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Functional magnetic resonance imaging (fMRI) is a noninvasive method for measuring brain func-
tion by correlating temporal changes in local cerebral blood oxygenation with behavioral measures. fMRI
is used to study individuals at single time points, across multiple time points (with or without interven-
tion), as well as to examine the variation of brain function across normal and ill populations. fMRI may
be collected at multiple sites and then pooled into a single analysis. This paper describes how fMRI data
is analyzed at each of these levels and describes the noise sources introduced at each level.
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1. Introduction

Functional Magnetic Resonance Imaging (fMRI) is a tool for studying brain function, i.e.,
which neural systems are the brain substrate for a particular behavior. fMRI is noninvasive, mean-
ing that neither surgery nor ionizing radiation are used to generate the images. It can also localize
activity to a few millimeters. For these reasons, fMRI as a research area has exploded over the
last 10 years. In task-based analysis,1 the brain is treated as a black box to which a stimulus is
applied and from which a response is measured. The fMRI measurement itself is related to the
amount of deoxygenated hemoglobin in the blood and so it is called the Blood Oxygen Level
Dependent (BOLD) signal. While dependent upon many other factors, the BOLD signal gives
an indication of how much blood is flowing to a particular location in the brain at a particular

1Increasingly fMRI experiments are being performed without a task. These techniques are not extensively described
in this paper as their methodology strongly overlaps with task-based analysis.

Requests for reprints should be sent to Douglas N. Greve, Martinos Center for Biomedical Imaging, Department of
Radiology, Massachusetts General Hospital, Charlestown, MA, USA. E-mail: greve@nmr.mgh.harvard.edu

© 2012 The Psychometric Society
396

mailto:greve@nmr.mgh.harvard.edu


DOUGLAS N. GREVE ET AL. 397

time. Behavioral and thought processes cause neurons in a small area to become active, which
increases blood flow to that area to supply the metabolic demand of the neural activity. The more
intense the neural activation, the larger the increase in blood flow will be (though the relation-
ship is not necessarily linear or straightforward). The analysis strategy is to correlate the BOLD
waveform with the known time course of stimulation. Brain areas engaged in the task will have a
BOLD signal that is correlated with the task; brain areas that are not engaged in the task will be
uncorrelated. This allows the characterization of the neural substrate of behavior in terms of the
locations in the brain that are engaged, the amount of brain tissue recruited, and the strength or
amplitude of the response. This may be clinically relevant for an individual person for diagnosis,
for treatment planning, for monitoring treatment response or for assessing disease course. We
are also interested in how populations vary, e.g., how do the location, intensity, and size of neu-
ral activation change between those diagnosed with schizophrenia versus those who are deemed
clinically healthy? This leads to potentially four levels of analysis: (1) time series analysis of an
individual at a particular visit date, (2) longitudinal analysis (i.e., from visit to visit), (3) between
subjects within a defined population, and (4) between defined populations. When studying large
samples, it is often necessary to scan them at different study locations, which can add a fifth
analysis level (site). Each of these levels introduces a set of noise that will increase variability
and/or introduce bias to the final result. This paper describes how fMRI is analyzed at each of
these levels, the sources of noise at each level, and ways to control the noise. We start with a case
study to familiarize the reader with the terminology of fMRI as well as provide motivation for
conducting a study. Next, we describe the analysis at the first and higher levels based on the gen-
eral linear model (GLM). The biophysics of fMRI are then summarized to introduce the reader
to the physics of the measurement and a foundation for understanding the sources of the noise.
Finally, the sources of noise at the various levels are surveyed along with methods to reduce their
impact.

