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FreeSurfer is a suite of tools for the analysis of neuroimaging data that provides an array of algorithms to
quantify the functional, connectional and structural properties of the human brain. It has evolved from a
package primarily aimed at generating surface representations of the cerebral cortex into one that automat-
ically creates models of most macroscopically visible structures in the human brain given any reasonable T1-
weighted input image. It is freely available, runs on a wide variety of hardware and software platforms, and is
open source.
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Introduction

FreeSurfer is suite of powerful tools that provide extensive and au-
tomated analysis of key features in the human brain. This includes
volumetric segmentation of most macroscopically visible brain struc-
tures (Fischl et al., 2002, 2004a), segmentation of hippocampal sub-
fields (Van Leemput et al., 2009), inter-subject alignment based on
cortical folding patterns (Fischl et al., 1999b), segmentation of white
matter fascicles using diffusion MRI (Yendiki et al., 2008), parcella-
tion of cortical folding patterns (Desikan et al., 2006; Destrieux et
al., 2010; Fischl et al., 2004b), estimation of architectonic boundaries
from in vivo data (Fischl et al., 2008, 2009; Hinds et al., 2008; Yeo et
al., 2009), mapping of the thickness of cortical gray matter (Fischl
sp/Harvard Med. School, Bldg.
7 726 7422.
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and Dale, 2000), and the construction of surface models of the
human cerebral cortex (Dale et al., 1999; Fischl et al., 1999a).

It is this last functionality—the construction of cortical surface
models—that was the motivation for the development of the software
that would eventually become FreeSurfer. The surface reconstruction
code traces its roots to Anders Dale's Ph.D. dissertation work with
Marty Sereno in the early 1990s (Dale, 1994), in which the surface
models were used to solve the EEG/MEG inverse problem (Dale,
1994; Dale et al., 2000). The EEG/MEG inverse problem is that one re-
cords electromagnetic signals outside the skull with electrodes (for
EEG) or magnetometers/gradiometers (for MEG), but one wishes to
recover the set of currents inside the brain that gave rise to the mea-
sured signals. This is a fundamentally ill-posed problem in that an in-
finite distribution of source currents can give rise to the same
measurements. Thus one must apply some constraints in order to ob-
tain a solution. In this case, Anders and Marty wanted to use the fact
that pyramidal neurons in the cortex are thought to be the source of
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Fig. 1. Left: examples of two geometrically different topological defects that are topo-
logically equivalent: a handle that bridges a sulcus, and a hole in the bank of a gyrus.
Right: a graphical example of the difficulty of using surface deformation techniques
to model the cortical surface. Typically we want a smooth surface, but much of the cor-
tical surface is buried deep inside folds forcing surfaces to pass through regions (indi-
cated by the blue arrow) where the evolving surface has to bunch up to get enough
surface area inside the fold to model the surface. Another problem is finding energy
terms that will draw the surface into the deep fissure, and away from the narrow open-
ing, which also means pulling it away from the true cortical surface to traverse the sul-
cal opening and arrive at the boundary on the other side.
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the vast majority of the EEG/MEG signal. Cortical surface models
would therefore give them access to the location of the pyramidal
neurons. Further, because the processes of these neurons are typically
oriented perpendicular to the cortical surface, the surface models
would also provide orientation constraints on the underlying dipoles.
Thus, the surface models allowed a strong and neurobiologically plau-
sible set of constraints to be applied to the inverse problem, resulting
in a linear inversion that minimized the L2 norm of the solution and
provided some of the first spatiotemporal movies of estimated
human brain activity (Dale, 1994).

