
www.elsevier.com/locate/ynimg
NeuroImage 31 (2006) 572 – 584
A novel quantitative cross-validation of different cortical surface

reconstruction algorithms using MRI phantom

Jun Ki Lee,a Jong-Min Lee,a,* June Sic Kim,b In Young Kim,a

Alan C. Evans,c and Sun I. Kima

aDepartment of Biomedical Engineering, Hanyang University, 17 Haengdang-dong Sungdong-gu P.O. Box 55, Seoul 133-791, Republic of Korea
bDepartment of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
cMcConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada

Received 31 May 2005; revised 22 October 2005; accepted 23 December 2005

Available online 24 February 2006
Cortical surface reconstruction is important for functional brain

mapping and morphometric analysis of the brain cortex. Several

methods have been developed for the faithful reconstruction of surface

models which represent the true cortical surface in both geometry and

topology. However, there has been no explicit comparison study among

those methods because each method has its own procedures, file

formats, coordinate systems, and use of the reconstructed surface.

There has also been no explicit evaluation method except visual

inspection to validate the whole-cortical surface models quantitatively.

In this study, we presented a novel phantom-based validation method

of the cortical surface reconstruction algorithm and quantitatively

cross-validated the three most prominent cortical surface reconstruc-

tion algorithms which are used in Freesurfer, BrainVISA, and CLASP,

respectively. The validation included geometrical accuracy and mesh

characteristics such as Euler number, fractal dimension (FD), total

surface area, and local density of points. CLASP showed the best

geometric/topologic accuracy and mesh characteristics such as FD and

total surface area compared to Freesurfer and BrainVISA. In the

validation of local density of points, Freesurfer and BrainVISA showed

more even distribution of points on the cortical surface compared to

CLASP.

D 2006 Elsevier Inc. All rights reserved.
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Introduction

The surface of the human cerebral cortex is known as a highly

folded sheet with 60–70% of its surface area buried within folds

(Van Essen and Drury, 1997; Zilles et al., 1988). The relationship
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between the gross cortical folding pattern and the cytoarchitectonic

and functional organization of the underlying cortex is a subject of

much current interest and debate (Essen et al., 2001; Thompson et

al., 2003). Reconstructed cortices enable the visualization and the

study of the sulcal and gyral patterns of an individual subject

(Carman et al., 1995; Essen et al., 2001; Fischl et al., 1999a,b;

Thompson et al., 2001) and allow morphometric measurements

such as volume (Kim et al., 2000), surface area (Chung et al., 2003;

Magnotta et al., 1999), thickness (Kruggel et al., 2003; MacDonald

et al., 2000; Thompson et al., 2001; Yezzi and Prince, 2003), and

sulcal depth (Manceaux-Demiau et al., 1998). Correspondences

between cortical reconstructions from different subjects can also be

used for image registration (Cachier et al., 2001), digital atlas

labeling (Jaume et al., 2002; Sandor and Leahy, 1997), and

population-based probabilistic atlas generation (Thompson et al.,

1997). In addition, cortical reconstruction is important for

functional brain mapping (Dale and Sereno, 1993), surgical

planning (Grimson et al., 1998), and cortical unfolding or flattening

(Carman et al., 1995; Essen et al., 2001; Fischl et al., 1999a,b;

Tosun and Prince, 2001).

To fulfil the needs described above, it is important to faithfully

represent true cortical surface in terms of geometry and topology.

The geometrically accurate cortical reconstruction must generate a

representation of the cortex consistent with the true geometry of the

brain cortex, completing with multiple lobes, gyral folds, and

narrow sulci. This task is difficult because of artifacts such as

image noise, partial volume effects, and intensity inhomogeneities

(Dale et al., 1999; Han et al., 2001; MacDonald et al., 2000).

Especially in tightly folded sulci, the exact boundaries of the cortex

are hard to detect because opposing sulcal banks are closer than the

magnetic resonance imaging (MRI) resolution. This causes

inaccuracies in surface extraction and subsequent morphometric

measures such as cortical thickness. The topology of the re-

constructed surface is also an important consideration. Since the

cerebral cortex has the topology of a two-dimensional sheet, the

surface representation of the cortex should have the same topology
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Table 1

The summary of the procedure performed on each tool to create cortical

surface

Process Subprocess Freesurfer BrainVISA CLASP

Pre-processing Inhomogeneity

correction

o o o

Skull stripping o o o

Segmentation

(white)

o o o

Segmentation

(gray)

x o o

Create white surface Cut planes o o x

Tessellation o o x

Smooth o x x

Inflate o x x

Decimation x x x

Deformable

surface

o x o

Edit segmentation Manually edit

defects

o x x

Fix topology Automatic

correction

o o x

Create gray surface Tessellation x o x

Decimation x o x

Deformable

surface

o x o

Note. An Fo_ indicates that a procedure is performed and an Fx_ that it is not.
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without holes and bridges, preventing the surface from being

accurately flattened or inflated. Mesh characteristics such as point

distribution on the cortical surface are also important factors which

determine good representation of brain cortex. Properly distributed

meshes on the cortical surface will give a good description of shape

of the brain cortex, which can then contribute to visualization,

shape analysis, and surface-based post-processing such as surface

registration.

