Overview of FreeSurfer and TRACULA

Anastasia Yendiki

HMS/MGH/MIT Athinoula A. Martinos Center for Biomedical Imaging

Schedule -

00		TraculaWork	shopNov2013 – F	ree Surfer Wik
TraculaWor	kshopNov2013 - Fre +			
harva	rd.edu https://surfer.nmr.mgh.harvard.edu/fswiki/T	aculaWorkshopNov	2013	
Most Visite	d 🔻 p Getting Started 🛛 🔝 Latest Headlines 👻 👘	Apple 💽! Yahoo!	👥 Google Maps	YouTube
esurferWiki Re	Login TraculaWorkshopNov2013 DentChanges FindPage HelpContents TraculaWorkshopNov2013			
nutable Page Disc	ussion Info Attachments More Actions:			
RACULA	workshop, November 18, 2013			
RACULA t. Olavs Hosp	workshop, November 18, 2013 pital, Trondheim, Norway			
RACULA t. Olavs Hosp Time 9:00 - 9:50	workshop, November 18, 2013 pital, Trondheim, Norway Title • Overview of FreeSurfer and TRACULA			
RACULA t. Olavs Hos Time 9:00 - 9:50 10:00 - 10:50	workshop, November 18, 2013 pital, Trondheim, Norway Title • Overview of FreeSurfer and TRACULA • TRACULA: Principles and usage			
RACULA t. Olavs Hos Time 9:00 - 9:50 10:00 - 10:50 11:00 - 11:50	workshop, November 18, 2013 pital, Trondheim, Norway Title • Overview of FreeSurfer and TRACULA • TRACULA: Principles and usage • TRACULA: Troubleshooting, visualization, and group analysis			
RACULA t. Olavs Hos Time 9:00 - 9:50 10:00 - 10:50 11:00 - 11:50	workshop, November 18, 2013 pital, Trondheim, Norway Title • Overview of FreeSurfer and TRACULA • TRACULA: Principles and usage • TRACULA: Troubleshooting, visualization, and group analysis Lunch break			
RACULA Time 9:00 - 9:50 10:00 - 10:50 11:00 - 11:50 13:00 - 13:40	workshop, November 18, 2013 pital, Trondheim, Norway Title • Overview of FreeSurfer and TRACULA • TRACULA: Principles and usage • TRACULA: Troubleshooting, visualization, and group analysis Lunch break • Head motion as a confound in diffusion MRI studies			
RACULA Time 9:00 - 9:50 10:00 - 10:50 11:00 - 11:50 13:00 - 13:40 13:50 - 14:30	workshop, November 18, 2013 pital, Trondheim, Norway Title • Overview of FreeSurfer and TRACULA • TRACULA: Principles and usage • TRACULA: Principles and usage • TRACULA: Troubleshooting, visualization, and group analysis Lunch break • Head motion as a confound in diffusion MRI studies • Longitudinal TRACULA			
RACULA t. Olavs Hos Time 9:00 - 9:50 10:00 - 10:50 11:00 - 11:50 13:00 - 13:40 13:50 - 14:30 14:30 - 15:00	workshop, November 18, 2013 pital, Trondheim, Norway Title • Overview of FreeSurfer and TRACULA • TRACULA: Principles and usage • TRACULA: Principles and usage • TRACULA: Troubleshooting, visualization, and group analysis Lunch break • Head motion as a confound in diffusion MRI studies • Longitudinal TRACULA Discussion			

18/11/13

Documentation and support

- Wiki page:
- Usage info
- Updates
- Tutorials

00		Tracula - Free Surfer Wiki
Tracula - Free Surfer Wiki	+	
surfer.nmr.mgh.harvard.edu/1	swiki/Tracula	
🔯 Most Visited 🔹 🏇 Getting Started	🔝 Latest Headlines 🔹 🤺 Apple	😢! Yahoo! ! Google Maps 🛛 Ye
Login		
Tracula		
FreeSurferWiki RecentChanges FindPage HelpCont	ents Tracula	
Immutable Page Discussion Info Attachments More Ac	tions:	

