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ABSTRACT 
 

The standard implementation of non-rigid image registration is 

asymmetric, even though symmetry might be an intrinsic attribute 

of the particular application, e.g., pairwise image alignment. 

Current approaches to restore symmetry to non-rigid registration, 

although successful in achieving inverse-consistency, generally 

alter the objective function through implicit inclusion of a non-

uniform weight in the integral that is computed on the native space 

of an input image. This inhomogeneous integral measure, which 

varies through the course of the registration, results in regional 

biases by allowing image regions to contribute differently to the 

objective function. In this work, instead of symmetrizing the 

objective function, we address the root of the problem: the non-

uniformity of the integral in both the asymmetric and the 

symmetrized implementations. We introduce a new quasi-volume-

preserving constraint that keeps the forward and backward 

objective functions arbitrarily close to each other – hence the 

registration symmetry – without compromising the uniformity of 

the integrals. We show the advantages of our method through 

experiments on synthetic images and real X-ray and MRI data. 

 

Index Terms— Non-rigid image registration, symmetry, 

inverse-consistency, volume-preserving constraints. 

 

1. INTRODUCTION 
 

In many image registration applications, such as the alignment of 

two serial scans, the ordering of the images should not influence 

the registration results. Pairwise image registration is an inherently 

symmetric problem, in the sense that the correspondence between 

the regions in two aligned images is naturally expected to be 

independent of the order that the images are given to the 

registration algorithm. Consequently, such “inverse-consistency” is 

necessary for a registration method to be considered reliable. Most 

standard non-rigid image registration approaches [1] optimize a 

cost function (CF) defined as the integral of a distance measure 

taken uniformly on the space of one of the input images. Due to 

deformations, however, the equivalent integral on the space of the 

other image is not uniform anymore. The bias resulting from the 

arbitrary choice of the reference image, on whose native space (the 

space in which it is not distorted) the integral is defined uniformly, 

breaks the symmetry of registration. In longitudinal studies in 

particular, favoring one time point over another may result in 

errors dominating the subtle changes that we seek to measure [2]. 

Symmetrization of the CF with respect to the two input 

images, i.e. adding the CF to itself with the order of the images 

reversed, has so far been the leading approach to inverse-consistent 

non-rigid image registration [3-7]. In a second class of symmetric 

registration in the literature, the CF integral is taken, not in the 

native space of the images, but in an abstract “mid-space” chosen 

to be “in between” them [8-11]. These symmetrization approaches 

are quite effective in achieving inverse-consistency. Nonetheless, 

they come at the price of altering the original CF, causing the 

aforementioned non-uniform integral measure in the asymmetric 

registration (appearing in only one of the image spaces, thereby 

being the reason for the asymmetry in the first place) to continue to 

exist in both image spaces (see Sec.  2 for details). Non-uniform 

integration of images – intrinsic to asymmetric and the 

symmetrization methods – is undesirable, as it causes different 

image regions to contribute with arbitrarily different weights to the 

CF, an inconsistent regional bias that is not alleviated by 

eliminating the symptom of asymmetry through symmetrization. 

In this work, instead of symmetrizing the CF, we address the 

underlying cause of the asymmetry: non-uniform integration of 

images in their native spaces. We propose a new non-rigid 

registration algorithm that constrains the deformation so that the 

integrals in both forward and backward (native-space) CFs remain 

uniform except for the regions where non-uniformity does not 

contribute to asymmetry error, which, as will be clear in Sec.  2, are 

areas where the images match. An immediate result of the new 

quasi-volume-preserving (QVP) constraint is the registration 

symmetry, as expected. Furthermore, the forward and backward 

native CFs, i.e. those with a uniform integral on the native space of 

the image, will be close to each other throughout the registration 

process, a property that we call native symmetry, which is a 

characteristic of our method. Native symmetry ensures that both 

native CFs agree on the solution of the registration, as opposed to 

only one of them (asymmetric registration) or only the sum of them 

(symmetrization). 

An additional advantage of restricting the deformation in 

dissimilar regions is helping to avoid entrapment of the iterative 

algorithm in local minima as a result of too much flexibility, 

thereby guiding it towards a good overall QVP fit before relaxing 

the constraints and achieving an optimum warp. This is particularly 

important in registration across time in medical imaging, where 

large changes in anatomy may be present. 