The computational methods to obtain a polygon mesh that

represents the cortex can largely be grouped according to the type

of representation upon which they operate. On one hand, there are

segmentation methods, which are a kind of a bottom–up approach,

operating directly on segmented anatomical MRI volumes (Dale et

al., 1999; Mangin et al., 1995). This approach is usually

geometrically accurate but typically generates a number of

topological errors, called handles. Thus, additional processes that

fix the topology errors are needed. Alternatively, there are iterative

morphing methods, which use a top–down approach, operating on

polygon mesh representations (Kim et al., 2005; MacDonald et al.,

2000). In this approach, the resulting representation of the cortex is

topologically correct, but some inaccuracies in surface extraction

may occur due to overly strong deformation constraints. Further-

more, the extensive morphing of the initial standard model is

computationally expensive, a diminishing issue as computational

power increases.

Of the well-established methods for the cortical surface

reconstruction, we have evaluated three algorithms, Freesurfer,

BrainVISA, and CLASP. They have been chosen for evaluation

according to some rules of accessibility to a tool, number of users,

possibilities of file format, and coordinate transformations. Dale et

al. introduced an automatic method that is implemented in the

freely available Freesurfer (Dale et al., 1999) which is a mixed

approach taking both the segmentation and the iterative morphing

method. Mangin et al. (1995) also presented a method imple-

mented in the freely available BrainVISA. This enables the shape

analysis of the sulcal pattern as well as morphological measure of

the cortex. Kim et al. (2005) have developed a method called

CLASP (Constrained Laplacian Anatomical Segmentation using

Proximities), an enhanced version of the iterative morphing

method first developed by MacDonald et al. (2000). Although

many studies about brain cortex have been based on the cortical

surfaces created by these tools (Fischl et al., 1999a,b; Thompson

et al., 1997), there has been until now, as far as we know, no

quantitative comparison of the performances of these reconstruc-

tion methods. Such a detailed evaluation is difficult since each

method has its own procedure, file format, coordinate system, and

specific purpose for the surface reconstruction (Fischl et al.,

1999a; Mangin et al., 1995; Kim et al., 2005). In this study, we

performed a quantitative cross-validation of the three cortical

surface reconstruction tools using an MRI simulator generating a

realistic MRI incorporating the calculation of noise and partial

volume effects (Kwan et al., 1996; Collins et al., 1998). The

evaluation strategy presented here using simulated MR phantom

provides ‘‘gold standard’’ with which to access the performance of

cortical surface reconstruction algorithms. The validation study

evaluated the topology, geometrical accuracy, and mesh character-

istics of the cortical surfaces extracted by each algorithm. We

focused most effort on the geometrical accuracy of surface

extraction which is essential for the accurate measurement of

morphological variables such as cortical thickness and cortical

surface area.
Methods

Computational method used in each tool

Each algorithm has its own procedure to create cortical surface.

Generally, the processing sequence in each tool includes pre-

processing steps such as spatial normalization, intensity inhomo-

geneity correction, skull striping, and tissue classification. For the

comparison study of three different algorithms, we followed the

complete series of automated procedures for extracting the cortical

surface with their own pre-processing. Table 1 showed the whole

procedure of each tool. Since each method was explained in detail

in its original publication (Dale et al., 1999; Kim et al., 2005;

Mangin et al., 1995), we briefly summarize them below:

(i) BrainVISA (Mangin et al., 1995) first provides a binary

mask of each hemisphere cortex with spherical homotopy.

This sequence includes bias correction, brain mask segmen-

tation, hemisphere mask segmentation, and detection of the

gray/white interface. A standard facet tracking algorithm is

used to compute a first spherical mesh made up of facets

from the cortex mask. Then, the center of each facet is

connected to the center of the neighboring facets in order to

yield a spherical mesh of triangles. This algorithm preserv-

ing the initial topology relies on a look-up table of

configurations like in the standard marching cube algorithm.

Finally, a decimation including smoothing is performed to

discard stair artefacts related to the underlying discretization.

