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Abstract. In this paper, we will re-visit the Relevance Voxel Machine (RVoxM),
a recently developed sparse Bayesian framework used for predicting biological
markers, e.g., presence of disease, from high-dimensional image data, e.g., brain
MRI volumes. The proposed improvement, called IRVoxM, mitigates the short-
comings of the greedy optimization scheme of the original RVoxM algorithm by
exploiting the form of the marginal likelihood function. In addition, it allows vox-
els to be added and deleted from the model during the optimization. In our exper-
iments we show that IRVoxM outperforms RVoxM on synthetic data, achieving a
better training cost and test root mean square error while yielding sparser models.
We further evaluated IRVoxM’s performance on real brain MRI scans from the
OASIS data set, and observed the same behavior - IRVoxM retains good predic-
tion performance while yielding much sparser models than RVoxM.

1 Introduction

Multivariate pattern analysis (MVPA) methods provide an alternative approach to ex-
amining subtle and complex relationships between biomedical images, e.g., structural
[1] or functional [2] neuroimage data, and clinical variables of interest. They further of-
fer the ability to make accurate individual-level predictions of clinical outcome, paving
the way to personalized medicine. One specific class of MVPA algorithms employs
sparse Bayesian learning; a well-known algorithm of that class is the Relevance Vector
Machine (RVM) [3] which is similar to a support vector machine (SVM) [4]. In con-
trast to SVM, it provides probabilistic outcomes and has no free parameters to tune.
Problems with RVM are the computational time, which is approximately cubic in the
number of inputs, as well as the greedy optimization. Thus different approaches have
been developed to overcome these shortcomings, e.g. FastRVM [5].
Recently, Sabuncu and Van Leemput [6, 7] extended the relevance vector machine by in-
corporating an additional spatial regularization term in the Gaussian prior on the regres-
sion weights or classification features (RVoxM). RVoxM encourages spatial clustering
of the features used for regression or classification, and computes predictions as linear
combinations of their content. While the model of RVoxM produced nice results on
age regression data [6, 7], the algorithm used a simple fixed point optimization scheme,



which is not guaranteed to decrease the cost function at every step and is computation-
ally expensive. In addition, RVoxM prunes voxels from the linear model by applying
an artificial numerical threshold to the weight hyperparameters, which creates a free
parameter that affects model sparsity. Lastly, RVoxM can only remove voxels from the
model, but not re-introduce them later on. Thus in its current form, it is reminiscent of
a greedy forward feature selection algorithm.
In this paper, we aim to solve the problems of the original RVoxM algorithm in the
spirit of FastRVM [5]. We call the new algorithm Improved Relevance Voxel Machine
(IRVoxM). Our contributions improve the greedy optimization algorithm of RVoxM by
deriving an analytic expression for the optimal hyperparameter of each voxel, given the
current hyperparameter of all other voxels. This enables us to maximize the marginal
likelihood function in a principled and efficient manner. As a result, IRVoxM optimizes
the objective function better during training, and the resulting models predict better on
unseen cases. Lastly, IRVoxM enables us to easily add and/or remove voxels during
the optimization procedure, allowing us to start from an empty model which has the
potential for large computational advantages.

2 Regression with the Relevance Voxel Machine - RVoxM

We base IRVoxM on the same theoretical model as RVoxM [6, 7]. In the regression
problem, the target variable t, e.g., age or clinical test score, is assumed to be Gaussian
distributed:

p(t|x,w, β) = N (t|y(x,w), β−1), (1)

with variance β−1 and mean y(x,w) =
∑M−1
i=1 xiwi + wM = wTx, where x ∈ RM

is a vector that represents the input data, e.g., an image, plus a constant element of one
(xM = 1), and w ∈ RM are weights.
We further assume a Gaussian prior on w with hyperparamters α and λ of the form

p(w|α, λ) = N (w|0,P−1), (2)

where P = diag(α) + λK. K = ΓTΓ is the graph Laplacian matrix which is a sparse,
symmetric matrix and can be defined as the inner product of the incidence matrix Γ. Γ
is a sparse matrix of dimension NEdg ×M , where NEdg denotes the number of edges
in the graph spanned by K. Each row of Γ has only two entries that denote the outgoing
(+1) and incoming (−1) nodes of an edge in the graph. In our case, edges connect
physically neighboring locations, e.g., all voxels in the 6-neighborhood are connected
to a central voxel in a volumetric image, but other configurations can also be considered.
α = (α1, . . . , αM )T and λ are hyperparameters; the αi are inverse covariances of the
weight prior and hence control the sparsity of the weights. A large αi means the weight
wi of the associated voxel is tending to zero, while a small αi implies that the value wi
is largely determined by its neighbors. The parameter λ encourages spatial smoothness
and the larger it is the smoother the resulting weight maps are.