TRACULA: TRActs Constrained by UnderLying Anatomy

TRACULA is a tool for automatic reconstruction of a set of major white-matter pathways from diffusion-weighted MR images. It uses global pr structures of each pathway are derived from an atlas and combined with the FreeSurfer cortical parcellation and subcortical segmentation of for user interaction, e.g., to draw ROIs manually or to set thresholds on path angle and length, and thus automates the application of tractogra

Updates

TRACULA in FreeSurfer 5.3:

Questions: freesurfer@nmr.mgh.harvard.edu

FreeSurfer

Automated white/grey matter segmentation and surface reconstruction [Dale 1999, Fischl 1999]

Surface-based coordinate system

• Align individual brains based on gyral/sulcal patterns [Fischl 1999]

18/11/13

Cortical thickness

Distance between white and pial surfaces along normal vector (1-5mm)

Application: Aging

18/11/13

Cortical/subcortical labels

aparc

aparc+aseg

Using surfaces for intra-subject alignment

Boundary-Based Registration (BBR)

Boundary-based registration

Greve and Fischl, 2009

- Goal: Register T₁ (higher resolution and SNR) to EPI (lower resolution and SNR) from the same subject
- EPI can be fMRI or a baseline (low-b) from a diffusion scan
- Most registration methods are intensity-based
- Boundary-based: Exploit the fact that T₁ gives us information on the gray/white boundary
- Optimizes gradient of EPI gray/white contrast perpendicular to the surface

Intensity- vs. boundary-based

Greve and Fischl, 2009

• Compare BBR to methods that use only image intensities: correlation ratio (CR), normalized mutual information (NMI)

Partial field of view

Greve and Fischl, 2009

• Very challenging for intensity-based methods

Using surfaces for inter-subject alignment

Combined Volume & Surface (CVS) registration

Inter-subject registration

Work by Lilla Zöllei and Gheorghe Postelnicu

- Volumetric (3D)
 - Poor for cortical folds
 - + Applies to entire brain
- Surface-based (2D)
 - + Excellent for cortical folds
 - Doesn't apply to non-cortical structures
- CVS: Combined Volume and Surface
 - 1. Surface-based registration on the cortex
 - 2. Propagate into the volume via elastic transform
 - 3. Initialize intensity-based volumetric registration

Accuracy comparison

Slides by Lilla Zöllei

- 40 adult subjects with manually segmented cortex
- Leave-one-out, extended Jaccard overlap metric

Template

Slides by Lilla Zöllei

FSL/FLIRT (affine)

Slides by Lilla Zöllei

- HAMMER (volumetric + gray/white) Slides by Lilla Zöllei

Elastic only

Slides by Lilla Zöllei

Alignment of training paths

Zöllei et al, 2010

20/43

Using anatomical segmentation for automated tractography

TRActs Constrained by UnderLying Anatomy (TRACULA)

Overview of FreeSurfer and TRACULA

21/43

Automated pathway reconstruction

[Yendiki et al 2011]

- TRACULA (TRActs Constrained by UnderLying Anatomy)
- Algorithm trained on the likelihood of each pathway passing by each anatomical structure

18/11/13

Tractography studies

- Exploratory tractography:
 - Example: Show me all regions that the motor cortex is connected to
 - Seed region can be anatomically defined (motor cortex) or functionally defined (region activated in an fMRI finger-tapping task)

- Tractography of known pathways:
 - Example: *Show me the corticospinal tract*
 - Use prior anatomical knowledge of the pathway's terminations and trajectory (connects motor cortex and brainstem through capsule)
- TRACULA is for the latter type of study

Tractography methods

- Every tractography method can be characterized by:
 - Which model of diffusion does it use?
 - Representation of local orientation of diffusion at every voxel that is fit to image data (tensor, ball-and-stick, etc.)
 - Is it deterministic or probabilistic?
 - Deterministic estimates only the most likely orientation
 - Probabilistic also estimates the uncertainty around that
 - Is it local or global?
 - Local fits the pathway to the data one step at a time
 - Global fits the entire pathway at once
- TRACULA does global probabilistic tractography with the balland-stick model

