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Abstract
We argue that registration should be thought of as a means
to an end, and not as a goal by itself. In particular, we
consider the problem of predicting the locations of hidden
labels of a test image using observable features, given a
training set with both the hidden labels and observable fea-
tures. For example, the hidden labels could be segmentation
labels or activation regions in fMRI, while the observable
features could be sulcal geometry or MR intensity.

We analyze a probabilistic framework for computing an
optimal atlas, and the subsequent registration of a new sub-
ject using only the observable features to optimize the hid-
den label alignment to the training set. We compare two
approaches for co-registering training images for the atlas
construction: the traditional approach of only using observ-
able features and a novel approach of only using hidden
labels. We argue that the alternative approach is superior
particularly when the relationship between the hidden la-
bels and observable features is complex and unknown.

As an application, we consider the task of registering
cortical folds to optimize Brodmann area localization. We
show that the alignment of the Brodmann areas improves by
up to 25% when using the alternative atlas compared with
the traditional atlas. To the best of our knowledge, these
are the most accurate Brodmann area localization results
(achieved via cortical fold registration) reported to date.

1. Introduction
This paper explores the general problem of optimal at-

las construction with the aim of predicting the locations of
hidden labels in a test image using observable features as-
suming a training set is available. The terms “labels” and
“features” are used in a general sense. For example, the hid-
den labels could be segmentation labels, activation regions
in fMRI or Brodmann areas, while the observable features
could be cortical folds or voxel intensities. Furthermore,
the roles of hidden labels and observable features are prob-

lem specific. For example, one could ask the question of
localizing cortical folds based on fMRI observations.

The traditional approach to atlas construction employs
image registration algorithms that maximize the similarity
between image features to bring training subjects into an
image-matched coordinate frame. The goal is to make the
images look as similar as possible, most of the time ignoring
label information. This approach assumes that correspon-
dence across all training and test subjects can and should be
achieved using these observable features. Once the train-
ing subjects are in correspondence, regressors (statistical or
otherwise) relating the observable features and hidden la-
bels are computed to summarize the population, which can
later be used to infer unobserved labels in a test image.

Alternatively, we propose computation of an atlas by co-
registering the hidden labels in the training set. This yields
a different alignment, particularly if the labels and features
are not strongly correlated. For example, the observable
features could be cortical folds (visible in in-vivo MRI) and
unseen labels could be cytoarchitectural structures (not vis-
ible in in-vivo MRI). Consequently, statistics computed in
this alternative label-matched coordinate frame differ from
those of the traditional atlas and the resulting registration of
a test image will therefore also be different.

The following toy example illustrates the differences be-
tween the two approaches. Figures 1(a,d) show two train-
ing images, where the red and blue boxes represent observ-
able image features and the black box is an unobservable
label. The black hidden label is completely predicted by the
blue observable feature, i.e., it is always to the right of the
blue feature. In both images, the red feature is the dominant
observable image feature and is not predictive of the black
label. Allowing for only translations, the image-matching
approach aligns the red feature since it dominates the blue
feature. In contrast, the label-matching approach aligns the
black label, with the blue feature aligned as a result. Fig-
ures 1(b,e) show the mean image in the image-matched and
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label-matched reference frames respectively. Figures 1(c,f)
show the variance image in the image-matched and label-
matched reference frames respectively. The aligned fea-
tures and labels have zero variance (empty boxes). In partic-
ular, the blue feature has zero variance in the label-matched
frame, implying that low variance features are predictive of
the labels. When we register an unlabeled image using only
the red and blue features, the hidden label will be aligned
with only one training image in the image-matched frame.
In contrast, the hidden label will be aligned to the labels of
both images in the label-matched frame.

In practice, there might not exist features that completely
predict the hidden labels. However, the constellation of low
variance predictive features in the label-matched coordinate
frame could conceivably improve the alignment of the hid-
den labels. In this paper, we show that the alternative label-
matched atlas strategy yields significantly improved align-
ment of the Brodmann areas between the test and training
images compared with a traditional image-matched atlas.