The embedded smoothing operation iteratively moves the

nodes towards their neighborhood gravity center, which may

be related to some usual surface evolution processes. This

mesh construction includes some smoothing operations that

may remove some interesting anatomical information.
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(ii) Freesurfer (Dale et al., 1999; Fischl et al., 1999a,b) first corrects

for intensity variations due to magnetic field inhomogeneities

and creates a normalized intensity image from a high resolution,

T1-weighted, anatomical 3-DMRI data set. Next, extracerebral

voxels are removed using a skull stripping procedure. The

intensity-normalized skull-stripped image is then operated on

by a segmentation procedure based on the geometric structure

of the gray matter (GM)/white matter (WM) interface. Cutting

planes are then computed to separate the cerebral hemispheres

and disconnect subcortical structures from the cortical compo-

nent. This generates a preliminary segmentation which is

partitioned using a connected components algorithm. Any

interior holes in the components representing WM are filled,

resulting in a single filled volume for each cortical hemisphere.

Finally, the resulting volume is covered with a triangular

tessellation and deformed to produce an accurate and smooth

representation of the GM/WM interface as well as the pial, i.e.

GM the cerebrospinal fluid (CSF) boundary, surface. This

surface departs from a simple spherical topology due to

subcortical GM as well as various midbrain structures. These

topological defects are removed through a manual editing

procedure that results in a surface with both accurate geometry

and spherical topology.

(iii) CLASP (Kim et al., 2005) first removes intensity non-

uniformity in the raw MR images (Sled et al., 1998). The

MR volume is re-sampled into stereotaxic space (Talairach

and Tournoux, 1988; Collins et al., 1994) and a 3-D

stereotaxic brain mask used to remove extracerebral voxels.

The discrete classification employs Intensity-Normalized

Stereotaxic Environment for Classification of Tissues (IN-

SECT) (Zijdenbos et al., 1996, 1998). CLASP extracts the

inter-cortical surface by deforming a sphere polygon model to

the boundary between GM and WM. The number of mesh

triangles is hierarchically refined from 320 to 80,920. Then,

the pial surface is expanded from the white surface to the

boundary between GM and CSF along a Laplacian mapwhich

smoothly increases potential surfaces between WM and CSF.

A CSF fraction image is skeletonized to determine the outer

boundary of the cortex in buried sulci (Ma and Wan, 2001).
Fig. 1. Cortical surfaces reconstructed by three different methods. Cortical surface

1989), (b) Freesurfer (Dale et al., 1999; Fischl et al., 1999a,b), and (c) CLASP (Kim

image randomly selected from ICBM data sets.
Since default parameters used for the reconstruction generally

provide the best results and give the objective performance which

is not dependent on the subject, the values of the parameters in

each method were default settings. You can see the reconstructed

cortical surfaces through three tools respectively (Fig. 1).

Cross-validation of reconstruction algorithms

The quantitative evaluation of the three algorithms was

performed in several ways. First, the geometric accuracies were

validated using both volume-based and surface-based comparisons

detailed below. In surface-based validation, an MRI simulator

(Collins et al., 1998; Kwan et al., 1996) was used to create a

‘‘ground truth’’. Second, mesh characteristics including topological

accuracy (Worsley, 1995), fractal dimension (Sarraille and Myers,

1994), surface area, and point distribution were calculated for the

surfaces obtained by each method. T1-weighted MR images with

1.0 mm � 1.0 mm � 1.0 mm resolution and 181 � 217 � 181

voxel dimensions were selected randomly from the data sets of the

International Consortium for Brain Mapping (ICBM) (Mazziotta et

al., 1995). We used 30 cases (18 M/12 F; age average 28.6 years,

range 18–42 years) for the volume-based validation and 4 cases (2

M/2 F, age average 24.5 years, range 20–30 years) for the

topology measure, surface-based validation, and mesh character-

istic studies. Freesurfer was excluded in volume-based validation

because the classified GM volume could not be defined in the

reconstruction process. Thus, in volume-based validation only,

BrainVISA and CLASP algorithms are accessed. In each brain, the

white (i.e. GM/WM boundary) and pial (i.e. GM/CSF boundary)

surface was extracted by each of the three methods. Then, we

validated the cortical surfaces as follows.

Validation of geometrical accuracy

Volume-based validation. In volume-based validation, we com-

pared the GM volume images obtained by tissue classification

during the pre-processing steps, with those obtained by labeling all

GM voxels between the pial and white surfaces of brain cortex. For

the latter case, the pial and white surfaces were first extracted using
s reconstructed by (a) BrainVISA (Mangin et al., 1995; Gordon and Udupa,

et al., 2005) respectively. Each surface created from the same T1-weighted
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the surface extraction algorithm. Next, a GM map was created by

filling all voxels between these two surfaces (Hearn and Baker,

1997). This process was repeated for all tools being compared.

Freesurfer was excluded in this validation because it does not use

an explicit gray matter segmentation as an intermediate in its

computation (Dale et al., 1999; Fischl et al., 1999a,b). Note that a

separating masking step was employed to remove non-cortical gray

voxels from the tissue-classified GM map since we were not

interested in deep GM structures for this study. The two GM maps

from tissue classification and from intra-surface filling were then

overlapped and compared. In Fig. 2, you can see a result of maps

of geometric errors between the classified image and the surface-

masked image generated by both tools.