Training With the above prior, the hyperparameters can be estimated by maximiz-
ing the following type-II likelihood given a collection of training target values t =



(t1, . . . , tN )T and a set of N training images X = [x1, . . . ,xN ]T:

p(t|X,α, β, λ) =
∫

w

p(t|X,w, β)p(w|α, λ)dw (3)

=
∫

w

(
N∏
n=1

p(tn|xn,w, β)

)
p(w|α, λ)dw = N (t|0,C),

where we define C = β−1I+XP−1XT. We can estimate the hyperparameters α, β, λ,
which is equivalent to maximizing Eq. 4:

α̂, β̂, λ̂ = argmax
α,β,λ

L(α, β, λ) = argmax
α,β,λ

(
−1

2
(N ln(2π) + ln |C|+ tTC−1t)

)
.

(4)
Here, L(α, β, λ) denotes the logarithm of the marginal likelihood function, which is
obtained by integrating out the weight parameters as shown in Eq. 3. In RVoxM [6], this
optimization was solved by a coordinate ascent over β and λ, while optimizing over all
α simultaneously using a fixed point equation and a greedy approach, where single αi’s
exceeding a numerical threshold are pruned from the model. This optimization of α has
no theoretical guarantees of convergence and is computationally expensive. Hence, in
this paper we focus on deriving a better optimization algorithm for α.

Prediction After obtaining α̂, β̂, λ̂ from training data, we can make predictions for a
new x? according to

p(t?|x?,X, t, α̂, β̂, λ̂) =
∫
p(t?|x?,w, β̂)p(w|X, t, α̂, λ̂)dw = N (µ?, Σ?), (5)

where p(t?|x?,w, β̂) is given by the regression model in Eq. 1 and µ? = µTx and
Σ? = 1

β + xTΣx, in which Σ = (P + βXTX)−1 and µ = ΣXTt.

3 The Improved Relevance Voxel Machine - IRVoxM

The greedy optimization method employed by RVoxM suffers from several weaknesses.
First of all, the fixed point updates used for α in [6] are not guaranteed in each update
step to increase the logarithm of the marginal likelihood L(α, β, λ) given in Eq. 4. Thus
the optimization can become unstable, if it is not well initialized. Another difficulty is
the use of an artificial numerical threshold that controls the sparsity of the solution by
deciding at which point an αi is considered to be large enough to yield a weight wi
close enough to zero to be effectively pruned from the model. Finally, RVoxM works
by pruning voxels from a larger set until only relevant voxels are left. But once voxels
are removed from the model there is no way to re-introduce them; the set of voxels
included in the sparse model can only decline.
In this paper, we present a way of tackling all of the above issues. First, we ensure
that single updates are guaranteed to increase the logarithm of the marginal likelihood.
Then we introduce a conceptual change that allows us to analytically judge if a voxel



should be included in the model or not. This change also enables us to re-visit and re-
introduce voxels into our sparse model during the optimization, which addresses the
third problem. To derive the improved Relevance Voxel Machine (IRVoxM) we study
L(α, β, λ) for fixed β and λ; thus L(α, β, λ) is only dependent on α. We can rewrite
the logarithm of the marginal likelihood function L(α) (Eq. 4) to expose the marginal
contribution of αi.
But first, let us introduce some notation:

X̃ =
(

X
Γ

)
, t̃ =

(
t
0

)
, B̃ =

(
βIN 0
0 λIM

)
. (6)

Now we can define C̃ = B̃−1+X̃diag(α−1)X̃T and therefore |C̃| = β−Nλ−NEdg |Σ|
|diag(α)| .

In addition, we write C̃−1 = B̃−B̃X̃Σ̃X̃TB̃ and express the logarithm of the marginal
likelihood (Eq. 4) as:

L(α) =− 1
2

(
N ln(2π) + ln(β−N

|Σ|
|P|

) + tTC−1t
)

=− 1
2

(
N ln(2π) + ln |C̃|+ t̃TC̃−1t̃

)
− 1

2
(NEdg ln(λ)− ln |P|+ ln |diag(α)|)

=−1
2

(
N ln(2π) + ln |C̃−i|+ t̃TC̃−1

−i t̃ +NEdg ln(λ)− ln(|Ψ−i|)
)

︸ ︷︷ ︸
L(α−i)

+
1
2

(
− ln(αi + s̃i) +

q̃2

αi + s̃i
+ ln(αi + ai)