2. A Case Study

To provide a concrete example of how fMRI analysis is performed, we present a design
from one of the studies performed by the Function Biomedical Informatics Research Network
(fBIRN). The study used a working memory paradigm to explore how emotionally disturbing
images interfere with working memory and whether this interference differs between healthy
individuals and persons with schizophrenia. Subjects were asked to perform a working memory
task that was divided into three phases. During the Encode phase, the subject was shown a 16
second series of pictures each with a single drawing and asked to save these in memory for recall
16–32 seconds later. These were followed by a 16 second Distractor phase in which images were
either emotionally neutral (e.g., a chair) or emotionally disturbing (e.g., a car accident). In the
Probe phase, the subject was shown a 16 second series of images with two drawings and asked
to respond with a button press as to which one was in the original series. This entire sequence
(called a “block”) lasted 48 seconds and gave five “conditions”: (1) Encode, (2) Emotional Dis-
tractor (ED), (3) Probe following Emotional (PED), (4) Neutral Distractor (ND), and (5) Probe
following Neutral (PND). We are interested in brain areas that respond to each of these condi-
tions individually as well as differentially. During a “run,” four such blocks were presented with
16 second between blocks during which scrambled, uninterpretable images were presented. The
total run time was of 284 seconds. See Figure 1 for a diagram of the timing. This process was
repeated seven more times for a total of eight runs during the visit. Multiple repetitions were used
for averaging. All of this took place inside an MRI scanner. The subject lays on a bed inside of
the bore of the scanner with his/her head inside of a coil apparatus used to detect the MRI signal.
Images were presented to the subject either through goggles or projected onto a screen that the
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FIGURE 1.
Temporal waveforms used in the analysis of the working memory task. Panel A: Task timing waveforms (solid lines) and
regressors (dashed lines) for each condition for a single run. Encode (Enc), Emotional Distractor (ED), Probe following
Emotion Distractor (PED), Neutral Distractor (ND), and Probe following Neutral Distractor (PND). The regressor is
formed by convolving the assumed HRF in Panel B with the paradigm timing waveform (solid lines) to form a biolog-
ically plausible waveform (dashed lines). B: Canonical shape to the HRF. This shape can be interpreted as an impulse
response to a very brief stimulus. This shape and parameters are the default used by the SPM software package.

subject can see through a mirror mounted on the coil. Finger press responses were collected from
a button box inside the scanner. The stimulus was controlled and button presses recorded by a
single computer synchronized with the scanner.

During the time that images were being presented and button presses recorded, the MRI
scanner was collecting images of the entire brain at a temporal sample rate of one every 2 seconds
(called the “TR”). Each sample is referred to as a “time point” or “shot.” For the task given above,
each run lasted 284 seconds resulting in 142 time points; eight such runs resulted in a total of
1,136 time points. The brain volume collected at each time point consisted of a stack of 30 slices;
each individual slice was a 64×64 image matrix of intensity values. Each value is a measurement
(see Equation (6)) from a small 3.4×3.4×5 mm box called a “voxel.” The entire volume covered
a field-of-view (FoV) of 220 × 220 × 150 mm. A volume was acquired slice-by-slice (67 ms per
slice) over the TR, so there was a delay of almost 2 sec between the time of the first slice and the
last slice. See Figure 2 for an image of an fMRI slice (and corresponding anatomical). For the
visit described above, there were a total of 122,880 (30 × 64 × 64) voxels in each time point and
1,136 time points for a total of over 139 million samples. Eighteen subjects were scanned at four
sites; all subjects visited one of the sites twice making a total of five visits. For full documentation
of this study, see (Brown, Mathalon, Stern, Ford, Mueller, Greve, McCarthy, Voyvodic, Glover,
Diaz, Yetter, Ozyurt, Jorgensen, Wible, Turner, Thompson, & Potkin, 2011; Greve, Mueller, Liu,
Turner, Voyvodic, Yetter, Diaz, McCarthy, Wallace, Roach, Ford, Mathalon, Calhoun, Wible,
Brown, Potkin, & Glover, 2010).
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FIGURE 2.
Functional (Panel A) and anatomical (Panel B) images of the same subject. The functional image has a 3.4 mm resolution
and a T ∗

2 weighting. The anatomical image has a 1 mm voxel resolution and a T1 weighting.

3. fMRI Time Series (First-Level) Analysis

While there are many ways to analyze fMRI, we will describe a typical fMRI analysis (Fris-
ton, Jezzard, & Turner, 1994; Huettel, Song, & McCarthy, 2009; Jezzard, Matthews, & Smith,
2001; Monti, 2011; Woolrich, Ripley, Brady, & Smith, 2001). First-level analysis generally con-
sists of several steps: preprocessing, constructing a design matrix as part of a general linear model
(GLM), temporal whitening, constructing contrasts to test hypotheses, computing p-values, and
correcting for multiple comparisons. The preprocessing operations, like motion correction and
spatial smoothing, are designed to reduce a specific kind of noise, so they are discussed in detail
as each source of noise is discussed in Section 6. This section describes the remaining analysis
steps, how the signal is modeled and the noise is computed, and prepares the reader for tracing
the propagation of noise to the higher level analysis.