In the overlapped volume, we calculated three statistical values:

(1) percentage of matched GM voxels to total voxels between the

classified image and the surface-masked image (True-Positive,

TP), (2) percentage of background voxels by the surface masking

but classified as GM voxels (False-Negative, FN), and (3)

percentage of voxels classified as GM by the surface-based method

but classified as background (False-Positive, FP). Equations are

below:

TP ¼
XnGv
v ¼ 1

GC vð ÞIGS vð Þ
NGv

� 100

��

FN ¼
XnGv
v ¼ 1

GC vð Þ � GC vð ÞIGS vð Þ
NGv

� 100

��

FP ¼
XnGv
v ¼ 1

GS vð Þ � GC vð ÞGS vð Þ
NGv

� 100

��

where v is a voxel index, NGv is an average number of GM voxels,

and GC(v) and GS(v) are GM voxel maps (values of GM voxels are
Fig. 2. Map of geometric errors (by volume-based validation). Map of geometric

BrainVISA and (b) CLASP. Voxels of TP (True-Positive) means that they belon

surface-masked image. Voxels of FN (False-Negative) means they belong to GM

image. Voxels of FP (False-Positive) mean they belong to GM voxels of the surf
1 and values of other voxels are 0) of classified volume and surface

volume, respectively. For surface masking, a scan line filling

algorithm was used (Hearn and Baker, 1997). To increase the

accuracy on the boundary of the cortex, we subdivided each voxel

into 64 subvoxels (4 � 4 � 4) before the process of filling. The

final GM map was then calculated from the filled map counting the

number of filled subvoxels of each corresponding voxel on the

final GM map. Thus, every voxel on the surface was classified as

GM, which could cause FN errors.

Surface-based validation. We then evaluated each cortical

surface reconstruction method using a surface-based procedure.

This evaluation method had two aspects: (i) to compare the surfaces

estimated by each method with a known phantom surface and (ii) to

examine the reproducibility of the whole procedure including

classification and surface extraction. Since there is no readily

available ‘‘ground truth’’ with which to assess the performance of

individual surface extraction algorithms, we approached the

problem with an MRI simulator (Kwan et al., 1996; Collins et al.,

1998). This simulator generates a realistic MRI incorporating the

calculation of noise and partial volume effects. For each algorithm,

the following steps were performed:

1) Pial and white surfaces were first extracted from the real MRI

volume (Fig. 3a).

2) A digital phantom including four tissue types (GM, WM, CSF,

and background) was created from the surfaces. WM voxels

were defined inside the white surface, and GM voxels were

inserted between the pial and white surfaces. To create partial

volume effects, voxels on the pial surface were given

probabilities of 70% for GM and 30% for CSF. Voxels

between the exterior brain mask and the pial surface were

labeled as CSF. All other voxels were labeled as background

l (Fig. 3b).
errors between the classified image and the surface-masked image by (a)

g both to GM voxels of the classified image and to the GM voxels of the

voxels of the classified image but not to GM voxels of the surface-masked

ace-masked image but not to GM voxels of the classified image.



Fig. 3. Process of the evaluation using phantom. (a) Created cortical surface, (b) surface-masked volume, (c) digital brain phantom, (d) phantom including

skull, (e) recreated cortical surface from phantom.

Fig. 4. Geometric errors (by volume-based validation). Note: y axis means

percent of each statistical volume compared to the whole volume of gray

matter in the classified volume. x axis is statistical volumes. Voxels of TP

mean that they belong both to GM voxels of the classified image and to the

GM voxels of the surface-masked image. Voxels of FN mean they belong to

GM voxels of the classified image but not to GM voxels of the surface-

masked image. Voxels of FP mean they belong to GM voxels of the surface-

masked image but not to GM voxels of the classified image.
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3) A T1 MR image was simulated from the phantom using the

same parameters as the real data acquisition (TR = 18 ms, TE =

10 ms, slice thickness = 1 mm) (Fig. 3c).

4) Additional substructures (skull, basal ganglia) were added from

the real MRI (Fig. 3d).

5) Pial and white surfaces were then extracted from the simulated

MRI volume (Fig. 3e).

6) Differences between each surface obtained from real or

simulated MRI were measured.