Prior to Anders’ dissertation work, others had attempted to con-
struct surface models, as it was widely recognized how useful they
would be for both visualization and analysis purposes. Most previous
attempts had focused on the construction of the so-called “pial” sur-
face, which represents the “top” of the cortical gray matter, ideally
above layer I and below the pial. Unfortunately, this surface is impos-
sible to directly visualize or reconstruct from MRI as there are many
locations in the brain where adjacent banks of a sulcus are closer
than 1 mm or so resolution achievable with MRI. Attempts to model
this boundary directly lead to either topologically “correct” models
(i.e. topologically equivalent to a sphere) that did not extend into
deep sulci and thus excluded large regions of the brain, or geometri-
cally reasonable models that included huge topological “defects”—
holes and handles in the surface models. The fundamental insight
that Anders and Marty had that enabled surface model construction
was that the gray/white boundary, or the “bottom” of the gray matter,
did not suffer from these problems given that adjacent banks are sep-
arated by at least twice the width of the gray matter, or an additional
3–7 mm. This added spacing was critical as it meant the gray/white
surface could be resolved directly across the vast majority of the
cortex.

The tools that came from this work provided surface models with
adequate geometric accuracy that worked reasonably well with a spe-
cific and known MRI sequence, but did not constrain the topology of
the surface models, nor did they provide estimates of the pial surface
in addition to the gray/white boundary. They were thus of limited
utility for cross-subject registration, in which having a correct topol-
ogy allows one to construct an invertible map, or for cortical mor-
phometry, which requires models of both the gray/white boundary
as well as the pial surface to measure cortical thickness and volume.
In addition, they required many hours of user intervention to con-
struct each surface model, most notably for manually correcting
large topological defects, which was tedious, labor intensive and
had a steep learning curve.

Historical context

It is worth first pointing out that the history of surface-based anal-
ysis of cortical structure and function predates computer algorithms,
and owes much to the pioneering work of people like David Van
Essen and Eric Schwartz. David has always been one of the great pro-
ponents of “cortical cartography” and his early work with Heather
Drury (Drury, 1997; Drury et al., 1996, 1997, 1998) laid the algorith-
mic foundation for what would become the CARET package for
surface-based analysis that is widely used today. Eric, who among
other things was both my and Doug Greve's Ph.D. advisor (in fact he
mistook us for each other the first day either of us met him), was
the first person to recognize the importance of surface-based comput-
er analysis and developed the first computational flattening algo-
rithm (Schwartz, 1990; Schwartz et al., 1989) for generating planar
representations of cortical properties. This algorithm is the basis for
the one in use in FreeSurfer today both for flattening as well as for
regularizing spherical transformation and registration.

This is the only scientific paper that I've ever written in which a re-
viewer requested more “juicy details” of the history of the develop-
ment of a set of ideas. Okay, here goes. When I arrived at MGH in
1996 the prototypes of some of the tools that would become FreeSur-
fer were being usedmainly in the study of retinotopic representations
in early visual cortex. This resulted in a set of studies that helped lay
the framework of our current understanding of the human visual sys-
tem (Hadjikhani et al., 1998; Halgren et al., 1999; Mendola et al.,
1999; Sasaki et al., 2001; Sereno et al., 1995; Tootell et al., 1995,
1997, 1998). These studies almost never happened, as Anders and
Marty seriously considered working with Brian Wandell and col-
leagues at Stanford as opposed to Roger Tootell's MGH group. The de-
cision to come to MGH led to a fierce competition with the
remarkably productive Stanford group, who published a collection
of seminal papers on the use of fMRI for mapping visual cortex (e.g.
(Boynton et al., 1996; Engel et al., 1997; Teo et al., 1997; Wandell,
1999; Wandell et al., 1999)).

In this period before FreeSurfer formally existed, there were an
array of prominent imaging laboratories that were frustrated and in
some cases angry at Anders for not releasing the code for surface re-
construction that he developed as part of his Ph.D. work with Marty
Sereno. In my view, this was an unfair expectation, as releasing
code without supporting it is never enough. The only thing that
makes people more annoyed than not having access to code, is having
access but not being able to get questions about it answered, and
expecting a single graduate student/postdoc to devote his time to
support isn't feasible. Anders, Marty, Doug and I were committed to
releasing FreeSurfer, and did so with the help of Thomas Witzel at
the Human Brain Mapping meeting in Dusseldorf in 1999, which in-
cluded Marty writing about 10,000 lines of tcl/tk code in the week
leading up to the meeting (this is how csurf was created, which I'm
pretty sure only Marty still uses).