)
︸ ︷︷ ︸

l(αi)

. (7)

As in [5], we first use the definitions of |C|, |C̃| and C̃−1 to rewrite Eq. 4 and then em-
ploy established matrix determinant and inverse identities to separate the contribution
of αi from C̃ and its inverse. This yields C̃−i and C̃−1

−i which are C̃ and its inverse
with the contribution of the i-th voxel removed. Lastly, we define

s̃i = X̃T
i C̃
−1
−i X̃i, q̃i = X̃T

i C̃
−1
−i t̃,Ψ−i = I +

∑
j 6=i

λ

αj
ΓjΓT

j , ai =
λΓiΨ−i

−1ΓT
i

αi
, (8)

in which X̃i and Γi denote the i-th column of X̃ and Γ, respectively.
In Eq.7 we have replaced L(α) by L(α−i) and l(αi). L(α−i) includes the contribu-
tions of all α except for the i-th α to the marginal likelihood, whereas l(αi) comprises
only the contribution of αi. Equation 7 can now be optimized with respect to αi in
closed form (while keeping all other α’s fixed to their current values):

1. If ai ≥ s̃i, the optimal solution is α̂i = 0, since we do not allow negative alphas as
in [6, 7].

2. If ai < s̃i and s̃i − ai < q̃2i , the optimal solution is α̂i = ai(s̃i+q̃
2
i )−s̃2i

s̃i−ai−q̃2i
. If this

solution is negative, the optimal solution is α̂i = 0.
3. If ai < s̃i and s̃i − ai ≥ q̃2i , the optimal solution is α̂i =∞, which corresponds to

removing the i’th voxel from the model (see [3, 6, 7]).



Algorithm 1 IRVoxM algorithm
1: Initialize λ, β and all α as in RVoxM [7].
2: loop
3: loop
4: Randomly pick a voxel i.
5: Compute s̃i,q̃i and ai according to Eqs. 8.
6: if ai ≥ s̃i then
7: αi = 0
8: else if ai < s̃i then
9: if s̃i − ai < q̃2i then

10: αi =
ai(s̃i+q̃2

i )−s̃2
i

s̃i−ai−q̃2
i

11: if αi < 0 then
12: αi = 0.
13: end if
14: else if s̃i − ai ≥ q̃2i then
15: αi =∞
16: end if
17: end if
18: Update all quantities in an efficient manner as derived in [8].
19: end loop
20: Update β and λ by a simple search of the two-dimensional cost function.
21: end loop

The above rules enable us to loop over all voxels and update a single αi at a time.
An overview of the IRVoxM algorithm is given in Algorithm 1. Details regarding the
derivation of l(αi) as well as a functional analysis of the marginal likelihood function
are excluded due to space constraints, but can be found in a technical report [8].

4 Experiments and Results

In order to demonstrate that our proposed optimizer outperforms RVoxM’s, we will
evaluate the performance of IRVoxM and RVoxM on a synthetic and a real data set.
To make the comparison fair, we initialize the two algorithms identically with α = 1,
β = 1 and λ = 1.

4.1 Experiments on synthetic data

First, we ran experiments on synthetic data. To model a single target value t, we gen-
erated a random vectorized image x by drawing random samples from a Gaussian dis-
tribution with mean 0 and standard deviation 1 of size M × 1. Using pre-determined
constants αtrue = (1012v, 0.5v, 1012v)T, where v is a vector of ones and of dimension
M
3 × 1, and λtrue = 10, we constructed Ptrue = diag(αtrue) + λtrueΓTΓ. Here, Γ is

the incidence matrix for a 4-neighborhood. From Ptrue we sampled weights wtrue and
computed targets as t = wT

truex + ε, where the noise ε was sampled from a normal
distribution with mean zero and inverse variance βtrue = 10. We constructed data this



Fig. 1. Examples of two random images (a) and (b) as well as the weight vector (c) we used in
our synthetic data experiment.