In this process, the surface extracted from the real data is

regarded, by definition, as ‘‘true’’. The experiment was designed to

assess howwell the surface extraction algorithm could re-capture the

true surface by operating upon a simulated MRI volume derived

from the true surface. To ensure that the process was not biased

toward any particular algorithm, the experiment was repeated with

each algorithm providing the ‘‘true’’ surface. Then, each algorithm

was applied to the simulated MRI to generate a ‘‘test’’ surface. The

root mean square (RMS) error between ‘‘true’’ and ‘‘test’’ surfaces

(averaged over all surface vertices) then provided a measure of

accuracy in surface extraction. To measure RMS error between the

‘‘true’’ and ‘‘test’’ surfaces, we calculated the distances from the

vertex of ‘‘true’’ surfaces to the nearest triangular face of the ‘‘test’’

surface. Grand averaging across the 3 � 3 permutations of ‘‘true’’

and ‘‘test’’ algorithm provided an unbiased measure of algorithm

performance.

Validation of mesh characteristics

Surface topology. Since the cerebral cortex has the topology of

a 2-D sheet, a topologically correct surface model should have no

holes and bridges. Topological errors in the surface model, for

example, can lead to erroneous short-cuts from one part of the

surface to another. A topologically correct surface allows for

better estimation of geodesic distances and for the analysis that is

not appropriately performed in the volumetric embedding space

(Fischl et al., 1999a,b). It also allows for correct cortical

unfolding and mapping to a sphere, which could be used for

visualization, measurement, and the establishment of a global

coordinate system on the cortex (Fischl et al., 1999a,b; Han et al.,

2001). The topologies of the extracted surfaces were validated by

computing the Euler number of the surface (Dale et al., 1999;

Worsley, 1995).

Euler–Lhulier’s formula

v� eþ f ¼ 2� 2g ð1Þ
where v, e, and f are the number of vertices, edges, and faces,

respectively (Pont, 1974; Preparata and Shamos, 1985). Since the

cerebral cortex has the topology of a 2-D sheet, a topologically

correct surface model should have no holes and bridges ( g = 0)

and the Euler number should be F2_. Sixteen cortical surfaces were

evaluated which were generated by each tool respectively to

evaluate the topological accuracies.

Fractal dimension. Fractal dimension (FD) is an extremely

compact measure of shape complexity, condensing all the details

into a single numeric value that summarizes the irregularity of the

object (Sarraille and Myers, 1994). For each algorithm and for pial

or white surface, we compared the FD of the ‘‘true’’ surface with

that of the ‘‘test’’ surface (using the definitions of the previous

section). We calculated FD of each cortical surface model using the

box-counting method (Sarraille and Myers, 1994). In the box-

counting method, the shape of interest is initially mapped onto a

rectangular grid or lattice, the edges of each box in the grid being

of equal length, and the number of grid boxes occupied by one or

more voxels of the image is counted. This box-counting step is

repeated several times: the same image is mapped onto a series of

rectangular grids of increasing box size, and the number of

occupied boxes in each grid is counted (Sarraille and Myers,

1994). In practice, we estimated FD for finite data sets using



Fig. 5. Geometric errors (by surface-based validation). Geometric errors and reproducibilities of cortical surfaces were reconstructed by 4 tools. It was

measured by calculating RMS distance between surfaces of ‘‘ground truth’’ and surfaces made from MR phantom images. (a), (b), and (c) show average RMS

errors of cortical surfaces created from (a) Freesurfer phantom, (b) BrainVISA phantom, and (c) CLASP phantom respectively. (d) represents reproducibilities

measuring RMS distance between the surface of ‘‘ground truth’’ and the surface made from MR phantom images by the tool which was used to create phantom

itself. Note: y axis means RMS errors (mm).

Table 2

The results of topologic accuracies which were validated by Euler–

Lhulier’s formula

Topology (Euler–Lhulier’s formula)

CLASP Surfer VISA

Accurate 16 12 7

Inaccurate 0 4 9

The Euler number should be 2 to be ‘‘accurate’’.

The other cases are regarded as ‘‘inaccurate’’.

Dale et al., 1999; Kriegeskorte and Goebel, 2001; Worsley, 1995.
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‘‘FD3’’ originally developed by Sarraille and DiFalco (Sarraille

and Myers, 1994). The data sets which were used as inputs of

‘‘FD3’’ were the set of vertices of the cortical surface. In general,

since the value of FD is not dependent on the number of vertices

(Sarraille and Myers, 1994), we therefore used the original number

of vertices created by each tool.

Local density of points, total surface area. The local density of

points on the surface model is an important factor which describes

a cortical surface. High density gives more accuracy, but

computation takes longer in post-processing such as inflation

and surface registration. Thus, to represent a cortical surface

reasonably, the points should be distributed on the surface with the

densities according to spatial gradients on the surfaces and at the

same time the geometric accuracies also should be preserved. In

this study, we measured the point distributions on the cortical

surfaces by calculating the standard deviations (SD) of the edge

lengths, and areas of triangle meshes on the surfaces. These
measurements give the general point distribution pattern on the

surface. We normalized SDs by the average values of the edge

lengths and triangle areas respectively. The total surface area has

to also be considered. Generally, the reconstruction methods

underestimate the geometrical information of original cortical

surface, which could lead to the less surface area of reconstructed
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model compared to that of the original cortical surface. We

