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Abstract. We propose a method for automatically correcting the spher-
ical topology of any segmentation under any digital connectivity. A mul-
tiple region growing process, concurrently acting on the foreground and
the background, divides the segmentation into connected components
and successive minimum cost decisions guarantee convergence to cor-
rect spherical topology. In contrast to existing procedures that suppose
specific initial segmentation (full connectivity, no cavities... ) and are de-
signed for a particular task (cortical representation), no assumption is
made on the initial image. Our method applied to subcortical segmenta-
tions allows us to correct the topology of fourteen non-cortical structures
in less than a minute.

1 Introduction

Excluding pathological cases, most macroscopic brain structures are fully con-
nected and do not possess any topological artifact such as handles or cavities:
they have the simple topology of a sphere. Many recent segmentation algorithms
are able to identify and precisely locate these structures, although without con-
straining the topology. Being able to achieve accurate and topologically correct
representations of different brain structures is certainly an important goal in
medical imaging (shape analysis, visualization . . . )

Only a few automatic techniques have been proposed to produce topologi-
cally correct segmentations. Several approaches have tried to directly incorporate
topological constraints into the segmentation process [1,2,3,4,5]. An initial re-
gion, carrying the correct topology, is usually deformed by addition/deletion of
points by minimizing a global energy function while preserving the correct topol-
ogy. The problem with these methods is that local topological constraints can
lead to strong geometrical errors, and that the final segmentation can strongly
depend on the order in which points are added.

Recently, new approaches have been developed to retrospectively correct the
topology of a segmented image. These methods can be divided in two main
classes: volume-based methods that work directly on the volume lattice and cor-
rect the topology by addition/deletion of voxels, and surface-based methods that
aim at modifying the tessellation by locating and cutting handles/filling holes.
Most volume-based approaches have been specifically designed to correct the
topology of the cortical surface. Shattuck and Leahy examine the connectivity

R.E. Ellis and T.M. Peters (Eds.): MICCAI 2003, LNCS 2879, pp. 695–702, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN ----------------------------------------
Dateioptionen:
     Kompatibilität: PDF 1.3
     Für schnelle Web-Anzeige optimieren: Nein
     Piktogramme einbetten: Nein
     Seiten automatisch drehen: Nein
     Seiten von: 1
     Seiten bis: Alle Seiten
     Bund: Links
     Auflösung: [ 2400 2400 ] dpi
     Papierformat: [ 594.962 841.96 ] Punkt

KOMPRIMIERUNG ----------------------------------------
Farbbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 2400 dpi
     Downsampling für Bilder über: 24000 dpi
     Komprimieren: Ja
     Komprimierungsart: CCITT
     CCITT-Gruppe: 4
     Graustufen glätten: Nein

     Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN ----------------------------------------
     Alle Schriften einbetten: Ja
     Untergruppen aller eingebetteten Schriften: Nein
     Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     Nie einbetten: [ ]

FARBE(N) ----------------------------------------
Farbmanagement:
     Farbumrechnungsmethode: Farbe nicht ändern
     Methode: Standard
Geräteabhängige Daten:
     Einstellungen für Überdrucken beibehalten: Ja
     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
     Transferfunktionen: Anwenden
     Rastereinstellungen beibehalten: Ja

ERWEITERT ----------------------------------------
Optionen:
     Prolog/Epilog verwenden: Ja
     PostScript-Datei darf Einstellungen überschreiben: Ja
     Level 2 copypage-Semantik beibehalten: Ja
     Portable Job Ticket in PDF-Datei speichern: Nein
     Illustrator-Überdruckmodus: Ja
     Farbverläufe zu weichen Nuancen konvertieren: Ja
     ASCII-Format: Nein
Document Structuring Conventions (DSC):
     DSC-Kommentare verarbeiten: Ja
     DSC-Warnungen protokollieren: Nein
     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
     EPS-Info von DSC beibehalten: Ja
     OPI-Kommentare beibehalten: Nein
     Dokumentinfo von DSC beibehalten: Ja

ANDERE ----------------------------------------
     Distiller-Kern Version: 5000
     ZIP-Komprimierung verwenden: Ja
     Optimierungen deaktivieren: Nein
     Bildspeicher: 524288 Byte
     Farbbilder glätten: Nein
     Graustufenbilder glätten: Nein
     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
     sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments true
     /DoThumbnails false
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize false
     /ParseDSCCommentsForDocInfo true
     /EmitDSCWarnings false
     /CalGrayProfile ()
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue true
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.3
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends true
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo true
     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /LeaveColorUnchanged
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 300
     /EndPage -1
     /AutoPositionEPSFiles true
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 10.0
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 2400
     /AutoFilterGrayImages true
     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 300
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 595.276 841.890 ]
     /HWResolution [ 2400 2400 ]
>> setpagedevice