Two years later I met Steve Smith giving demos of the FSL tools,
which had been released in June of 2000, and we began a collabora-
tion that has continued to this day. Our partnership has involved a
yearly course that has been a near catastrophe in almost every in-
stance, including the 2005 course in which, during setup, we plunged
large parts of a major Boston hotel into total darkness every time we
powered on the course machines (they had gotten our power re-
quirements wrong by about an order of magnitude). This course
was also notable as it was that year that Jenni Pacheco became the
FS(L) champion baguette jouster by battering some poor stranger
into near unconsciousness with a large piece of bread (all in good
fun of course). The 2003 course held in Santa Monica, CA (near the



Fig. 2. Left: the approach taken with deformable models. A surface of known topology but incorrect geometry (a sphere) is driven by an energy functional towards the desired pial
surface shown in red. The difficulty stems from finding terms that will generate a smooth surface but will allow it to pass through an intermediate representation that can push
enough surface area into e.g. the sylvian fissure. Right: in contrast, deforming the topologically incorrect surface model outwards to the surface of the sphere is a relatively simple
computational problem.
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beach) was particularly memorable due to the arrival of the first ap-
parent participant, who came into the course room and asked
“Where is the free surfer course, dude?”. He ended up being quite dis-
appointed in the subject material.
1 At around the same time techniques for graph-theoretic voxel-based topology cor-
rection were developed Shattuck and Leahy (2001) Graph Based Analysis and Correc-
tion of Cortical Volume Topology. IEEE Transactions on Medical Imaging
20:1167–1177.
Topology correction

Previous work in cortical surface reconstruction had focused on
topological accuracy by deforming a surface with a known topology
to lie at the specified interface in the imaging data (e.g. either gray/
white or pial) (MacDonald, 1998; MacDonald et al., 1994, 2000).
The issue with these models is the difficulty of generating surfaces
that accurately follow the entire boundary of interest, as illustrated
in Fig. 1. The left-hand image exhibits typical topological defects: a
bridge across the banks of a sulcus and a hole in the wall of a gyrus.
These are topologically equivalent, but any accurate topology correc-
tion procedure must resolve them differently—cutting the handle and
filling the hole. The right-hand drawing demonstrates the difficulty of
using a topologically-constrained deformable surface to accurately
model the entire cortex. The deformable surface (shown in red) is
typically driven by an energy functional designed to move it towards
the true surface (a portion of which is shown in black). The cortex
contains many deep folds with narrow openings, such as the one in-
dicated by the blue arrow. It is exceedingly difficult to design an ener-
gy functional that will push enough surface area through this type of
narrow opening then move it away from the (true) black surface that
lies near the opening and across the sulcus to the un-modeled surface
on the other side.

The deformable surface approach when applied to brain images is
illustrated in Fig. 2, right. Here we can again see the difficulty of push-
ing the surface through the many narrow openings into deep sulci,
while obtaining a smooth surface at the end of the procedure. In
order to resolve this problem, we had the insight that while driving
a spherical model to lie at each point of the cortical surface was ex-
tremely difficult, the opposite approach, that of taking a cortical sur-
face, regardless of its topology, and driving it outwards towards the
surface of a sphere, is relatively easy (Fischl et al., 2001). The funda-
mental notion of topological equivalence states that if the original
surface is not topologically equivalent to a sphere, that is if it contains
topological defects, then it is not possible to find a continuous, one-
to-one and invertible (i.e. homeomorphic) mapping. More interest-
ingly, we realized that the regions in which the mapping was many-
to-one were precisely those that contained topological defects. This
enabled us to localize the defects, and limit the topology correction
to what is typically only a small fraction of the surface and thus
allowed us to focus on geometric accuracy everywhere else.
Fig. 3 shows a typical surface model before correction with the
detected topological defects shown in red. As can be seen, less than
1% of the surface area is contained within the defects.