compared total surface areas of ‘‘test’’ surfaces to those of the

‘‘true’’ surfaces.
Results

Validation of geometrical accuracy

Volume-based validation

In volume-based validation, we validated only BrainVISA and

CLASP. The validation was performed on the whole brain because

the classified volume of CLASP is not separated into two

hemispheres in the reconstruction process. Fig. 4 shows the results

of validation. We compared the classified GM volume and surface-

masked GM volume. In the volume-based evaluation, CLASP

achieved more accurate results than BrainVISA (Fig. 4). The result

showed the percentage of the each statistical volume including TP,

FN, and FP compared to the whole volume of GM in the classified

volume. CLASP showed a larger TP value, but a smaller FN and FP

compared to BrainVISA.
Fig. 6. Comparison of fractal dimension. This shows the FDs of cortical surfaces re

(Sarraille and Myers, 1994). The image shows FD values of cortical surfaces crea

phantom respectively. Note: y axis means the value of FD (mm).
Surface-based validation

The geometric errors and reproducibilities of the extracted

cortical surfaces were measured by calculating the RMS distance

between ‘‘true’’ and ‘‘test’’ surfaces. Figs. 5a, b, and c show average

RMS errors when the ‘‘true’’ surface was created with Freesurfer,

BrainVISA, and CLASP respectively. Fig. 5d shows the RMS

surface distances when ‘‘true’’ and ‘‘test’’ surfaces were obtained

with the same algorithm. CLASP showed the smallest errors

compared to the other methods in both geometric accuracy and

reproducibility validation. BrainVISA showed relatively large

geometric errors compared to the other tools.

Validation of mesh characteristics

Surface topology

The topologies of cortical surface were validated by Euler–

Lhulier’s formula (Eq. (1)). We used 16 cortical surfaces including

pial/white and left/right surfaces from 4 ICMBMR data set. CLASP

achieved results which are topologically correct because it is based

on deformable surface model which preserves an initially correct

spherical topology. Freesurfer and BrainVISA sometimes showed
constructed by 4 tools. It was measured by calculating capacity values of FD

ted from (a) Freesurfer phantom, (b) BrainVISA phantom, and (c) CLASP
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topological errors on the surface model since these methods tes-

sellate the segmented surface directly in parts and do not preserves

topology. In this study, if the Euler number is 2, we considered the

result to be ‘‘accurate’’. The other cases were considered to be

‘‘inaccurate’’. Table 2 shows the results of topological evaluation.

Fractal dimension

The FD values for the ‘‘true’’ surfaces were compared with

those of the ‘‘test’’ surfaces. The results in Fig. 6 show the FD

values of cortical surfaces created with the ‘‘true’’ surface obtained

with (a) Freesurfer, (b) BrainVISA, and (c) CLASP respectively. It

indicates that CLASP generally achieved the closest match

between ‘‘true’’ and ‘‘test’’ FDs, regardless of which algorithm

generated the ‘‘true’’ surface. The surface area study (Fig. 7)

showed similar results to the FD validation, although there was a

tendency for CLASP to overestimate the surface area of the pial

boundary when using BrainVISA to generate the ‘‘true’’ surface.

BrainVISA consistently produced the weakest agreement between

‘‘true’’ and ‘‘test’’ surfaces, even if BrainVISAwas used to generate

the ‘‘true’’ surface (Figs. 5–7).
Fig. 7. Comparison of total areas. Areas of cortical surfaces were measured an

phantom, (b) Freesurfer phantom, and (c) BrainVISA phantom respectively. The m

and whole brain cortical surfaces respectively. Note: y axis means the total area
Local density of points, total surface area

Fig. 7 shows surface areas obtained with each algorithm when

the ‘‘true’’ surface was obtained using (a) Freesurfer, (b)

BrainVISA, or (c) CLASP. The measurement was performed on

left white, left gray, right white, right surface, and whole brain

cortical surfaces respectively. When using the CLASP or Free-

surfer ‘‘true’’ surface, CLASP achieved the closest agreement

between ‘‘true’’ and ‘‘test’’. However, when using the BrainVISA

‘‘true’’ surface, CLASP tended to overestimate the true area. In

Fig. 7, the BrainVISA phantom panel at the bottom is showing

white matter surface areas in excess of the corresponding gray

matter surface areas in the phantom surfaces. This result may be

due to the underestimation of the reconstructed pial surface

especially on the area of deep sulci in BrainVISA. Fig. 8 shows

the standard deviation (SD) in triangle areas when the ‘‘true’’

surface was obtained using (a) Freesurfer, (b) BrainVISA, or (c)

CLASP. Fig. 9 shows a similar graph of SD in triangle edge

length. These two indices showed that there is a greater

variability in triangle dimensions with CLASP than the other

methods.
d evaluated. The image shows areas of surfaces created from (a) CLASP

easurements were performed on left white, left gray, right white, right gray,

(mm2).