In the remainder of this paper, we first describe the proposed 

method in detail (Sec.  2), and then present and discuss 

experimental results (Sec.  3), along with some concluding remarks. 

 

2. METHODS 
 

The standard asymmetric forward and backward CFs, to be 

minimized in non-rigid registration, are defined as: 
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���

�
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where �,�: Ω → ℝ are two �-dimensional images (Ω ⊆ ℝ�), 

�: Ω → Ω is the invertible transformation to be determined, with 

��
� ≔ det	���
�� its Jacobian determinant resulting from the 

change of variable  = ��
�, and �: ℝ� → ℝ is the positive and 

symmetric image distance measure; e.g., ���, �� = �� − ��� for the 

common sum-of-squared-difference (SSD) CF, also used in our 

experiments. We call ��� and ��� the native CFs, since their 

integrals have uniform representations in the native spaces of � and 

� respectively. By native space of an image, we mean the space 

where the image is not distorted; for instance, when � appears as 

��� in an integral, it is undistorted and the integral is taken in the 

native space of �. However, if it appears as � ∘ ��
�, then it is 

generally distorted and the integral is not taken in its native space. 

One can see that the factor ��
� in ��� makes the two forward 

and backward CFs in general dissimilar, and the registration 

inverse-inconsistent. In other words, the uniform integral in the 

native space of one of the two images is generally non-uniform in 

the native space of the other image. CF symmetrization [3-7] gives: 

 �	
���,�, �� ≔ ������,�,�� + �����,�, ��� 2⁄  
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This average CF satisfies the inverse-consistency property, 

�	
���, �,���� = �	
���,�, ��. Nevertheless, the images are 

integrated in their native spaces with the non-uniform measure 

	1 + ��
�� 2⁄ , which varies for each voxel and at each iteration, 

resulting in inconsistently different contributions of different image 

regions toward the CF. In the alternative methods that integrate the 

CF uniformly on a “mid-space” [8-11], the equivalent integrals on 

the native spaces of the images are, once again, non-uniform. 

It should be noted that minimizing �	
� results in 

transformations that are not necessarily minimizers of the native 

CFs, and for which, ��� and ��� are not necessarily equal. Here, 

we define the native symmetry property of an image registration 

algorithm, as the ability to produce transformations minimizing the 

native CFs, while keeping them equal (��� = ���). Rigid, and 

more generally volume-preserving [12-14] registration is an 

example of natively symmetric registration (disregarding the 

asymmetry due to resampling artifacts [2, 15, 16]), since with 

��
� = 1 everywhere, the two native CFs are always equal. Yet, it 

can be seen that symmetrized non-rigid registration (minimizing 

�	
�) is symmetric, but not guaranteed to be natively symmetric. 

In this work, we seek to achieve native symmetry in non-rigid 

image registration, which will offer symmetry without 

compromising the uniformity of the integrals in the native CFs. 

The idea is based on the fact that the difference between ��� and 

��� emerges from regions for which both ��
� ≠ 1 and 

�	��
�,� ∘ ��
�� > 0. We propose to keep the deformation 

quasi-volume-preserving (QVP) by restricting ��
� to remain close 

to 1 in regions where the difference between the two images is 

large, but relax this restriction where the images are similar. 

Mathematically speaking, we make sure that, 

 �	��
�,� ∘ ��
��|��
� − 1| < � , ∀
 ∈ Ω (4) 

with � being a user-defined positive threshold. This way, the 

integrals in ���, ���, and �	
� – when all represented in the native 

space of one image, as in Eqs. (1,2,3) – remain (almost) uniform, 

except for areas where non-uniformity barely perturbs the CF. In 

fact, one can verify that choosing a small � makes the global native 

asymmetry error arbitrarily small, since it will be bounded as, 

 ������,�,�� − �����,�, ��� < �|Ω|, 
��	
���,�,�� − ���/����,�, ��� < �|Ω| 2⁄ . 

(5) 

Moreover, the local nature of the QVP constraint also ensures 

regional native symmetry; i.e., satisfying Inequality (4) keeps 

native CFs defined in any local Ω� ⊂ Ω within �|Ω�| of each other. 

In our Demons-based [17] implementation, we minimize �	
� 

via gradient descent in a similar manner as in [6]. We have two 

types of regularization. We perform a general Tikhonov 

regularization by including the standard term �‖���
�‖�� inside the 

integral of ���, and adjusting ��� and �	
� accordingly. (The 

constant � determines the amount of this general regularization.) 

