TRACULA: Principles and usage

Anastasia Yendiki

HMS/MGH/MIT Athinoula A. Martinos Center for Biomedical Imaging

TRACULA: principles and usage

Deterministic vs. probabilistic

• Deterministic methods give you an estimate of model parameters

• **Probabilistic methods** give you the uncertainty (probability distribution) of the estimate

Deterministic vs. probabilistic

Deterministic tractography: One streamline per seed voxel Probabilistic tractography: Multiple streamline samples per seed voxel (drawn from probability distribution)

Deterministic vs. probabilistic

Deterministic tractography: One streamline per seed voxel

Probabilistic tractography: A probability distribution (sum of all streamline samples from all seed voxels)

Local vs. global

Local tractography:

Fits pathway step-by-step, using local diffusion orientation at each step

Global tractography:

Fits the entire pathway, using diffusion orientation at all voxels along pathway length

Local tractography

- Best suited for exploratory study of connections
- All connections from a seed region, not constrained to a specific target region
- How do we isolate a specific white-matter pathway?
 - Thresholding?
 - Intermediate masks?
- Non-dominant connections are hard to reconstruct
- Results are not symmetric between "seed" and "target" regions
- Sensitive to areas of high local uncertainty in orientation (*e.g.*, pathaway crossings), errors propagate from those areas

Global tractography

- Best suited for reconstruction of known white-matter pathways
- Constrained to connection of two specific end regions
- Not sensitive to areas of high local uncertainty in orientation, integrates over entire pathway
- Symmetric between "seed" and "target" regions
- Need to search through a large solution space of all possible connections between two regions:
 - Computationally expensive
 - Sensitive to initialization

TRACULA

- Reconstruct 18 major white-matter pathways with no manual intervention
- Global probabilistic tractography with prior information on tract anatomy from training subjects
- Learn from training subjects which anatomical regions each pathway typically goes through/next to
- Constrain pathway in new subject based on this prior anatomical knowledge
- Ad-hoc anatomical constraints are often used by other methods: constraints on path bending angle or length, WM masks, ...

Tractography takes time

- Get whole-brain tract solutions, edit manually
- Use knowledge of anatomy to isolate specific pathways

TRACULA: principles and usage

White-matter pathway atlas

- Labeling based on an established protocol [Wakana '07]
- Corticospinal tract
- Inferior longitudinal fasciculus
- Uncinate fasciculus
- Corpus callosum
 - Forceps major
 - Forceps minor
- Anterior thalamic radiation
- Cingulum
 - Cingulate (supracallosal)
 - Angular (infracallosal)
- Superior longitudinal fasciculus
 - Parietal
 - Temporal

Intra/inter-rater errors: 1mm/2mm on average

White-matter pathway atlas

• Manual labeling of paths in training subjects performed in Trackvis

• Anatomical segmentation maps of training subjects from FreeSurfer

TRACULA: principles and usage

Probabilistic model

Have image data \boldsymbol{Y}

Want most probable path \mathcal{F}

- Determine the most probable path based on:
 - What the images tell us about the path (likelihood)
 - What we already know about the path (prior)
- Estimate posterior probability of path \mathcal{F} given images \boldsymbol{Y}

 $p(\mathcal{F} \mid \mathbf{Y}) \propto p(\mathbf{Y} \mid \mathcal{F}) \cdot p(\mathcal{F})$

- *p*(*Y* | *F*) : Uncertainty due to imaging noise
 Fit of pathway orientation to ball-and-stick model parameters [Jbabdi *et al.,* '07]
- *p*(*F*) : Uncertainty due to anatomical variability
 Fit of pathway to prior anatomical knowledge from training set [Yendiki *et al.,* '11]

Schizophrenia study

Data courtesy of Dr. Randy Gollub and MIND Institute

• Reconstruct pathways in 34 SZ patients and 23 healthy controls

Control 1

Control 2

Control 3

Patient 1

Patient 2

Patient 3

TRACULA: principles and usage

Schizophrenia study

Data courtesy of Dr. Randy Gollub and MIND Institute

- Reconstruct pathways with:
 - No training subjects
 - 30 healthy training subjects
 - 15 healthy / 15 SZ training subjects
 - 30 SZ training subjects
- Evaluate distance b/w automatically reconstructed and manually labeled pathways

18/11/13

TRACULA: principles and usage

Usage

- All processing options are defined in a configuration file, dmrirc
- Step 1: Pre-processing (distortion compensation, registration, etc.)
 trac-all -prep -c dmrirc
- Step 2: Fitting of ball-and-stick model (FSL's bedpostx)
 trac-all -bedp -c dmrirc
- Step 3: Reconstruct pathways
 trac-all -path -c dmrirc