(a) First Training Image (b) Mean Image in
IM Frame

(c) Variance Image in
IM Frame

(d) Second Training
Image

(e) Mean Image in LM
Frame

(f) Variance Image in
LM Frame

Figure 1. Toy Example (see text for detailed explanations). (a,d):
Training Images. Black rectangle represents a hidden label. Blue
and red boxes are observable features. The red box is much big-
ger than the blue box. Allowing for only translations, after co-
registration of training images: (b,e): mean and variance images
in the image-matched frame. (c,f): mean and variance images in
the label-matched frame. Empty boxes denote zero variance.

2. Background
2.1. Registration and Atlas Construction

Registration aims to bring images into the same frame of
reference allowing for meaningful comparisons. To register
a population of images, one can register a new subject to all
subjects in the database [9, 19]. A more efficient method is
to summarize the population with a representative. Rather
than picking an arbitrary subject as a representative, some
methods have focused on determining the most unbiased at-
las [10, 14, 18] or multiple atlases [16] from a group of sub-
jects. This usually involves the registration of the subjects

into an image-matched coordinate frame, followed by atlas
statistics computation. Zollei et al. [24] avoid picking a par-
ticular representative altogether in the co-registration of the
training images. However, the final reference frame is still
an image-matched coordinate frame.

A question then arises on how well the features should be
aligned due to the tradeoff between image fidelity and warp
regularization. Twining et al. [20] optimizes this tradeoff
by finding the least complex atlas that explains the image
features of the population. This is useful if the goal is a
model to explain these observable features.

However, registration to an atlas is often only an interme-
diate step before further computation such as shape analy-
sis. In segmentation, the conventional paradigm warps a
new subject to the image-matched coordinate frame of the
training set. The segmentation labels of the training sub-
jects are then used to infer those of the subject. In joint
registration-segmentation [15], the hidden labels and warps
of a new subject are inferred simultaneously with respect
to the atlas. However, most studies on atlas-based joint
registration-segmentation are inconsistent due to the use of
segmentation labels in the registration of a new subject but
not in the co-registration of the training images.

An exception is the joint registration-parcellation of cor-
tical surfaces [22] that provides a consistent scheme of uti-
lizing segmentation labels in the registration of both test and
training images. Van Leemput [12] finds the least complex
atlas that explains the manual labels of a training set, dual
to Twining’s work [20]. While Van Leemput did not show
any verification of his atlas, our results in this paper seem
to suggest his atlas might be useful for segmentation.

A fundamental modeling assumption in almost all the
atlas construction literature is the choice of the image-
matched coordinate frame. This works well when the goal
is feature alignment or when the observable features define
or strongly correlate with the hidden labels (true for many
applications). However, if the hidden labels and observable
features have weak or complex correlations, then learning
the correlations should lead to improved results.

2.2. Brodmann Areas

The application we consider is the parcellation of the
human cerebral cortex into Brodmann areas [4]. The cy-
toarchitectonic properties defining the Brodmann areas are
mostly visible only in histology and more recently ex-
vivo MRI [3]. Unfortunately, much of the cytoarchitec-
tonics cannot be observed with current in-vivo imaging.
Yet, today, most studies report their functional findings
with respect to Brodmann areas, usually achieved by vi-
sual comparison of cortical folds with Brodmann’s original
drawings without estimates of confidence. More recently,
probabilistic Brodmann area maps created in the Talairach
and Colin27 normalized space via combined histology and



MRI [6, 17, 23] promise a more principled approach.
Despite the widespread practice of using macro-anatomy

such as cortical folds to estimate and report Brodmann ar-
eas in individual brains, little is known about their relation-
ship. In fact, studies have shown that even prominent Brod-
mann areas, e.g., V1 (BA17) and V2 (BA18), have signif-
icantly variable Talairach coordinates across subjects [1].
Yet, it is not clear whether the widely reported inaccuracy
in Brodmann area localization reflects the true variability
of the underlying architectonic areas with respect to macro-
anatomical cortical folds or is due to the poor quality of
inter-subject alignment.

In this paper, we employ a non-linear surface-based reg-
istration algorithm to co-register the labels in the training
images into a label-matched coordinate frame by convert-
ing the label images into signed distance maps [13]. The
resulting atlas consists of the mean and variance images of
cortical geometry computed in this label-matched coordi-
nate frame. The same algorithm is used to register a new
subject’s cortical geometry to the atlas, assigning more im-
portance to low variance atlas regions which are more pre-
dictive of Brodmann area locations via natural weighting of
the variance. These low variance regions are not necessarily
close to the Brodmann areas.