Furthermore, we account for the QVP constraint by smoothing the 

transformation field � inhomogeneously until Inequality (4) is 

satisfied. At each iteration, we solve the following diffusion 

equation on the transformation with an inhomogeneous diffusion 

coefficient that depends on the local asymmetry error: 

 ����
� = ��
� + γ∇ ⋅ ���
�∇��
��, (6) 

where � and γ are the diffusion iteration number and step size, 

respectively, and the diffusion coefficient ��
� is a function of the 

(low-pass filtered) local asymmetry error ��
� ≔ �	��
�,� ∘

��
��|��
� − 1| (the left-hand side of Inequality (4)). In order to 

only penalize regions where the error is above the threshold �, we 

hard-threshold � by making it grow linearly with the error when it 

is larger than �, and stay small and convex otherwise, as follows: 

 ��
� ≔ � ��
� , ��
� > �
�. ���
� �⁄ �� , 0 ≤ ��
� ≤ �   . (7) 

The diffusion iterations are repeated until Inequality (4) is 

satisfied. This inequality is the major contrast between our 

proposed approach and the volume-preserving methods in the 

literature [12-14]; our algorithm preserves volume only in regions 

where it finds no good match between the images. This means that 

the transformation may still contain compression and expansion in 

areas where the two images are locally similar, allowing good 

matching in regions where it is feasible. 

 

3. RESULTS AND DISCUSSION 
 

We validate our method by comparing the performance of the 

following three approaches (without diffeomorphism constraints): 

minimization of ���, minimization of �	
�, and minimization of 

�	
� with the proposed QVP constraint (with the heuristically-

determined optimum �). For each experiment, we plot ��� and ��� 

with respect to the iteration number to assess the registration native 

symmetry by the extent to which these two native CFs agree with 

each other. We also evaluate the overall results by the number of 

iterations that each algorithm takes to converge, and the ultimate 

value of the CFs. For each method and experiment, we choose the 

optimum general regularization parameter � heuristically to 

achieve the best convergence with no observable topology break. 

We first compare the three methods on synthetic data, by 

registering two letters ‘B’ with noticeably different shapes. As the 



plot in Fig. 1 demonstrates, minimizing ��� (dark and light green) 

results in a relatively large difference ��� − ��� > 0, which is 

expected, since ��� is not in any form accounted for in the 

optimization. Minimizing �	
� (dark and light red) reduces the gap 

between ��� and ���, as equal weight is given to both of them in 

the optimization. Nevertheless, this approach – not being natively 

symmetric – does not guarantee the equality of the two native CFs. 

The proposed QVP approach (dark and light blue), however, 

enforces a bound on ���� − ���� and therefore, as illustrated in the 

plot, produces transformations on the cost of which both native 

CFs agree (within the error margin �). In addition, this method 

converges at an earlier gradient descent iteration (~Itr. 750, see the 

orange rectangles in Fig. 1) compared to the two others (~Itr. 

1800),1 while resulting in lower final native CF values (��� =

56, ��� = 87) than the standard asymmetric (��� = 152, ��� =

202) and the symmetrized (��� = 188, ��� = 162) approaches do. 

The better convergence of the QVP method may be related to 

the fact that its optimum general regularization parameter � is 

naturally lower compared to the other two techniques, given that it 

also performs a separate inhomogeneous regularization (Eq. (6)). 

This method allows the transformation to freely absorb one ‘B’ 

into the other, since the corresponding volume change happens in 

regions where the intensities match, for which the inhomogeneous 

regularization, and consequently the total regularization is weak. 

                                                 
1 Each iteration is, however, on average more expensive in the QVP method 

than in the other two methods, given the extra step of diffusion. 

The same inhomogeneous regularization, in contrast, prevents a 

topology break by regularizing more aggressively in areas where 

the difference between the two images (and therefore the SSD 

force) is large. On the contrary, the other two methods need a 

higher � to avoid topology break, and yet apply this strong general 

regularization to the entire image (including regions with matching 

intensities and no gradient force), hence a slower convergence. 