Configuration file

- Example configuration file:
 \$FREESURFER_HOME/bin/dmrirc.example
- The simplest configuration file possible, using all default options and only defining inputs:

```
setenv SUBJECTS_DIR /path/to/fs/output/directory
set subjlist = (subjA subjB ...)
set dcmlist = (/path/to/A/1.dcm /path/to/B/011-1.dcm ...)
set bvecfile = /path/to/bvecs.txt
set bvalfile = /path/to/bvals.txt
```

- Same gradient vectors and b-values assumed for all scans
- Can specify trac-all output directory different from recon-all \$SUBJECTS_DIR:
 set dtroot = /path/to/tracula/output/directory

18/11/13

Pre-processing

trac-all -prep -c dmrirc

- Includes the following steps:
 - Image corrections: -corr
 - NEW: Quality assessment : -qa
 - Intra-subject registration (DWI to T1): -intra
 - Inter-subject registration (T1 to template) : -inter
 - Anatomical masks and labels : -mask
 - Tensor fit : -tensor
 - Anatomical priors : -prior
- Can do some of the steps only (assuming previous steps have been done):
 - trac-all -corr -qa -c dmrirc
- Or exclude some of the steps (assuming they have been done previously):
 - trac-all -prep -nocorr -noqa -c dmrirc

Image corrections

trac-all -corr -c dmrirc

- Uses standard FSL tools to mitigate eddy-current and susceptibility distortions
- To perform eddy-current correction (registration-based) and apply the same rotations to the gradient vectors as to the images:
 set doeddy = 1
 set dorotbyecs = 1
- To perform susceptibility distortion correction (field map-based): set dob0 = 1 set b0mlist = (/path/to/A/b0m-1.dcm ...) set b0plist = (/path/to/A/b0p-1.dcm ...) set echospacing = 0.7

New: Quality assessment

trac-all -qa -c dmrirc

- Compute 4 measures of head motion from the diffusion images:
 - Translational motion
 - Rotational motion
 - Frequency of intensity drop-outs
 - Severity of intensity drop-outs
- Can be used to match groups for head motion or as regressor in statistical analyses of anisotropy and diffusivity

Intra-subject registration

trac-all -intra -c dmrirc

- Register the individual DWI to the individual T1
- Option 1: set doregflt = 1
 - Affine registration with flirt
- Option 2: set doregbbr = 1
 - Affine registration with bbregister
 - Boundary-based registration using intensity gradient across surface
 - This is the default option

Inter-subject registration

trac-all -inter -c dmrirc

- Register the individual T1 to a common template space
- Option 1: set doregmni = 1
 - Affine registration with flirt
 - By default registers to MNI template (avg 152)
 - Target template image can be specified with: set mnitemp = ...
- Option 2: set doregcvs = 1
 - Non-linear registration with mri_cvs_register
 - By default registers to the CVS template (avg 35)
 - Target template subject can be specified with
 set cvstemp = ...

set cvstempdir = ...

\$FREESURFER_HOME/bin/subjects/cvs_avg35

Inter-subject registration: MNI

Affine registration of individuals to the MNI template

18/11/13

Inter-subject registration: CVS

Non-linear registration of individuals to the CVS template

18/11/13

TRACULA: principles and usage

Anatomical masks and labels

trac-all -mask -c dmrirc

- Maps aparc+aseg, cortex, and white-matter masks
- By default, use a dilated version of the anatomical aparc+aseg as the brain mask for all subsequent processing
 set domaskanat = 1
- Otherwise, it's possible to use a brain mask obtained from the low-b with FSL BET, and set the BET threshold
 set thrbet = 0.3

- Tensor fit -

trac-all -tensor -c dmrirc

- Tensors are NOT used for tractography in TRACULA!
- Tensors are only used to compute maps of FA, MD, RD, AD
- This step also transforms FA, MD, RD, AD volumes to the common template space (MNI or CVS) not used by TRACULA but could be used in a voxel-based analysis

Anatomical priors

trac-all -prior -c dmrirc

- Computes anatomical priors from tract atlas
- By default, the 33 subjects provided with TRACULA are used, but this can be changed:
 set trainfile = \$FREESURFER_HOME/trctrain/trainlist.txt
- To process only a subset of the 18 pathways: set pathlist = (lh.cst_AS rh.cst_AS)
- For each pathway specify how many control points:
 set ncpts = (6 6)

Ball-and-stick model fit

trac-all -bedp -c dmrirc

- This step simply runs FSL bedpostX to fit the ball-and-stick model of diffusion to every voxel in the brain mask
- This can take a while, but it's possible to run every slice in parallel
- To specify the maximum number of anisotropic compartments per voxel (default: 2) set nstick = 3

Pathway reconstruction

trac-all -path -c dmrirc

- Reconstruct the 18 pathways (or a subset) using a random sampling algorithm
- Pick an initial guess for the path from the training subjects in the atlas (the only step that requires decent alignment between individual and atlas!)
- At every iteration, perturb control points of path and compute its fit to diffusion data and to anatomical priors from atlas
- To specify number of paths to sample (default: 7500)
 set nsample = 10000