Our approach is similar to methods that segment regions
of low or no contrast, based on predictive information from
other regions that can be more easily segmented [11, 21].
However, most of these automatic methods employ expert
knowledge about the domain to determine these “predic-
tors.” In contrast, we discover these predictors automati-
cally and use them to drive the registration of a new subject.

In the next section, we discuss two modeling approaches
for atlas construction and the alignment of a new subject.
In sections 4.1 and 4.2, we instantiate the model with re-
spect to a data-set that contains Brodmann labels obtained
via histology and mapped to the corresponding MRI volume
[17, 23]. We present experimental results in section 4.3.

3. Theory: Registration & Atlas Computation
Let LN

1 = {L1, · · · , LN} and Y N
1 = {Y1, · · · , YN} de-

note the hidden labels and observable features given in a
training set of N images respectively. Let YN+1 be the ob-
servation of a new subject.

We denote RN
1 = {R1, · · · , RN} and RN+1 to be the

registration parameters of the training set and new subject
respectively. Let Φ be the atlas parameters that we aim
to learn from the training set that model the hidden la-
bels and/or observable features in the normalized reference
frame. For example, Φ can model the spatial distribution of
different brain structures L and/or the MR intensity distri-
bution Y of a particular tissue type L.

We will follow the common approach of estimating the
unknowns Φ, RN

1 and RN+1 sequentially. We begin with

the maximum a-posteriori (MAP) formulation to estimate
the atlas parameters Φ and registration parameters RN

1 :

(Φ∗, RN∗
1 ) = argmax

Φ,RN

1

p(Φ, RN
1 |LN

1 , Y N
1 ) (1)

Assuming a uniform prior on Φ, we obtain the following
Maximum Likelihood (ML) atlas objective function:

(Φ∗, RN∗
1 ) = argmax

Φ,RN

1

p(RN
1 , LN

1 , Y N
1 |Φ) (2)

Given the estimated atlas parameters Φ∗, we can then esti-
mate the registration of a new subject RN+1 via:

R∗
N+1 = arg max

RN+1

p(YN+1, RN+1|Φ
∗) (3)

Such a sequential estimation process is not optimal but can
be shown to be a reasonable approximation of the much
more computationally expensive MAP problem:

(Φ∗, RN+1∗
1 ) = argmax

Φ,R
N+1

1

p(Φ, RN+1
1 |Y N+1

1 , LN
1 ) (4)

We now concentrate on the atlas term (eq. 2) by rewriting it
as:

p(RN
1 , LN

1 , Y N
1 |Φ) = p(RN

1 |Φ)p(LN
1 , Y N

1 |Φ, RN
1 ) (5)

The first term p(RN
1 |Φ) can be thought of as the prior or

regularization on the registration parameters. The crux of
this paper lies in the second term, which is the data-fidelity
function:

p(LN
1 , Y

N
1 |Φ, R

N
1 ) = p(Y N

1 |ΦY , R
N
1 )p(LN

1 |ΦL|Y , Y
N
1 , R

N
1 )(6)

= p(LN
1 |ΦL, R

N
1 )p(Y N

1 |ΦY |L, L
N
1 , R

N
1 )(7)

where Φ = ΦY

⋃

ΦL|Y = ΦL

⋃

ΦY |L. ΦY and ΦL are the
parameters that model only Y and only L respectively. For
example, ΦL can model the spatial distribution of different
brain structures L. ΦY |L model the observations Y given
the labels L. For example, ΦY |L can model the MR inten-
sity distribution Y of a particular tissue type L. Similarly,
ΦL|Y model the labels L given observations Y .

Consider the following two approaches of modeling the
data-fidelity function:

1. Traditionally (for example [7]), the atlas parameters
ΦY and RN

1 are estimated by optimizing the first
term p(Y N

1 |ΦY , RN
1 ) of eq. (6) with the regulariza-

tion p(R|Φ). This can be done in a coordinate-ascent
manner by alternating steps of optimizing the regis-
tration parameters RN

1 and optimizing the atlas pa-
rameters ΦY . The optimal RN∗

1 for the first term
are then used to estimate ΦL|Y in the second term
p(LN

1 |ΦL|Y , Y, RN∗
1 ).

