA 17, 4a, 4p (anterior and posterior

divisions of BA 4 [Geyer and Ledberg 1996]), and 2 (although

recent evidence casts some doubt over whether area 2 should

be considered primary or not [Zilles et al. 2004; Toga et al.

2006]), was found to be surprisingly good with a mean

uncertainty of approximately 3.7 mm in the surface-based

coordinate system. This figure was obtained by computing the

median uncertainty of each individual area across each subject

and then taking the mean of these. In the few ‘‘higher order’’

areas that we analyzed, the variability increased to 7 mm in the

left hemisphere for areas 44 and 45 and 9 mm in the right

hemisphere, with significant parts of each area overlapping in

all subjects. These core areas of 100% overlap indicate that it

should be possible to restrict analysis to regions in which

a researcher is confident that an effect is indeed within a given

BA, although it is important to note that the geometry of the

area will play a role in this type of analysis as well. For example,

BAs 44 and 45 exhibit more variability than say BA 4a, but the

elongated nature of BA 4a would make it difficult to find many

functional MRI voxels solely contained within the predicted

location of this cortical area.

Several explanations are possible for this apparent hierarchy

in the variability of the location of cortical areas. Variability in

position may simply relate to the variability of regional folding

patterns as, for example, prefrontal regions are more variable

geometrically than perirolandic regions or the region around

the calcarine. This, however, begs the question of why primary

areas occur near primary folds. If cortical folding patterns are

reflective of the tension of subcortical and corticocortical

axonal projections (Van Essen 1997), then it may be that the

variability in the location of a cortical area relates to the degree

of heterogeneity in its pattern of connectivity. Thus, primary

areas that are connected to relatively few other cortical areas

would be less variable than higher order (multimodal ‘‘associ-

ation’’) areas, which project to and receive projections from

many more disparate brain regions (Pandya et al. 1988). V1, for

example, has connectivity mainly limited to the lateral

geniculate nucleus of the thalamus and secondary visual cortex

(V2) (for review see Sincich and Horton [2005]). Conversely,

area 44 receives major projections from secondary somatosen-

sory area S2 and inferior parietal lobule as well as projections

from prefrontal and premotor areas (9, 46v, 47/12, 13, 6),

cingulate motor cortex, superior temporal sulcus, and rostral

insula (Geschwind 1965; Jones and Powell 1970; Pandya and

Yeterian 1996). Area 45 receives its main inputs from superior

temporal gyrus (higher auditory cortex) and multimodal areas

in the superior temporal sulcus, in addition to other prefrontal

areas, somatosensory areas 1 and 2, caudal insula, and visual

areas of the inferior temporal cortex (Geschwind 1965; Jones

and Powell 1970; Pandya and Yeterian 1996). Variability in

cortical localization could thus largely reflect the complexity of

the underlying patterns of connectivity, as opposed to being

directly related to relative location in a hierarchical arrange-

ment of cortical areas.

It is worth noting that the cytoarchitectonic changes that

define the borders between adjacent association cortices (such

as 44/45) are considerably more subtle than in primary areas,

which typically show reasonably sharp transitions in cellular

properties between one area and its neighbors (Van Hoesen

1993), making the precise and repeatable localization of higher

areas considerably more difficult. In the present observa-

tions, cytoarchitectonic maps were used based on a reliable,

observer-independent, and statistically testable microscopical

technique (Schleicher et al. 1999), which excludes a systematic

increase of variability between primary and higher areas due to

such methodical reasons. Phylogenetic factors could play a role

in the variability of localization, as it has been posited that

primary sensory cortices are the most recent to evolve (Sanides

1970), and therefore, evolutionary age could be reflected in

degree of variability. This argument is also supported by the

fact that the variability in the volume of neocortical areas 44

and 45 greatly exceeds that of the hippocampus (part of

archicortex) (Amunts et al. 1999; Amunts et al. 2005). One

important cautionary point is that homologies between

macaque and human for areas 44 and 45 have not been

definitively established (Deacon 2004). It is also possible that

ontogenetic factors influence cortical localization. For exam-

ple, the order of development could play a role with earlier

developing areas being less variable than later ones due to

a simple propagation of errors. It is known that primary areas

myelinate earlier than higher ones (Flechsig 1901), and there is

some evidence that they form earlier as well (Flechsig 1920;

Brody et al. 1987), although the early myelination of middle

temporal area/V5 would then imply that it would have a stable

location with respect to surrounding folding patterns, which

does not appear to be the case.

Although the variability across areas is intriguing, one

striking feature of our results is the stability of the localization

of the BAs with respect to the surrounding folding patterns, as

might perhaps have been expected given the demonstrated

ability of surface-based registration to align structurally and

functionally homologous features of the human cortex (Fischl,

Sereno, Tootell et al. 1999; Van Essen 2005). This stability may

arise from genetic factors, which are likely to play an important

role in the location and size of cortical areas. One prominent

hypothesis regarding the formation of cortical areas is that the
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specification of the architectonic regions is present in

a protomap in the proliferative ventricular zone in the form

of radial columns that guide the formation and migration of

cortical neurons during neurodevelopment (Rakic 1988).

There is evidence that the protomap exists without the need

for sensory input (e.g., Armentano et al. 2007; Cholfin and

Rubenstein 2007), although the size and location of the

architectonic areas can be modulated by the modification of

afferent input (Goldman-Rakic 1980), perhaps contributing to

the observed variability in the localization with respect to the

surrounding folding patterns. Thus, the protomap may initially

specify the location of the cortical areas with respect to one

another, with corticocortical and thalamic connectivity then

influencing the creation of cortical convolutions and the final

position and size of each architectonic field.

An important implication of the current work is that if the

size of a cortical area relates to competence of the functional

domain in which the area is implicated, then it may be possible

to predict performance levels directly from gross morphology.

For example, in recent work, Duncan and Boynton (2003) have

shown that visual acuity is predicted by the size of the

functionally defined primary visual cortex. Given the accuracy

with which the borders of V1 appear to be localized by folding

patterns alone, visual acuity should be inferable directly from

brain structure. Finally, understanding how the underlying

cellular characteristics are arranged with respect to the

macroscopically visible folding patterns is an important step

in understanding how the folds develop and whether they play

a computational role in the processing strategies employed by

the human brain.
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