A second problem we needed to resolve was how to correct the
existing defects and obtain an accurate surface model. An example
of a defect localized with this procedure is given in Fig. 4, left, as
well as two possible corrections show in the center (cutting the han-
dle) and right (filling the hole). In this case it turns out that the right-
hand correction leads to a geometrically accurate surface, while the
center one eliminates some of the cortex from being modeled.1

Note that it is impossible to tell from the rendering of the surface
models which is the correct solution. It is only by considering the in-
tensity volume—that is that the surface should contain white matter
in the interior and gray matter outside—that one is able to choose
the correct topological manipulation to generate an accurate surface
(see Fig. 5 for an example of what the MRI volume looks like after fill-
ing a hole).

Surface deformation and thickness estimation

The accuracy requirements on surface placement depend on what
they will be used for. For example, for EEG/MEG source estimation, a
surface misplacement of one or two mm will have little effect on the
computed solution. Similarly, for analyzing and visualizing functional
data that is typically acquired with voxels that are greater than 3 mm
on each side (although this is changing!) surface accuracy is not crit-
ical. However, if one's goal is to measure morphometric changes asso-
ciated with disease state, neuropsychological variables or age for
example, one is typically aiming to detect changes on the order of
½ mm. This naturally places significantly greater constraints on the
geometric accuracy of the resulting surfaces.

Surface-deformation techniques had been commonly utilized to
attempt to generate accurate models of various boundaries from
MRI (Davatzikos and Prince, 1995; Davatzikos et al., 1996;
MacDonald et al., 2000). Unfortunately, it was difficult to directly
use these techniques to construct surface representations with the
requisite degree of accuracy for a number of reasons. First, isointen-
sity surfaces, which assume that the MRI intensity of the gray/white
and pial surface interfaces are constant over space, do not generate
accurate enough surfaces. This is due to variance in the histological
makeup of cortical gray matter and the subjacent white matter as
well as acquisition artifacts such as variable RF penetration, dielectric



Fig. 3. Example of the typical spatial distribution of topological defects.
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resonance and nonuniform receive coil sensitivity profiles that all
conspire to cause the MR intensity of a given tissue type to vary
over space. For example, cortical gray matter in motor cortex is signif-
icantly brighter than in frontal cortex, due to its higher myelin con-
tent (which can be quantified with T1 mapping in MRI (Fischl et al.,
2004a)).

Second, the surfaces must be constrained to not self-intersect and
to maintain their topology. Eulerian methods that elegantly handle
the first problem that existed at the time did not have an easy way
to impose topological constraints (a feature that was usually an
asset to these techniques, but not in this problem domain),2 and
also suffered from an inability to accurately model two interfaces
that pass through the same voxel, something that occurs frequently
when adjacent banks of a sulcus are almost touching. Finally, surface
deformations were typically constrained to generate smooth surfaces
either by a so-called “spring” term or curvature minimization. Unfor-
tunately the cortex contains many locations of high curvature in
which these terms underestimate the extent of for example small fin-
gers of white matter.

In order to resolve these problems, we developed a surface defor-
mation procedure that adaptively determined the MR intensity of the
boundaries in question at each point in the cortex (Fischl and Dale,
2000). Instead of using curvature minimization or spring terms that
seek a flat surface, we modeled the surface with local quadratic
patches that constrained the surfaces to be well-modeled using a sec-
ond order polynomial as opposed to a plane. This allowed us to pre-
vent noise-induced oscillations in the surfaces while avoiding
underestimation in regions of high curvature. Finally, we borrowed
techniques from the computer graphics literature to implement fast
triangle–triangle intersection (Möller, 1997) that provided a hard
constraint and prevented the surface from developing self-
intersections. The combination of these approaches yielded a proce-
dure that generates models of the gray/white and pial surfaces that
were topologically correct, handled acquisition artifacts and tissue
variability, was robust to variations in sequence parameters and gen-
erated models that were accurate enough to reliably measure the
thickness of the gray matter of the human cerebral cortex and detect
pathology induced variations of less than ¼ mm.