696 F. Ségonne, E. Grimson, and B. Fischl

of the segmentation to detect topological defects and minimally correct them
[6]. Inspired by their work, Han et al. developed an algorithm to remove all
handles from a binary object under any digital connectivity [7]. Successive mor-
phological openings correct the segmentation at the smallest scales. Kriegeskorte
and Goeble use a region growing method prioritized by the distance-to-surface
of the voxels in order to force the cuts to be located at the thinnest part of each
topological defect [8]. The same process is applied to the inverse object, offering
an alternative solution to each cut. An empirical cost is then assigned to each
solution and the final decision is the one minimizing the global cost function.
Other types of approaches operate directly on the triangulated surface mesh.
Fischl et al. proposed an automatic procedure to locate and correct topological
defects by homeomorphically mapping the initial triangulation onto a sphere [9].
Topological defects are located as non-homeomorphic regions, constituted of
overlapping triangles. A greedy algorithm is then used to retessellate incorrect
patches, constraining the topology on the sphere while preserving geometrical
accuracy by maximum likelihood optimization. Another approach is proposed
in [10]. Handles in the tessellation are localized by simulating wavefront propaga-
tion on the tessellation: they are detected where wavefronts meet. One potential
drawback of this method is that it depends on the vertex used to identify the
defect.
While these methods can be effective, they cannot be used to correct the topol-
ogy of arbitrary segmentations, as they make assumptions about the topology of
the initial binary image. Most frequently, fully-connected volumes are assumed
and cavities are supposed to be removed as a preprocessing step. In the sub-
cortical segmentation topology problem, the modification of a small number of
voxels per structure is usually sufficient to correct them. However, due to the
presence of imaging artifact, anatomical variability, varying contrast properties
and poor registration, no assumptions can be made about the initial topology
of the segmentation.

In this paper, we develop a completely automated volume-based method to
correct the topology of any segmentation under any digital connectivity. The
novelty of our approach comes from the fact that any initial segmentation (dis-
connected regions, handles, cavities, holes . . . ) will still be corrected. At each
step of our iterative topological correction, minimum cost decisions are taken
and convergence is guaranteed.

2 Background and Definitions

In this section, some basic notions of digital topology are presented. We refer
to the work of G. Bertrand for more details [11]. The initial segmentation is a
binary digital image I ⊂ Z3 composed of a foreground object F and an inverse
background object B = F . Following the conventional definition of adjacency,
3 types of connectivity might be considered: 6-, 18- and 26-connectivity. For in-
stance, two voxels are 6-adjacent if they share a face, 18-adjacent if they share
at least an edge and 26-adjacent if they share at least a corner. In order to avoid
topological paradoxes, different connectivities, n and n, must be used for F and
B. This leaves us with four pairs of compatible connectivities: (6,26), (6,18),
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(26,6) and (18,6). Considering a digital object, the computation of two numbers
are sufficient to check if the modification of one single point will affect the topol-
ogy. These topological numbers, denoted Tn and Tn, have been introduced by G.
Bertrand in [11,12] as an elegant way to classify the topology type of a given
voxel. We will implicitly use them during the algorithm. In the next sections, we
denote by X the object on which we are currently working, and X its inverse
object. Cn(X) is the set of all n-connected components in X.

we will need the following definitions:
Simple point: a point x ∈ X that can be added or removed without changing
the topology of an object; they are characterized by Tn(x, X) = Tn(x,X) = 1.
Isolated point: a point x ∈ X that is not connected to any other point of X: they
are characterized by Tn(x, X) = 0.
Residual and body labels: during the algorithm, different components are gen-
erated, and voxels are assigned different labels. Body labels characterize voxels
belonging to a body component with a known topology, and residual labels char-
acterize voxels belonging to a component with an unknown topology.
Seed point: a residual point of X that is simple or isolated relatively to the body
label points of X. Under this definition, changing the residual label of a seed
point to body will not introduce any topological defect into the body component
segmentation of X.
Multisimple point: a residual point x ∈ X that can be added to any of its adja-
cent body components (∈ Cn(X)) without changing its topology. Equivalently,
a multisimple point is a residual point that is simple relatively to each adjacent
body component, independently of all the others. Therefore, the merging of a
multisimple point into one of the adjacent body components (usually the largest
one), associated with the merging of the other adjacent body components into
the first one, will not change the topology of the new component.
Multiseed point: either a seed point or a multisimple point of X.

3 Method

Our method aims at correcting the topology of any binary segmented volume
under a set of compatible connectivities (n,n). Any segmentation technique pro-
ducing binary volumetric images can be used to generate an initial input to our
algorithm.