Fig. 8. SD of triangle facets’ areas. SDs of triangle facets’ areas were measured and evaluated. The image shows surface areas’ SD created from (a) CLASP

phantom, (b) Freesurfer phantom, and (c) BrainVISA phantom respectively. The measurements were performed on left white, left gray, right white, and right

gray cortical surface respectively. Note: y axis means the SD of triangle facets’ areas (mm2).
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Visual inspection of cortical surfaces generated through MR

phantom

Fig. 10 represents cortical surfaces reconstructed from (a)

CLASP phantom, (b) Freesurfer phantom, and (c) BrainVISA

phantom which are generated from a single MR image. The first

column is composed of phantom surfaces created from a single MR

image through each algorithm which are then used for the

generation of MR phantom. The other columns are recreated

cortical surfaces from the MR phantom simulated from the

phantom surfaces (Kwan et al., 1996; Collins et al., 1998). The

pial and white surfaces generated from MR phantoms by each tool

look very identical to the corresponding phantom surfaces. The pial

surface generated by Freesurfer appears more realistic than the

BrainVISA and CLASP surfaces in the sense that it looks more like

what a real brain looks like. Although CLASP delivered the most

accurate geometry of the reconstructed surface, they look less

realistic than Freesurfer surface having some creases on its surface.

The cortical surfaces generated by BrainVISA appear simpler than

the surfaces generated by two other tools especially in sulcal

region. This implies that the geometric inaccuracies in BrainVISA
surfaces described above are related with a lack of ability to detect

the deep sulci.

Computation time

As for the computation time, Freesurfer takes about 12 h

for the cortical surface reconstruction including pre-processing.

CLASP takes about 20 h including pre-processing. BrainVISA

takes about 30 min for the reconstructions. The processing

was performed on the Pentium 4 processor (2.0 GHz) of the

PC.
Discussion

In this study, we conducted a quantitative comparison of the

performance of three prominent cortical surface reconstruction tools

(BrainVISA, Freesurfer, CLASP) using an MRI simulator. They

have been chosen for the evaluation presented here according to

some rules of accessibility to a tool, number of users, possibility of

file format transformation, or coordinate normalization for the



Fig. 9. SD of edges’ lengths. SDs of edges’ lengths were measured and evaluated. The image shows SD of edge lengths composing cortical surfaces created

from (a) CLASP phantom, (b) Freesurfer phantom, and (c) BrainVISA phantom respectively. The measurements were performed on left white, left gray, right

white, and right gray cortical surfaces respectively. Note: y axis means the SD of edge lengths (mm).
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evaluation. CLASP is not a freely available tool and does not have

large number of users, but we selected it because of its well

establishment. We also tried to validate other packages such as

BrainVoyager and SurfRelax, but there were some difficulties in file

format transformation and coordinate normalization of brain

volume or surface data. Thus, we remained validations of other

packages including BrainVoyager and SurfRelax for future works.

The evaluation strategy presented in this paper using MR phantom

provides ‘‘gold standard’’ with which to access the performance of

cortical surface reconstruction algorithms. The validation included

quantitative assessment of geometrical accuracy and mesh charac-

teristics such as surface topology, fractal dimension, surface area,

and local surface sampling density.

Range of validation

In general, the pre-processing steps such as intensity inhomo-

geneity correction, skull stripping, and tissue classification are

essential to the cortical surface reconstruction. We were mainly

interested in the performance of the final surface reconstruction

step out of whole reconstruction procedure including pre-process-

ing. However, the validation was performed using the whole
procedure for each tool because it was difficult to separate the

procedure into each individual step for the reconstruction (Dale et

al., 1999; Kim et al., 2005; Mangin et al., 1995).

Geometric/topologic accuracy

Two forms of geometric evaluation were conducted: (i) a

volume-based approach which compared the GM map produced

by tissue classification with that produced by labeling all voxels

between pial and white surfaces as GM and (ii) a simulation

study in which ‘‘true’’ surfaces, initially extracted from real MR

images, were used to generate simulated MRI volumes which

were then analyzed by each algorithm to re-capture the original

surfaces.