One point that must be addressed is how one can validate the ac-
curacy of the thickness measures. This is of course a critical question
as any neurobiological interpretation of results depends on the thick-
ness measures accurately reflecting the width of the cortical gray
matter. Towards that end, we have performed an extensive (and ex-
tremely dull!) series of validation studies. This includes direct com-
parison of the thickness measures we compute against histological
2 Topologically constraining level-set approaches were later developed in Xiao Han
and Jerry Prince's work Han et al. (2003) A Topology Preserving Level Set Method for
Geometric Deformable Models. IEEE Transactions on PAMI 25:755–768.
thickness measures in the same tissue (Rosas et al., 2002), using pub-
lished measures of average thickness such as von Economo (1929) in
motor cortex, somatosensory cortex, gyral cortex, sulcal cortex and
overall average cortical thickness (Fischl and Dale, 2000), comparison
with manual measures from MRI in disease and control populations
(Kuperberg et al., 2003), estimation of the stability of the thickness
measures with respect to scanner platform, sequence type and analy-
sis degrees of freedom (Han et al., 2006), voxel geometry and amount
of acceleration (Wonderlick et al., 2009), as well as their robustness
and sensitivity for detecting correlations with cognitive measures
that are stable across scan session, scanner manufacturer and field
strength (Dickerson et al., 2008). Taken together, this wide array of
studies gives us confidence that we are in fact measuring the thick-
ness of the cortical gray matter in a manner that is accurate and stable
to an array of acquisition variables in a neurobiologically meaningful
and clinically relevant manner.
Whole-brain segmentation

The surface models provided an excellent basis for the analysis of
the structural and functional properties of the cerebral cortex, but not
for subcortical and ventricular structures. At the time, segmentation
tools were limited to a small number of tissue classes (e.g. gray mat-
ter, white matter and CSF) or subcortical structures (e.g. Louis Collins’
excellent work (Collins and Evans, 1997)). However, no tools existed
that would provide a labeling of each voxel in the brain into semanti-
cally meaningful classes such as hippocampus, amygdala, thalamus,
etc.…. Part of the difficulty in generating such a segmentation was
the variability in the histological composition of these structures.
For example, while pallidum and caudate are both gray matter nuclei,
the significantly higher myelin content of the pallidum make its T1-
weighted MR intensity considerably higher than that of the caudate.
Even more difficult was the modeling of structures such as the thala-
mus that showed variability within its boundaries, with darker
appearing tissue at the midline and a gradient of brighter intensities
as one moves more laterally. In order to resolve these issues we
took a Bayesian approach and decomposed the problem into formu-
lating a more realistic image likelihood term as well as a more sophis-
ticated prior model.

For the image likelihood we chose to relax the assumption that tis-
sue classes could be well-modeled by one or a mixture of a small
number of Gaussians that are spatially stationary. Instead, we used a
separate model for each structure for each point in space. This
allowed us to account for within-structure heterogeneity that occurs
commonly in thalamus, hippocampus and elsewhere, but also by
keeping the distributions of e.g. pallidum and caudate separately, in-
stead of modeling all “gray matter” together, we were able to use sig-
nificantly sharper and hence more informative distributions, making



Fig. 4. Example of a topological defect (left), an inaccurate correction (center) and an accurate correction (right) (thanks to Florent Ségonne).
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the segmentation problem less ambiguous. For the image prior term,
like others we used a prior on structure identity given spatial location,
however we augmented this to include models of the stereotypical
spatial relationships found between anatomical structures. For exam-
ple, while hippocampus and amygdala are similar in terms of image
intensity, their spatial location relative to one another is quite consis-
tent: amygdala is always in front of and above hippocampus, never
below or behind it. To encode this, we used a Markov Random Field
(MRF) model, which had been previously used extensively in com-
puter vision (Geman and Geman, 1984). Typical MRF modeling at
the time was stationary (e.g. the same probabilities for voxel a
being label l1 given voxel b being label l2 regardless of spatial loca-
tion), and isotropic (e.g. the spatial relationship between voxels a
and b was not considered other than whether they were neighbors
or not). In order to constrain the segmentations to be neuroanatomi-
cally plausible, we extended the MRF model to be spatially nonsta-
tionary, so that the probabilities were allowed to vary over space,
and anisotropic, so that we could model the probability that hippo-
campus was below amygdala separately from the probability that it
was above it. These more sophisticated models allowed us to utilize
a training set of manually labeled images to bootstrap a procedure
for whole-brain segmentation that was as accurate as extensively
trained manual raters were capable of creating, as well as being ro-
bust to pathology (Fischl et al., 2002, 2004a).