Diffusion in brain tissue

• Differentiate between tissues based on the diffusion (random motion) of water molecules within them

• Gray matter: Diffusion is unrestricted \Rightarrow isotropic

• White matter: Diffusion is restricted \Rightarrow anisotropic

- Models of diffusion

Diffusion spectrum: Full distribution of orientation and magnitude	DSI
Orientation distribution function (ODF):	Q-ball
No magnitude info	
Ball-and-stick:	FSL
Orientation and magnitude for up to N anisotropic compartments (default N=2)	(bedpostX
Tensor:	DTI
Single orientation and magnitude	

18/11/13

Overview of FreeSurfer and TRACULA

26/43

Diffusion MRI (dMRI)

- Magnetic resonance imaging can • provide "diffusion encoding"
- Magnetic field strength is varied by gradients in different directions
- Image intensity is attenuated • depending on water diffusion in each direction
- Compare with baseline images to ulletinfer on diffusion process

Tensors

- One way to express the notion of direction is a tensor *D*
- A tensor is a 3x3 symmetric, positive-definite matrix:

$$D = \begin{bmatrix} d_{11} d_{12} d_{13} \\ d_{12} d_{22} d_{23} \\ d_{13} d_{23} d_{33} \end{bmatrix}$$

- *D* is symmetric $3x_3 \Rightarrow$ It has 6 unique elements
- Suffices to estimate the upper (lower) triangular part

Eigenvalues & eigenvectors

- The matrix *D* is positive-definite \Rightarrow
 - It has 3 real, positive eigenvalues λ_1 , λ_2 , $\lambda_3 > 0$.
 - It has 3 orthogonal eigenvectors \boldsymbol{e}_1 , \boldsymbol{e}_2 , \boldsymbol{e}_3 .

Physical interpretation

- Eigenvectors express diffusion direction
- Eigenvalues express diffusion magnitude

Isotropic diffusion:

 $\lambda_1 \approx \lambda_2 \approx \lambda_3$

Anisotropic diffusion:

 $\lambda_1 >> \lambda_2 \approx \lambda_3$

• One such ellipsoid at each voxel: Likelihood of water molecule displacements at that voxel

Diffusion tensor imaging (DTI)

Image:

An intensity value at each voxel

Tensor map:

A tensor at each voxel

Direction of eigenvector corresponding to greatest eigenvalue

Diffusion tensor imaging (DTI)

Image:

An intensity value at each voxel

Tensor map:

A tensor at each voxel

Direction of eigenvector corresponding to greatest eigenvalue

Red: L-R, Green: A-P, Blue: I-S

18/11/13

Tensor-based measures of diffusion -

• Mean diffusivity (MD): Mean of the 3 eigenvalues

 $MD(j) = [\lambda_1(j) + \lambda_2(j) + \lambda_3(j)]/3$

 Fractional anisotropy (FA):
 Variance of the 3 eigenvalues, normalized so that 0≤ (FA) ≤1

 $FA(j)^{2} = \frac{3}{2} \frac{[\lambda_{I}(j) - MD(j)]^{2} + [\lambda_{2}(j) - MD(j)]^{2} + [\lambda_{3}(j) - MD(j)]^{2}}{\lambda_{I}(j)^{2} + \lambda_{2}(j)^{2} + \lambda_{3}(j)^{2}}$

More tensor-based measures

- Axial diffusivity: Greatest of the 3 eigenvalues $AD(j) = \lambda_{I}(j)$
- Radial diffusivity: Average of 2 lesser eigenvalues $RD(j) = [\lambda_2(j) + \lambda_3(j)]/2$
- Inter-voxel coherence: Average angle b/w the major eigenvector at some voxel and the major eigenvector at the voxels around it

Beyond the tensor

• The tensor is an imperfect model: What if more than one major diffusion direction in the same voxel?