Given a new subject, Φ∗
Y are used to regis-

ter the subject to the atlas space via maximizing



p(YN+1, RN+1|Φ
∗
Y ). This can be followed by the use

of Φ∗
L|Y for segmentation.

Depending on the relationship between the labels and
features, ΦL|Y might be complex. In this work, we
will focus only on the registration part, i.e., ignore the
design and estimation of ΦL|Y .

In effect, this approach co-registers the images to an
image-matched coordinate frame and learns the pa-
rameters Φ that model the observations and labels in
this common space.

2. Alternatively, we propose to estimate ΦL and RN
1 by

optimizing the first term p(LN
1 |ΦL, RN

1 ) of eq. (7)
with the regularization p(R|Φ). Like before, this can
be done in a coordinate-ascent manner. The optimal
RN∗

1 for the first term are then used to estimate ΦY |L

in the second term p(Y N
1 |ΦY |L, LN

1 , RN∗
1 ).

Once again, ΦY |L might be complex depending on the
relationship between the labels and observations. In
this work, we will ignore the design and estimation of
ΦY |L.

However, we do need to estimate ΦY because given a
new subject, we would like to register it to the atlas
space by optimizing p(YN+1, RN+1|Φ

∗
Y ). ΦY can be

estimated by optimizing p(Y N
1 |ΦY , RN∗

1 ) where RN∗
1

are found from co-registering the labels.

In effect, this method co-registers the training images
using their labels to a label-matched coordinate frame,
and learns the parameters Φ that model the observa-
tions and labels in this common space.

In summary, the difference between the two models is that
the model parameters are learned in different spaces, as il-
lustrated in Figure 2. In particular, in the image-matched
coordinate frame, the observations of the training set are
matched and thus have low variance, while in the label-
matched coordinate frame, the observations might not be
well-aligned, and will in general have a higher variance. On
the other hand, in the label-matched coordinate frame, the
labels are matched, while in the image-matched coordinate
frame this may not be the case.

Since the model parameters ΦY are learned in a partic-
ular common space, Φ∗

Y describe the statistics of observa-
tions in that coordinate frame. Therefore given a new sub-
ject, optimizing p(YN+1, RN+1|Φ

∗
Y ), involves finding the

registration RN+1 that warps the new subject into that par-
ticular common space in which ΦY were learned. If ΦY

were learned in the label-matched coordinate frame, then
the new image would be brought into a space where labels
are well-aligned.

More concretely, in the label-matched coordinate frame,
observable features with low variance arise when align-

ing the labels also align them, suggesting that these low-
variance features are predictive of the labels. A possi-
ble strategy of summarizing the label-matched coordinate
frame with ΦY is to weigh the importance of the features in-
versely proportional to their variance. This is accomplished
in section 4.

Figure 2. Comparison of methods: In approach 1, images are
aligned into the image-matched coordinate frame where obser-
vations are matched. In approach 2, images are aligned into the
label-matched coordinate frame where labels are matched. Φ∗

Y de-
scribe the statistics of observations in the coordinate frame. There-
fore, a new image registered using Φ∗

Y will be brought into the
coordinate frame in which ΦY were learned.

As previously discussed, approach 1 is traditional in seg-
mentation. Most segmentation problems deal with regions
strongly related to the observations. This is supported by
the fact that manual delineation is usually performed by an
expert, directly on the image data. As a result, aligning the
observable features (e.g., MR intensity) also aligns the hid-
den labels (e.g., white and gray matter) and vice versa. Thus
the image-matched and label-matched reference frames are
similar and in practice, we expect both methods to perform
comparably in such problems.

On the other hand, in applications where the relation-
ship between the observed features and underlying labels is
complex or weak, e.g., cortical geometry vs. Brodmann ar-
eas (Figure 3), the two methods will yield different results.
In such cases, as demonstrated with the toy example in the
introduction, we expect approach 2 to yield better alignment
of the hidden labels.