Similarly to the approach described in [8], the distance-to-surface map, rep-
resenting for each voxel its distance to the surface (Fig. 1b), is used to drive
a multiple region growing process that segments each object into a set of con-
nected components (Sect. 3.1). A cost is then assigned to each component and
the algorithm iteratively decides to delete the lowest cost component(s); at each
iteration, the set of connected components is updated, and convergence is guar-
anteed by monotone increase of a threshold (Sect. 3.2). During the different steps
of the algorithm, we assume that each voxel carries a cost, reflecting its cost of
being modified. Discussion of different costs will be done in section 4.
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3.1 Segmentation into Connected Components

The first step of our algorithm is the segmentation of each object into a set
of body and residual connected components: every point is initially assigned a
residual label and body components are slowly expanded outward to incorporate
new simple points.
Foreground Object: we remind the reader that a seed point (see Sect. 2) will
not introduce any topological defect into any of the body components, therefore
allowing us to start growing a new body component without introducing any
topological artifact.
Every voxel of the foreground object is first assigned a residual label, except the
deepest one that is assigned a body label. This seed point, representing the first
body component, is then iteratively dilated by adding adjacent simple points,
prioritized by the distance map: adjacent voxels are checked in decreasing order
(the deepest first) and added if they are simple. When no residual voxel can
be added to this body component without changing its topology, the algorithm
tries to grow another component by searching for the next deepest seed point.
We keep generating and growing new body components until no new seed
point is found. Then, the remaining residual voxels are segmented into residual
connected components and a cost is assigned to all components: the cost of each
component is simply defined as the sum of the costs of all voxels constituting
this component.

Fig. 1. An initial binary image, its corresponding distance map, the segmentation into
connected components and the final corrected image under (26,6). c) Residual and
body components are bright and dark respectively. The unique black component is a
body background component with the topology of a hollow sphere. d) The algorithm
iteratively corrects the topology of the binary image, by adding or deleting compo-
nents depending on their cost: the final result shows that certain components were
preferentially removed from the foreground, and respectively for the background. The
topological corrections are located at the thinnest part of the volume.

Background Object: the same multiple region growing process is applied to
the inverse object. However, since we are working on the background object
that is supposed to surround completely the foreground object, the first body
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component is composed of the set of voxels located at the border of the image.
Therefore,the topology of the first background component will logically be
the one of a hollow sphere. Then the algorithm proceeds as previously described.

The use of the distance map to drive the expansion process causes
the residual components to be located at the thinnest part of the volume (see
Fig. 1c, [8]). Different prioritizations, for instance based on prior or posterior
probabilities, might be used in order to better control the location of the
components. However, topologically constrained expansions are noise sensitive
(an incorrect local topological decision could lead to large geometric errors),
and the prioritization must be reliable. In this paper, we use the distance map
and postpone the study of different prioritizations to future work.

3.2 Correction of the Topology

We are now ready to start correcting the topology. The goal is to successively
decrease the number of residual and body components, until one single compo-
nent per object remains: a foreground component with a spherical topology and
a background component with the topology of a hollow sphere. The algorithm
proceeds iteratively, by identifying at each step the lowest cost component
and deleting it, adding its constituting voxels to the inverse object. Then the
algorithm modifies the set of components by resuming the region growing
process.
Identification of Lowest Cost Components: our method simultaneously
works on the background and the foreground. Assuming a decomposition into
connected components, the algorithm identifies the lowest cost component.
Possibly, several components might have the same lowest cost and two cases
have to be considered. If all of them belong to the same set Cn(X), then all
these components are kept for the next step. In the other case, the user has
the option of prioritizing one object (F or B). if the priority is given to B,
then only the components belonging to Cn(B) are kept: by deciding to work
on the background first, the algorithm will fill holes and merge disconnected
foreground regions before cutting handles or deleting regions of the same cost.
Conversely, the priority can be given to the foreground object.
Deletion of a Set of Components: once a set of components has been
identified, we turn all its constituting voxels into residual points of the inverse
object and resume the region growing process:

Algorithm 1
1. Search among multiseed points in X (see Sect 2).
2. If no multiseed point is found, then Stop. Else go to step 3.
3. If the multiseed point is isolated, generates a new body component.

If not, merge this point into the largest adjacent body component,
and merge the other adjacent body components into this component.

4. Update the cost of the modified components.
5. Go to step 1.
Multiseed points allow us to locally modify the component segmentation: body
connected components might fusion together, but the topology is preserved. We
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note that local decisions do not imply large geometrical errors. For instance, in
Figure 1, the deletion of the circled foreground body component does not lead
to the removal of any large component.
Convergence: stated as previously, the algorithm is not guaranteed to
converge: the deletion of a set of components might lead to the creation of even
lower cost components in the inverse object. Therefore, we use a threshold that
is monotonically increased at each iteration.

