Longitudinal TRACULA

Anastasia Yendiki

HMS/MGH/MIT Athinoula A. Martinos Center for
Biomedical Imaging

Longitudinal FreeSurfer

- Detecting changes in brain structure with time (development, aging, effects of treatment):
- Cross-sectional studies are hampered by between-subject variability, which may dominate the longitudinal effect of interest
- Longitudinal studies measure within-subject changes directly - each subject is her own control
- Applying cross-sectional image analysis methods to longitudinal data:
- Performance of methods may degrade as disease progresses
- Giving a time point special status (mapping other points to it) leads to bias
- Longitudinal stream of FreeSurfer: Unbiased analysis of longitudinal T_{1} data, relying on robust within-subject template [Reuter '12]
- Longitudinal stream of TRACULA: Unbiased tractography on longitudinal dMRI data, using the within-subject template from above

Why longitudinal?

- Between-subject variability is often greater than the longitudinal effects of interest

Why longitudinal?

Images courtesy of Martin Reuter

- Within-subject percent change of measure (thickness, volume, etc.) may be more sensitive than absolute values of measure

Robust registration

- Symmetric
- Treats source and target image the same
- Registering source to target results in the inverse of the registration from target to source
- Resample both source and target to an unbiased half-way space in intermediate steps (square root of registration matrix)

- Robust
- Cost function that does not penalize large intensity differences
- Outlier voxels in the images are detected and iteratively filtered out

Robust registration

Reuter et al., 2010

Target

Target

Robust registration

Reuter et al., 2010

Source, registered by FSL FLIRT

Source, registered by robust

Robust registration

Reuter et al., 2010

- Tumor patient data, registered to the first time point
- Overlay shows regions detected as outliers, which did not contribute to the robust registration

Tumor data courtesy of Greg Sorensen

Base template

1. Create a robust, unbiased, withinsubject base template (iterative registration of time points to median)
2. Process base template as a regular scan
3. Transfer information to time points
4. Let processing evolve from there

- All time points are treated the same
- No over-regularization, time points evolve freely

Longitudinal FreeSurfer stream

- Assume a subject, bert, with T_{1} scans at multiple time points: bert_tp1, bert_tp2, ...
- Step 1: CROSS (run independently for each time point $1,2, \ldots$)

```
recon-all -subjid bert_tp1 -all
recon-all -subjid bert_tp2 -all
```

- Step 2: BASE (run once for this subject, creates base template)

```
recon-all -base bert_base -tp bert_tp1 bert_tp2 ... -all
```

- Step 3: LONG (run for each time point 1, 2, ..., also specifying the base)

```
recon-all -long bert_tp1 bert_base -all
recon-all -long bert_tp2 bert_base -all
```


Biased vs. unbiased

- Test-retest scans, treat either test or retest as the base
- Biased information transfer from follow-up to base ([BASE1], [BASE2]) vs. unbiased longitudinal stream ([FS-LONG], [FS-LONG-rev])

Subcortical

Cortical

Simulated atrophy

- Simulated 2% atrophy in left hippocampus only
- Longitudinal stream significantly improves precision

Subcortical

Cortical

Test-retest reliability

Reuter et al., 2012

- 115 subjects, ME-MPRAGE, 2 scans, same session
- Longitudinal stream significantly improves reliability

Subcortical

Cortical

Test-retest reliability

Reuter et al., 2012

- 115 subjects, ME-MPRAGE, 2 scans, same session
- Longitudinal stream significantly improves reliability

Difference of Absolute Thickness Change ([CROSS]-[LONG])

Significance map

Increased power

- Longitudinal processing requires a fraction of the subjects needed by cross-sectional processing to detect differences

Left hemi
Sample Size Reduction (Left Hemisphere)

Right hemi

Huntington's Disease (3 visits)

Reuter et al., 2012

- Longitudinal processing leads to higher precision and better discriminating power between groups (specificity and sensitivity)

Independent processing
Alroory in Hunlinglon's Disease [CROSS]

Longitudinal processing

Huntington's Disease (3 visits)

Reuter et al., 2012

- Putamen atrophy rate is significantly different between controls (CN) and pre-HD far from onset (PHDfar)
- Baseline volume is not

Rate of atrophy
Alrophy in Hunlinglon's Disease [LONG]

Baseline volume (normalized)

Longitudinal tractography

- Goal: Reconstruct a WM pathway consistently among a subject's time points
- Challenging to do when processing time points independently, as if they were cross-sectional data sets

- Different parts of the pathway may be reconstructed in each time point, due to noise or WM degeneration
- Changes in average anisotropy/diffusivity may be underestimated
- Point-to-point correspondence difficult to establish for along-thepath analysis of anisotropy/diffusivity

Longitudinal TRACULA

- Reconstruct a subject's pathways simultaneously in all time points:
- Perturb path in the space of the base template
- Map to each time point
- Compute likelihood (fit to the dMRI data) at all time points
- Anatomical prior info based on aparc+aseg from all time points
- Ensures point-to-point correspondence between time points
- Unbiased, treats all time points the same way

Usage

- Processing steps of trac-all do not change for longitudinal:
trac-all -prep -c dmrirc
trac-all -bedp -c dmrirc
trac-all -path -c dmrirc
- Only configuration file changes:

```
set subjlist = (bert_1 bert_2 elmo_1 elmo_2 elmo_3)
set baselist = (bert_b bert_b elmo_b elmo_b elmo_b)
```

- Sample configuration file for longitudinal TRACULA: \$FREESURFER_HOME/bin/example.dmrirc.long

Longitudinal

- Define baselist in config file
- Paths saved under dpathlong/

Cross-sectional

- Do not define baselist
- Paths saved under dpath/

Test-retest reliability

Yendiki et al., In prep

- 9 healthy subjects, scanned twice each (1.5T, 2mm iso, b=700)
- For each subject, pathways reconstructed:
- Independently from each scan ("cross-sectional")
- Jointly from both scans ("longitudinal")
- Find FA along the path, compare point to point b/w test-retest

Sensitivity to WM changes

Yendiki et al., In prep

- 43 HD patients, scanned 2-5 times each (3T, 2mm iso, b=700)
- For each subject, pathways reconstructed:
- Independently from each scan (cross-sectional)
- Jointly from both scans (longitudinal)
- Find FA along the path, fit linear slope at each point

Sensitivity to WM changes

Yendiki et al., In prep

- Longitudinal changes plotted along each pathway in freeview