4. Experiments

We now demonstrate the utility of our approach on
a data set that contains Brodmann labels mapped to the
corresponding MRI volume. 10 human brains were ana-
lyzed histologically postmortem using the techniques de-
scribed in [17, 23]. The histological sections were aligned
to postmortem MR with nonlinear warps to build a 3D
histological volume. These volumes were segmented to
separate white matter from other tissue classes, and the



Figure 3. Brodmann areas 2, 4a, 4p, 6, 44 and 45 on two sub-
jects’ inflated cortical surfaces. Red and green represent sulci and
gyri, respectively. Notice the variability of BA44 and BA45 with
respect to the underlying folding pattern.

segmentation was used to generate topologically correct
and geometrically accurate surface representations of the
cerebral cortex using a freely available suite of tools
(http://surfer.nmr.mgh.harvard.edu/fswiki) [5]. The 8 man-
ually labeled Brodmann area maps (areas 2, 4a, 4p, 6, 44,
45, 17 and 18) were sampled onto the surface representa-
tions of each hemisphere, and errors in this sampling were
manually corrected (e.g. when a label was erroneously as-
signed to both banks of a sulcus). A morphological close
was then performed on each label to remove small holes.
6 of the 8 Brodmann areas on the resulting cortical repre-
sentations for two subjects are shown in Figure 3. Finally,
the left and right hemispheres of each subject were mapped
onto a spherical coordinate system [8].

4.1. Atlas Computation

We construct the atlas in the label-matched coordinate
frame by co-registering the training images to align the
identified Brodmann areas. Following a commonly used
approach of extending local features to image-wide descrip-
tors, we convert each Brodmann area in each image to its
signed distance representation [13].

This yields an I-dimensional distance image Dn for each
subject n, where I is the total number of Brodmann areas.
We use the signed distance image Dn as a proxy for align-
ing the Brodmann areas. In our application, the number of
available Broadman areas is I = 8 and the number of sub-
jects is N = 10.

Each subject also has a J-dimensional observation image
Yn. In our application, J = 3, where the observations are
“sulcal depth” and the mean curvature of the cortical surface
before and after partial inflation [8]. We note that the mean
curvature of the partially inflated surface serve as a large-
scale feature for avoiding local optima.

To bring the subjects into the label-matched coordinate
frame, we repeatedly register each of the N distance maps
{Dn} to the current atlas defined by the mean and variance
of the distance maps. In particular, at iteration k, we max-
imize p(Ln|Φ

(k−1)∗
Y , Rk

n) , p(Dn|Φ
(k−1)∗
Y , Rk

n) for each
subject n.

Assuming independent Gaussians both spatially and
across Brodmann areas for the I distance maps that make

up Dn, we get the equivalent maximization (after taking
log) problem:

arg max
Rn

log p(Rn) −
1

2

I
X

i=1

X

~x

(Dni(~x(Rk
n)) − Mk−1

i (~x))2

V k−1

i (~x)

where ~x denotes vertex location. Dni denotes the signed
distance image of the ith label in subject n. M k−1

i (~x) =
1
N

∑

n Dni(~x(R
(k−1)∗
n )) is the mean distance map for

Brodmann area i after iteration k − 1 and V k−1
i (~x) =

1
N

∑

n(Dni(~x(R
(k−1)∗
n )) − Mk−1

i (~x))2 is the variance of
the distance map for Brodmann area i after iteration k − 1.

Similar to [7], we define the regularization p(R|Φ) ,

p(R) to be:

log p(R) = log F (R) − S

[

∑

u

∑

v∈Nu

(

dR
uv − d0

uv

d0
uv

)2
]

(8)

where dR
uv is the distance between vertices u and v under

registration R, d0
uv is the original distance and Nu denotes

a neighborhood of v. Our regularization penalizes metric
distortion weighted by a scalar S which reflects the amount
of smoothness of the final warp. Function F (·) ensures in-
vertibility and is zero if the warp introduces folds in the
surface and one otherwise. R is optimized by warping each
vertex individually. In this work, S is set to 1. Exploration
of the parameter S is a topic of future research.