Contributors

Many people have contributed to FreeSurfer over the years, and I
would like to acknowledge them. First and foremost are Anders
Dale and Marty Sereno who developed some of the initial tools, and
also had many of the key technological and neuroscientific insights
that made FreeSurfer possible. Doug Greve, who understands the in-
tricacies of fMRI analysis as well as anyone in the world, is the prima-
ry author of almost all the functional analysis tools distributed with
FreeSurfer (FS-FAST). Other early contributors and developers in-
clude Sean Marrett, Kevin Teich, Yasunari Tosa and Thomas Witzel,
and more recently Ruopeng Wang and Krish Subramanian as well as
Richard Edgar who reported a number of binaries to run on the GPU
with remarkable speed increases. Nick Schmansky has been the lead
engineer for many years, and is responsible for taking a loosely
Fig. 5. Example of a surface defect (left), and it's representation in two orthogonal slices (ce
contain the defect. The red portion of the surface in the center and right images represent
organized set of binaries and turning it into a well-documented, ex-
tensively tested, easy to install and use (relatively!) suite of tools.
Andre van der Kouwe has been the key developer of sequences that
are optimal with respect to brain morphometry, and more recently
M. Dylan Tisdall has worked with Andre to develop structural se-
quences with embedded real-time motion correction that promise
to open up structural imaging to an array of clinical populations
that were difficult or impossible to image previously. FreeSurfer has
also been blessed with an array of talented, responsible and dedicated
research assistants, including Jenni Pacheco, Allison Stevens, Khoa
Nguyen, Michelle Roy, Sita Kakunoori, Louis Vinke, Priti Srinivasan,
Brian T. Quinn, Maureen Glessner, Evelina Busa, and Niranjini Rajen-
dran. More recently Allison has taken on the larger role of organizing
pretty much everything to do with FreeSurfer, including courses, doc-
umentation, lab meetings and research projects. Anastasia Yendiki, in
collaboration with Tim Behrens and Saad Jbabdi at Oxford, has devel-
oped and integrated automated tractography into FreeSurfer (Yendiki
et al., 2011), Lilla Zöllei in collaboration with Gheorghe Postelnicu de-
veloped a combined volume and surface registration that aligns corti-
cal folding patterns as well as subcortical and ventricular structures
(Postelnicu et al., 2009a; Zöllei et al., 2010), and more recently has
been working on extending our tools to build segmentations and sur-
face models of newborns; Rudolph Pienaar has worked on web-based
frontends for running FreeSurfer processes and also created tools for
analyzing curvature properties of surface models with a focus on de-
velopment (Pienaar et al., 2008); Eric Halgren, David Salat and Jean
Augustinack have contributed critical neuroscientific and neuroana-
tomical expertise; Arthur Liu was Anders’ first graduate student and
the unfortunate person tasked with doing surface reconstructions be-
fore the process was automated, and carried out important early
work developing inverse solutions and comparing EEG and MEG
(Liu et al., 2002); Florent Ségonne developed the hybrid watershed
skull stripping algorithm still in use in FreeSurfer (Ségonne et al.,
2004), and also many volumetric and surface-based algorithms for to-
pology correction, and evolving fronts under topological control
(Ségonne et al., 2003, 2005a, 2005b, 2007); Jon Polimeni has pushed
forward the use of the surface models for laminar modeling; Oliver
Hinds developed tools for automatically predicting the location of
V1 from folding patterns as part of his Ph.D. work with Eric Schwartz
at BU; Martin Reuter has developed tools for rigid registration that are
nter and right). The red portion in the left-hand image represents the region found to
the surface that has been added to fill the hole.