Algorithm 2
0. Set threshold = −∞.
1. Find the set of lowest cost components {Ci} ∈ Cn(X) such that:
∃Cj ∈ {Ci}/cost(Cj) > threshold; set threshold← cost(Cj).

2. Delete the components: ∀x ∈ ∪Ci, set x→ X
3. If X has one single component then stop. Else go to step 4.
4. Apply Algorithm 1 to the inverse object X and go to step 1.

We note that, similarly to [7], this algorithm can be modified to force
corrections to be made on one single object: it suffices to constrain the search
for lowest cost components to the inverse object.

3.3 Post-processing

Once the correct topology has been achieved, the algorithm tries to add back
to the foreground object every background voxel that was initially part of the
foreground. All these ambiguous voxels are labeled as residual of F and we
simply apply a conditional topological expansion of the object F similar to the
ones described in Section 3.1. The same process is applied to the inverse object
B = F with foreground voxels that were initially part of B.

4 Results and Discussion

Our goal, when implementing this algorithm, was to develop a fully automated
method that is able to correct the topology of already accurate subcortical seg-
mentations, without any further assumptions on the initial segmentations. In
order to validate the proposed algorithm, we have applied our method to 25
brain subcortical segmentations composed of 14 nuclei: left and right ventricle,
putamen, pallidum, amygdala, hippocampus, thalamus, caudate nucleus (see
Fig. 2). Before presenting some results, we discuss the cost function used in the
algorithm.

During the topology correction, each voxel is assumed to carry a cost of being
modified. Different cost options are available to the user. Without any more in-
formation than the initial segmentation, the user might minimize the number of
modified voxels at each step, therefore assigning a constant positive cost to each
voxel. However, some external information, such as the posterior probability of
being part of the foreground or the background at location x given some variables
V (x) (intensity, local curvature. . . ) p = p(F (x)|V (x)) and p = p(B(x)|V (x)),
might be available. In this case, a more natural cost would be to assign ln(p/p)
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Fig. 2. a) Right thalamus segmentation before and after topology correction. Some
topological defects are circled. b) Result of a subcortical segmentation with 14 nu-
clei: left and right ventricle, putamen, pallidum, amygdala, hippocampus, thalamus,
caudate nucleus. The segmentation was obtained with the algorithm described in [13].
Every structure was then topology corrected and a rendering algorithm [14] was used
to consistently generate the view. c) Right hippocampus segmentation. Topologically
correct volumes can be used to generate spherical atlases by inflating and projecting
the surfaces onto a sphere.

to each foreground voxel and ln(p/p) to each background voxel, resulting in an
algorithm maximizing the MAP estimate at each iteration; also, as previously
noted in Sect. 3.1, a prioritization based on each voxel’s cost can be used to drive
the expansion process, locating the residual components at low cost locations.
The use of reliable probability maps can significantly improve the topological
correction (MAP), but can lead to large geometric errors if the probabilities are
inaccurate. The systematic use of probability maps and their consequences is left
for future work. In the following results, the distance map has been used and a
constant positive cost has been assigned to each voxel.

We have applied our method to 25 brain datasets, manually and automati-
cally labeled. Addition and deletion of very few voxels is necessary to correct each
structure topology (of the order of 0.05% for the manual segmentations and 0.1%
for the automatic segmentation described in [13]). Accuracy is achieved through
minimal corrections of supposedly precise initial segmentations; inaccurate seg-
mentations would still be corrected but the location of topological corrections
at the thinnest parts of the volume could not guarantee the final accuracy. We
note that our method, working independently on each nucleus, might cause some
voxels to have more than one label. Results show that this problem concerns less
than 0.01% of the voxels. Applied to the white matter correction, this algorithm
leads to results visually similar to the ones presented in [7].

Most of the computational time is taken by the region growing process
(Sect. 3.1), which has linear time complexity (see [8]): each structure is cor-
rected in a few seconds and a whole subcortical topology correction takes less
than a minute on a current machine.

Finally, we note that this algorithm, associated with an accurate prepro-
cessing segmentation technique, can provide precise topologically correct initial
images to hybrid techniques that incorporate topological constraints into the
segmentation process [2]: strong geometrical errors, often resulting from local
topological constraints, would be avoided by the accuracy of the initial labeling.
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5 Conclusion

We have presented a novel algorithm, achieving spherical topology correction
under any kind of digital connectivity and accepting any initial segmentation.
Topological defects are located at the thinnest part of the volume and minimal
corrections iteratively rectify the topology. Similarly to the method of Han et
al. [7], our algorithm can enforce background or foreground topological correc-
tions exclusively. Applied to subcortical segmentations, the topology of fourteen
deep nuclei is corrected in less than a minute.
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