Once the co-registration is completed, we compute the
atlas parameter Φ∗

Y using R∗
n. Let Ynj denote the scalar

image corresponding to the j-th observation in subject n.
Φ∗

Y consists of two images: the observation mean image

MA
j (~x) =

1

N

∑

n

Ynj(~x(R∗
n)),

and the observation variance image

V A
j (~x) =

1

N

∑

n

(Ynj(~x(R∗
n)) − MA

j (~x))2.

For the computation of the image-matched coordinate
frame atlas, we repeat the construction discussed above but
replacing the distance map Dn with Yn. The construction is
then essentially the same as FreeSurfer [7].

4.2. Registration of a New Brain
The registrations of an unlabeled brain YN+1 to both the

image-matched and label-matched atlases are performed by
optimizing p(YN+1, RN+1|Φ

∗
Y ). Consistently with the pro-

cedure used for atlas construction, we estimate the registra-
tion parameters RN+1 for the new image by optimizing

−
1

2

J
X

j=1

X

~x

(YN+1,j(~x(RN+1)) − MA
j (~x))2

V A
j (~x)

(9)

with the same regularization as (8). This assumes a Gaus-
sian model with independence across space and the observ-
able image features. A more general model could replace



the individual variances V A
j with a covariance matrix. Note

the role of the variances reflect the intuition that in the label-
matched coordinate frame, low variance features are more
predictive of the labels and are given more weight.

4.3. Results

We quantify the alignment quality of a corresponding
Brodmann area of a given pair of registered labeled maps
with the modified Hausdorff distance (MHD). To compute
the asymmetrical MHD H1→2 between a “corresponding
label of subject 1 and subject 2 in subject 2’s native space”,
for each boundary point of the label in subject 1, the shortest
distance to the boundary of the label in subject 2 is found.
We repeat by computing all shortest distances from the la-
bel boundary in subject 2 to the label boundary in subject
1. H1→2 is then the average of all shortest distances. The
asymmetry in the above process comes from the computa-
tion of distances along the cortical surface (native space) of
subject 2 rather than some average surface in atlas space.
This prevents the possibility of obtaining artificially good
results because the images are squeezed together in atlas
space. Unlike overlap measures, such as the Dice coeffi-
cient, MHD provides the measure in mm of the uncertainty
of localization, and is invariant to the size of an area.

For our benchmark, we compute an “image-matched 10”
atlas (IM10) from the 10 ex-vivo brains using the FreeSurfer
algorithm (see section 4.1). Since the 10 ex-vivo brains are
already co-registered to construct the atlas, the brains are
already in correspondence and we compute the MHD be-
tween the Brodmann areas of each pair of ex-vivo brains
resulting in 90 (instead of 45 because of the asymmetry)
comparisons per structure.

As a second benchmark, we compute an “image-matched
40” atlas (IM40) from a set of 40 in-vivo brains. In this
case, we register each of the 10 ex-vivo brains to IM40 via
eq. (9) and compute the MHD between the Brodmann areas
of each pair of ex-vivo brains resulting in 90 comparisons
per structure.

Finally, we compute a leave-one-out “label-matched 9”
atlas (LM9) for each of the 10 ex-vivo brains, i.e. the 10
brains minus the test subject. We use the leave-one-out pro-
cedure so as to exclude the Brodmann areas of the test sub-
ject from the atlas construction. We then register the test
subject to the corresponding LM9 atlas according to equa-
tion (9) and compute the MHD between the Brodmann areas
of the test subject and the 9 brains in the atlas. Once again,
we get 90 comparisons per structure.

For each Brodmann area, we want to test whether the
90 MHD measurements from LM9 are statistically signifi-
cantly smaller than those of IM10 or IM40. Yet, the com-
parisons are not independent, nor is there really a one-to-
one correspondence between the measurements. We there-
fore perform a permutation test, where we pool all the mea-

surements into a group of 180 measurements. We then re-
peatedly split the 180 measurements into 2 equally sized
groups and computed the difference in means between the
groups, building an empirical distribution of the difference
in means under the null hypothesis. For each structure, we
perform a million random permutations. Under the null hy-
pothesis that the means of the 2 groups are the same, such a
test is valid despite the unknown correlations.