way for a varying number of training images N , yielding collections of image vectors
X of size N ×M as well as vectors of target values t of size N × 1. We used an image
size M = 10 × 10. Lastly, we varied N from 10 to 100 and generated 100 indepen-
dent pairs of X and t with the same weight vector wtrue for each value of N . For the
test data, we generated another 100 independent pairs of X and t using N = 100, and
applied the same weight vector wtrue as for the training data. Examples of two random
images and the weight vector we used can be seen in Fig. 1. Fig. 2 shows the sparsity
of the trained models, the training cost, which is the negative logarithm of the marginal
likelihood given in Eq. 4, and the root mean square error (RMSE) between the true and
the predicted target values computed on the test data sets. It also shows a comparison
of the predicted and true weights by showing the l2-norm of the difference between the
true and the predicted weights of the two algorithms.
The results reveal several weaknesses of the original RVoxM. First, while the true spar-
sity of our synthetic data is always 33% (since we set 1/3 of the 100 weights to be differ-
ent from zero), RVoxM grossly overestimates the number of weights that are included in
the model (see Figure 1 a). IRVoxM on the other hand produces sparser models, while
still achieving a better training cost on the training data (see Figure 1 b). Hence IRVoxM
is not over fitting to the training data, but finding sparse models that represent the data
well. Furthermore, RVoxM and IRVoxM yield comparable RMSE on the test data with
IRVoxM considerably outperforming RVoxM for larger N (see Figure 1 c). Finally, IR-
VoxM produces weights that are much closer to the true weights for all values ofN (see
Figure 1d).

4.2 Experiments on OASIS

Next, we ran experiments on the publicly available cross-sectional Open Access Series
of Imaging Studies (OASIS) [9]. We used structural brain MRI scans (T1-weighted)
from 336 healthy subjects and processed them with SPM85 to obtain spatially aligned
gray matter maps. The gray matter density values were used as voxel-level input data
xi. To lighten the computational burden for our experiments, we generated masks with
N = 1000, 5000, 10000 voxels for subsequent analysis. To acquire these masks, we
calculated a univariate correlation of each voxel with age (only on the training data set)
and sorted the voxels based on their correlation value, as was done in [10]. Then we
used only the top N voxels in the analysis. We randomly chose half of the subjects and
trained a model for age regression on this training dataset. Then we used the trained

5 http://www.fil.ion.ucl.ac.uk/spm/software/spm8/



Fig. 2. Results for the synthetic data showing the resulting training sparsity (a), the training cost
(b) and the root mean square error (RMSE) on the test data (c) for 100 independent repeti-
tions. The box plots in (a), (b) and (c) show the ground truth (red), RVoxM (green) and IRVoxM
(blue).Filled black dots indicate the median, filled boxes extend to the most extreme values within
1.5 times the interquartile range of the box. Lines extend to the adjacent value. Samples beyond
those points are marked with colored circles.In (d) we show the l2-norm of the differences be-
tween the true weights and the weights RVoxM produces (green) and the true weights and the
weights IRVoxM produces (blue).

model to predict the age on the other half of the OASIS data set and calculated the cor-
relation and the root mean square error (RMSE) between the predicted and the real age.
The correlations and RMSE are shown in table 4.2. Again, we can observe that IRVoxM
yields much sparser models than RVoxM, while achieving a high age correlation and
low RMSE.

5 Discussion and Conclusion

We have re-visited the relevance voxel machine and introduced a better optimization
scheme. By exploiting the form of the marginal likelihood function, we improved the
way in which voxels are added and deleted from the sparse model during the optimiza-
tion. Our algorithm IRVoxM outperforms RVoxM on synthetic data; it yields sparser
models with good prediction performance and retains weight maps that are closer to the
true synthetic weights than RVoxM’s. On the OASIS data we have observed a similar



OASIS test set RVoxM IRVoxM
168 images 1000 5000 10000 1000 5000 10000

Num. voxels in the model 173 176 151 42 44 17
Correlation 0.90 0.89 0.89 0.91 0.92 0.89

RMSE 10.47 10.85 10.82 10.17 9.97 11.02
Table 1. Model sparsity, test correlation and root mean square error (RMSE) for the OASIS data
set including a different number of voxels in the mask.

behavior; while retaining good prediction performance, IRVoxM yields much sparser
models than RVoxM.
Our aim in this paper was to show that our proposed algorithm IRVoxM improves over
RVoxM’s optimization scheme; thus we compared the two algorithms side by side. Our
new optimization strategy performs as anticipated, and opens up a whole new avenue
for speeding up computations, as was done previously for RVM [3] by FastRVM [5].
One key problem of RVoxM is the computational burden, especially during the first few
iterations, where computational time is cubic in the number of voxels. IRVoxM does
not need to be initialized with all voxels (as has been done for comparison to RVoxM
in all our experiments here). One can start with only a few voxels in the model, which
reduces the computational cost tremendously and preliminary experiments show that
this approach performs equally well. Furthermore, our explicit functional formulation
of the marginal likelihood function for a single αi makes it possible to sample from the
hyperparameter distributions, which had not been possible with RVoxM.
In further versions of IRVoxM, we plan to implement a different initialization strategy
that enables us to increase the speed of IRVoxM, as well as exploit the possibility of
sampling from the hyperparameter distribution.
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