- High angular resolution diffusion imaging (HARDI): More complex models to capture more complex microarchitecture
 - Mixture of tensors [Tuch'02]
 - Higher-rank tensor [Frank'02, Özarslan'03]
 - Ball-and-stick [Behrens'07]
 - Orientation distribution function [Tuch'04]
 - Diffusion spectrum [Wedeen'05]

Non-tensor measures of diffusion

- From the orientation distribution function (ODF) [Tuch'04]:
 - Peak directions
 - Generalized fractional anisotropy (GFA)

 $GFA^{2} = \frac{n \Sigma_{i} [ODF(\theta_{i}) - \Sigma_{i} ODF(\theta_{i})/n]^{2}}{(n-1) \Sigma_{i} ODF(\theta_{i})^{2}}$

- From the ball-and-stick model [Behrens'07]:
 - Orientation angles of each anisotropic compartment (1, 2, ...)
 - Volume of each anisotropic compartment
 - Overall diffusivity in the voxel

Choice 1: Gradient directions

True diffusion direction || Applied gradient direction
 ⇒ Maximum attenuation

Diffusion-encoding gradient **g** Displacement detected

• True diffusion direction \perp Applied gradient direction

 \Rightarrow No attenuation

Diffusion-encoding gradient **g** Displacement not detected

• To capture all diffusion directions well, gradient directions should cover 3D space uniformly

Diffusion-encoding gradient **g** Displacement partly detected

How many directions?

- Acquiring data with more gradient directions leads to:
 - + More reliable estimation of diffusion measures
 - Increased imaging time \Rightarrow Subject discomfort, more susceptible to artifacts due to motion, respiration, etc.

• DTI:

- Six directions is the minimum
- Usually a few 10's of directions
- Diminishing returns after a certain number [Jones, 2004]
- DSI:
 - Usually a few 100's of directions

Choice 2: The b-value

- The b-value depends on acquisition parameters: $b = \gamma^2 G^2 \delta^2 (\Delta - \delta/3)$
 - $-\gamma$ the gyromagnetic ratio
 - *G* the strength of the diffusion-encoding gradient
 - $-\delta$ the duration of each diffusion-encoding pulse
 - Δ the interval b/w diffusion-encoding pulses

How high b-value?

- Increasing the b-value leads to:
 - + Increased contrast b/w areas of higher and lower diffusivity in principle
 - Decreased signal-to-noise ratio ⇒ Less reliable estimation of diffusion measures in practice
- DTI: b ~ 1000 sec/mm²
- DSI: b ~ 10,000 sec/mm²
- Data can be acquired at multiple b-values for trade-off
- Repeat acquisition and average to increase signal-to-noise ratio

Distortions: Field inhomogeneities

• Causes:

Scanner-dependent (imperfections of main magnetic field)
Subject-dependent (changes in magnetic susceptibility in tissue/air interfaces)

• Results:

- Signal loss in interface areas
- Geometric distortions (warping) of the entire image

Signal loss

Distortions: Eddy currents

- Cause: Fast switching of diffusionencoding gradients induces eddy currents in conducting components
- Eddy currents lead to residual gradients that shift the diffusion gradients
- The shifts are direction-dependent, *i.e.*, different for each DW image
- Result: Geometric distortions

From Le Bihan *et al.*, Artifacts and pitfalls in diffusion MRI, JMRI 2006

Data analysis steps

- Pre-process images to reduce distortions
 - Either register distorted DW images to an undistorted (non-DW) image
 - Or use information on distortions from separate scans (field map, residual gradients)
- Fit a diffusion model at every voxel
 DTI, DSI, Q-ball, ...
- Compute measures of anisotropy/diffusivity and compare them between populations

 Voxel-based (*e.g.*, TBSS), ROI-based, tract-based
 - Voxel based (e.g., 1000), ROI based, fract base
- For tract-based: Reconstruct pathways