Table 1 lists the average MHD’s for the three atlases and
eight Brodmann areas, along with the p-values for LM9 vs.
IM10 and LM9 v. IM40. We see that, in general, the
IM40 atlas yields a significantly better alignment than the
IM10 atlas. From our experience, this is because IM40
contains many more subjects and thus yields better esti-
mates for the atlas parameters. The label-matched LM9
atlas, however, achieves the best alignment for all Brod-
mann areas. The alignment error is up to 25% less than
that of IM40 with statistical significance (p < 0.01) in 12
out of 16 regions (all, except BA44 in the left hemisphere,
BA4p, BA6 and BA44 in the right hemisphere). Figure 5
provides a more detailed comparison between the results of
the two best atlases: LM9 and IM40. Figure 4 shows the
Brodmann areas with statistically significant improvement
on the cortical surface.

5. Conclusion
In this paper, we argue that the goal should drive the

computation of an atlas. In particular, we investigate an ap-
proach that co-registers hidden labels in a training data set
to compute a probabilistic atlas based on observable fea-
tures. The purpose of the atlas is to localize unobserved
labels in a new data set. The atlas construction process
automatically discovers important observable features since
low-variance observable features are more predictive of the
hidden labels. Given a new subject, the registration algo-
rithm gives more importance to the low-variance regions via
natural weighting of the variance.

We show that a registration algorithm that nonlinearly
registers observable folding patterns of a brain with a label-
matched atlas can achieve surprisingly high accuracy in the
localization of a set of cytoarchitectonic Brodmann areas.
In particular, alignment errors for V 1, BA4a, BA4p and
V 2 of both hemispheres are less than 3.5mm. The remain-
ing areas are more variable, but still exhibit significantly
improved overall predictability relative to the more standard
12 degree of freedom volumetric alignment. In particular,
Broca’s area (left hemisphere BA44 and BA45) has a sur-
prisingly low estimation error compared with previously re-
ported results [2]. The results we present are, to our knowl-
edge, the best of their kind and may have important impli-
cations in the study of the relationship between the macro-
anatomical and cytoarchitectonic organization of the brain.

Future work involves the discovery of more Brodmann-



Table 1. Average alignment errors in mm for the three atlases. Best alignment for each Brodmann area is in bold. The last two rows of
each table contain a statistical comparison (permutation test p-value) between the label-matched atlas LM9 and the image-matched atlases
IM10 and IM40. The p-values that do not reach significance are shown in italic.

Left Hemisphere
V1 BA4a BA4p BA2 V2 BA6 BA44 BA45

IM10 3.83 4.38 3.77 6.28 4.64 7.01 7.41 6.81
IM40 2.89 3.81 3.60 5.62 4.25 7.06 7.57 6.92
LM9 2.34 2.86 3.00 4.63 3.31 5.87 6.92 4.63

P-values
IM10 v. LM9 10−6 10−6 10−6 10−6 10−6 10−6 1 .2 x 10−1 10−6

IM40 v. LM9 10−6 10−6 3.8x10−5 3.5x10−5 10−6 1.2x10−4 6 .7 x 10−2 10−6

Right Hemisphere
V1 BA4a BA4p BA2 V2 BA6 BA44 BA45

IM10 3.85 3.76 3.11 5.92 3.97 6.50 11.54 9.88
IM40 2.70 3.58 2.92 5.66 3.58 6.34 10.49 9.20
LM9 2.39 3.07 2.89 4.73 3.05 5.90 9.72 7.40

P-values
IM10 v. LM9 10−6 10−6 2 .8 x 10−2 10−6 10−6 3 .8 x 10−2 6.6 x 10−3 3 x 10−4

IM40 v. LM9 8.7−4 2.1x10−4 4 .0 x 10−1 8.6x10−5 10−6 8 .9 x 10−2 1 .3 x 10−1 4.2−3

predictive macro-anatomical features and the understand-
ing from a neuro-scientific perspective why some folds are
more predictive than others of Brodmann area location.

Left Lateral Left Medial

Right Lateral Right Medial

Figure 4. Maps of p-values of the difference in alignment quality
between the label-matched atlas LM9 and image-matched atlas
IM40. The p-values are plotted in minus log-scale so that large
values correspond to being more significant. Only statistically sig-
nificant regions are shown in color.
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