image of Fig.�5
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unbiased and extremely accurate in the presence of nonlinearities
such as B0 distortions, and tongue/jaw/eye movement (Reuter et al.,
2010), and has taken over primary responsibility for the ongoing de-
velopment of our longitudinal analysis stream, and also worked with
Peter Sand to develop and validate prototype tools for registering his-
tological and block-face images to high-resolution ex vivo MRI; Peng
Yu was an MIT Ph.D. student who implemented spherical wavelets
and applied them to the study of cortical folding patterns (Yu et al.,
2007); Xiao Han came from Jerry Prince's lab and wrote code for esti-
mation of intensity distributions that made the segmentation proce-
dures insensitive to pulse sequence (Han and Fischl, 2007), Rahul
Desikan worked with Ron Killiany to develop a gyral-based cortical
parcellation (Desikan et al., 2006), similar to Christophe Destrieux's
earlier Ph.D. work with Eric Halgren, Koen van Leemput is one of
the world's experts in segmentation of medical imaging data, and
has developed techniques for segmenting hippocampal subfields in
standard resolution data using information from a high-resolution
training set (Van Leemput et al., 2009); B.T. Thomas Yeo did his doc-
toral work at MIT with Polina Golland and myself working on an array
of surface-based tools for spherical filter banks including wavelets
(Yeo et al., 2008), on fast diffeomorphic surface-based registration
(Yeo et al., 2010a, 2010b), and for computing registration functionals
that are optimized for specific tasks, such as alignment of Brodmann
areas (Yeo et al., 2010a, 2010b); and finally, last but certainly not
least is Mert Sabuncu, who was Polina's postdoc and is currently fac-
ulty at MGH whose work involves cutting edge segmentation using
probabilistic label fusion (Sabuncu et al., 2010), and is more recently
working on imaging genetics, multivariate pattern analysis, and lon-
gitudinal statistics.

Conclusion

The development of a set of key technologies enabled the develop-
ment of FreeSurfer, an array of image analysis tools designed to be au-
tomated, robust, accurate and relatively easy to use. This included
automated geometric accurate topology correction (Fischl et al.,
2001), surface-based inter-subject alignment (Fischl et al., 1999a,
1999b) and whole-brain segmentation (Fischl et al., 2002, 2004a). Al-
though in many ways these still represent the core functionality of
FreeSurfer, it has also evolved tremendously since that time. For ex-
ample, we have recently adopted a liberal open source license that al-
lows great freedom in the use of our source code (http://surfer.nmr.
mgh.harvard.edu/fswiki). FreeSurfer is constantly being improved
and extended, with our most recent release including tools for accu-
rate cross-modal intra-subject registration (Greve and Fischl, 2009),
combined volume and surface cross-subject registration (Postelnicu
et al., 2009b), probabilistic estimation of cytoarchitectonic boundaries
(Fischl et al., 2008), automated tractography (Yendiki et al., 2009),
and longitudinal analysis (Reuter and Fischl, 2011; Reuter et al.,
2010). It has been used to improve our understanding of an array of
neurological disorders (Becker et al., 2008; Desikan et al., 2010a,b;
Dickerson et al., 2009; Gold et al., 2005; Kuperberg et al., 2003;
Manoach et al., 2007; Milad et al., 2005; Oliveira et al., 2010; Rauch
et al., 2005; Rosas et al., 2002, 2005, 2006, 2010; Sabuncu et al.,
2011; Sailer et al., 2003; Stufflebeam et al., 2011), the genetic basis
of neuroanatomical variability and change (Kremen et al., 2010;
Panizzon et al., 2009), as well as healthy development (Isaacs et al.,
2008; Martinussen et al., 2005) and aging (Fjell et al., 2005, 2006;
Salat et al., 2004, 2005a, 2005b, 2009; Walhovd et al., 2004, 2005a,
2005b, 2006).
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