In volume-based validation, it is possible that any error could

be due to an error in classified volume. In general, cortical surface

reconstruction algorithms use the information not only of classified

brain image but also of characteristics of cortical surface which are

already known. Cortical surface has known characteristics such as

continuity, smoothness, and a topology of the surface which are

used as constraints in the reconstruction process. Therefore, if the

reconstructed surface meets these known characteristics, it should



Fig. 10. Reconstructed surfaces using MR phantoms. Cortical surfaces reconstructed from (a) CLASP phantom, (b) Freesurfer phantom, and (c) BrainVISA

phantom which are generated from a single MR image. The first column is composed of phantom surfaces created from a single MR image through each

algorithm. The other columns are recreated cortical surfaces from the phantom surfaces.
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follow the boundary of the input classified volume as possible as it

can. The volume-based comparison evaluated fidelities based only

on input classified volumes of BrainVISA and CLASP. Although

inaccurate voxel-based classification could induce any error in the

reconstructed surface and lead to the wrong validation, volume-

based validation presents a measure for the automatic validation of

entire cortical surface without additional intensive processing such

as manual drawing.

While relatively straightforward, the volume-based approach is

a global index of agreement. It does not provide any information

on the detailed accuracy of surface extraction. This is a difficult

problem because there is, in general, no ‘‘ground truth’’ with which

the extracted cortical surface can be compared. In our surface-
based evaluation, we used surfaces extracted from real MRI

volumes to generate simulated MR images, thereby defining these

original surfaces as ‘‘true’’. The ability of each algorithm to re-

capture this ‘‘true’’ surface from the simulated MRI volume, which

now includes many confounding data acquisition factors (noise,

loss of contrast, partial volume effects, inhomogeneity, etc.), could

now be quantified. Although a simulator does not incorporate

every aspect of real data, this strategy provides quantitative lower-

bound performance metrics with which to assess algorithm

performance.

The cortical surface must be topologically equivalent to a

sphere because topological errors in the reconstructed cortical

surface can lead to incorrect results of the post-processing such as
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flattening, cortical surface registration, and thickness measure.

These erroneous results of post-processing would reduce analytic

power of morphological or functional mapping study. For

topological validation, we used a simple and automatic approach

which assesses the topology of the whole surface by calculating its

Euler characteristic (Dale et al., 1999; Worsley, 1995). This does

not show the degrees of errors caused by topological inaccuracies

in detail. However, it indicates the general pattern of topological

accuracies.

Local density of mesh

In the point distribution study (Figs. 8 and 9), CLASP showed

the greatest distribution in surface triangle area and edge length. In

some cases, this resulted in closest agreement with the true surface

characteristics (Figs. 8a and 9a), but, in others, CLASP test

surfaces tended toward greater heterogeneity than the true surface.

This was true even if CLASP was used to generate the true

surface (Figs. 8c and 9c). Only the pattern of point distribution

cannot explicitly explain how great the reconstructed surface is,

however, it indicates some surface characteristics which could be

used in post-processing such as surface registration, inflation, and

flattening.

Differences between the algorithms

BrainVISA uses a kind of bottom–up approach which is based

on a sequence of topologically simple points additions or deletions.

In general, bottom–up approach is very fast but more inaccurate

for the cortical surface reconstruction than top–down approach

like deformable surface which is computationally heavy. The

reconstruction method in BrainVISA has been mainly developed

for the automatic detection and recognition of the main cortical

sulci. Thus, geometrical accuracy of cortical surface could be less

important than the other tools which are developed mainly for the

shape analysis such as cortical thickness measure. Surface

processed by Freesurfer had a good geometric estimation of the

cortical surface compared to BrainVISA. It also appears more

realistic than the BrainVISA and CLASP surfaces in the sense that

it looks more like what a real brain looks like. However, the

estimation of the cortical surface in its automatic procedure usually

has some topologic defects because it uses tessellation approach in

the reconstruction of white surface. It should be noted that

Freesurfer allows for manual correction of topological errors

generated during the automated surface extraction procedure. But,

manual intervention becomes less practical as the number of

surfaces requiring correction increases.

CLASP delivered the most accurate geometry of the

reconstructed surface. In visual inspection, it looks less realistic

than Freesurfer surface having some creases on its surface.

These visual defects may be due to the insufficiency of local

smoothness. However, in the point of view of the morphological

analysis, it is not a concern that cortical surface has some visual

defects like small creases on its surface caused by a lack of

local smoothness. CLASP was only one among three tools

which generates the cortical surface topologically equivalent to a

sphere without additional process such as manual editing

because it uses a deformable surface model in its whole

reconstruction process.

In summary, of the three algorithms studied, the CLASP

algorithm demonstrated the most accurate surfaces after fully
automated analysis while BrainVISA produced the least accurate.

On the other hand, BrainVISA is much faster in achieving its

result. The evaluation strategy presented in this paper using MR

phantom provides ‘‘gold standard’’ with which to access the

performance of cortical surface reconstruction algorithms and

enables the validation of the specific performance which is

dependent on applications such as thickness measure, surface area,

fractal dimension, and sulcal depth. In future work, we will

investigate in more detail the local differences between cortical

surfaces reconstructed by each tool. This will allow us to identify

in which cortical areas each tool is most susceptible to errors of

geometric accuracies and cortical thickness.
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