Next, we compared the three methods on a pair of public jaw 

X-ray images acquired before (Fig. 2a) and after (Fig. 2b) an 

orthognathic surgery. The images were initially aligned rigidly so 

their upper jaws overlap completely. As in the previous case, 

minimization of the standard asymmetric forward CF, ��� (Fig. 2, 

the two green curves), soon creates a considerable gap between the 

native CFs. Minimizing �	
� (Fig. 2, the two red curves) results in 

a steady optimization of the average of the native CFs. However, 

since the native CFs are not individually considered, not only does 

the gap between them still mostly exist, but a jump that abruptly 

changes them – yet not their average – occurs around iteration 

2000, which is a possible sign of the potential instability of the 

algorithm. In fact, an optimization algorithm might decide that it 

has converged and stop the procedure way before iteration 2000, 

thus leaving the teeth region misaligned (as was actually the case 

here for iterations before 2000). Conversely, the proposed QVP 

method (Fig. 2, the two blue curves), produces the smallest native 

CF gap, while obtaining the lowest final CF values (��� =

118, ��� = 112) compared to the standard asymmetric (��� =

147, ��� = 155) and the symmetrized (��� = 142, ��� = 135) 

approaches. The warped image obtained by the QVP approach is 

depicted in Fig. 2c, along with the computed deformation field. 

Results by the two other methods were visually similar, except for 

the fact that the displacement in the upper jaw, which is supposed 

to be small because of the initial rigid alignment of the upper jaws, 

was lowest in the deformation obtained by the QVP approach (2.5 

pixels, averaged in an upper jaw mask), and therefore least affected 
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Fig. 2.  Top: X-ray images taken (a) before and (b) after surgery, 

with (c) registration results using the proposed QVP approach. 

Bottom: Native CFs for the three methods. 

Fig. 1.  Registration of synthetic data by (a) the standard 

asymmetric, (b) symmetrization, and (c) the proposed QVP 

approaches.  Top: Cyan and magenta indicate respectively the 

reference and the interpolated images, with blue being their 

intersection.  Bottom: The native CFs for each method. 



by the general regularization, compared to the standard (3.9 pixels) 

and the symmetrization (3.2 pixels) approaches. This is likely to be 

due to the same reason as explained in the previous paragraph. 

Lastly, we tested the three algorithms on the mid-sagittal 

planes of 20 brain images taken from the publicly available OASIS 

database [18], which we pre-processed in FreeSurfer [19]. The 

intensity-normalized and resampled volumes (1-mm³ isotropic 

voxel size) were made upright by robust rigid registration [2] of 

each volume to its left-right mirrored version. The sagittal slice 

located four voxels right to the mid-sagittal plane was extracted 

from each volume, and to adjust for any nodding rotation, was 

rigidly registered to that slice of the first volume, and resampled to 

the size 128×128. Out of the 20 sagittal slices corresponding to the 

20 subjects, the one closest (in L2 norm) to the rest was chosen as 

the reference, and non-rigidly registered to the rest of them 

individually. For each subject and method, we ran the registration 

with 21 different values for general regularization parameter �, and 

then inspected the results and chose the one with lowest � 

containing no visible topology break. The optimally chosen � was 

the same for the symmetrization and the QVP methods in 14 

subjects; however, for the other 6 subjects, QVP passed the visual 

inspection test at a lower � (see Fig.  3 for examples). We 

computed the native asymmetry error as the mean absolute value 

of the difference of the two native CFs through all iterations. When 

averaged across subjects, this error was 161% and 16% higher for 

the asymmetric and the symmetrization techniques, respectively, 

compared to the proposed QVP approach. We also compared the 

final values of the native CFs 	��� , ���� among the methods, 

which were (30%, 56%) and (5%, 4%) higher for the asymmetric 

and the symmetrization approaches, respectively, compared to the 

QVP method. We hypothesized that the QVP approach results in 

ultimate native CF values that are lower than those of the two other 

techniques. A left-tailed Student’s t-test with a 0.05 significance 

level rejected the null hypothesis when comparing the QVP with 

both the asymmetric (p=10-6) and the symmetrization (p=0.02) 

approaches. It should be noted, however, that our implementation 

did not include any explicit diffeomorphism constraints. Validation 

of the proposed methodology using state-of-the-art 3D 

diffeomorphic implementations, and exploring quasi-rigidity (as 

opposed to QVP) constraints, are subjects of ongoing research. 
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Fig.  3.  (a) QVP registration results on four subjects with optimal 

values of λ.  (b) Results of the symmetrization method using the 

same λ as in (a). Note the distortion due to under-regularization in 

the encircled areas.  (c) Results of the symmetrization method 

using optimal (higher) values of λ, thus with higher CF values. 