Each voxel will have its own time course (the “Raw Signal” in Figure 3), and the analysis is
performed at each of 122,880 voxels separately by correlating its time course with a biologically
plausible waveform that represents the anticipated BOLD response to the task. This waveform is
constructed based on two pieces of information. First, a square waveform (solid lines in Figure 1,
Panel A) is created using the onset and offset of the task of interest (1 for “on” and 0 for “off”).
The brain’s hemodynamic response to stimulation, however, is known to be a smooth function
that takes approximately 4 to 6 seconds to peak and 8 to 10 seconds to return to baseline levels
(Figure 1, Panel B), rather than the square on/off waveform of the stimulation. For this reason,
the on/off pattern of stimulation is convolved with a smooth kernel like the one in Figure 1,
Panel B to transform it into a biologically plausible waveform of up- and down-regulation of the
BOLD signal (dashed lines in Figure 1, Panel A). The kernel is referred to as the hemodynamic
response function (HRF) and can be interpreted as an impulse response. HRF shapes have been
derived empirically (Friston, Frith, Turner, & Frackowiak, 1995; Glover, 1999).

The time course for each voxel is analyzed using a GLM (Seber & Lee, 2003):

Fy = FXβ + Fn (1)

where y is a vector of measurements at each time point at a single voxel (“Raw Signal” in
Figure 3), F is a temporal filter, X is the design matrix (independent of voxel), n is the noise at
the voxel, β is the unknown amplitude of the HRF at the voxel. Note that y, X, and n are vectors
of length Nt (the number of time points). The columns of X (regression vectors) are formed from
the biologically plausible waveforms (dashed lines in Figure 1, Panel A).
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FIGURE 3.
Raw and best fit time courses for a single voxel over a single run using the regressors in Figure 1, Panel A. Scr =
Scrambled images used as baseline. Other abbreviations are the same as in Figure 1, Panel A.

The quantity of interest is the amplitude of the hemodynamic response β because this relates
to the neural activity at that particular location. An estimate of β can be computed using the least-
mean-square (LMS) solution as

β̂ = (
X′F ′FX

)−1
X′F ′Fy (2)

A raw time course and resulting fit (ŷ = Xβ̂) are shown in Figure 3.
As explained below, the fMRI noise may be temporally correlated (or “colored”), i.e., one

can do better than chance at predicting what the next noise value will be given past values, which
is not true for temporally uncorrelated (or “white”) noise. Temporal correlation in the noise is
undesirable as it results in inaccurate computation of the p-values of the β̂ estimates. Mathemat-
ically, the temporal relationship of the noise with itself is represented by the Nt -by-Nt temporal
covariance matrix σV , where σ is the (scalar) variance of the noise, and V is the matrix of auto-
correlation coefficients. The value at column i, row j of V indicates the correlation between the
noise waveform and itself delayed by i−j time points. By definition, the value along the diagonal
is 1 (i.e., Vii = 1). White noise is indicated by a diagonal matrix (V = I ); nonzero off-diagonal
terms indicate temporally correlated noise. Temporally correlated noise can be compensated for
by appropriately selecting F , the temporal filter. To remove the temporal correlation, the filter
should be set such that FV −1F ′ = I thereby converting the noise covariance into a diagonal
matrix and producing temporal whiteness. The actual values of F can be computed as the square
root of V −1 using the Cholesky decomposition. In practice, the temporal whitening is performed
in two steps. In the first step, F is set to the identity, the GLM is solved, and an estimate of V is
computed from the residuals. In the second pass, F is computed from the estimate of V , and the
GLM is solved again (Burock & Dale, 2000; Woolrich et al., 2001).

If the task contains more than one condition, then X will have a column for each condition.
The waveform for that condition is constructed from the part of the task waveform associated
with only that condition (see Figure 1). Each condition will have an associated β̂ . In the case
study above, there will be a column in X and corresponding β̂ for each of the five conditions.
This allows the computation of a contrast, e.g., the difference between Condition 2 (Emotional
Distractor) and Condition 4 (Neutral Distractor). This contrast allows us to find brain areas that
respond differentially to the emotional content of the distractor and ignore areas that respond to
some other common aspect of the stimuli. This contrast is embodied in a contrast equation:

γ̂ = Cβ̂ (3)



DOUGLAS N. GREVE ET AL. 401

where C is the contrast matrix and γ̂ is the contrast value. For the example contrast above,
C = [0 1 0−1 0]. We can then use a t-test to test the null hypothesis that γ̂ = 0 with

t = γ̂

σγ

, σγ =
√

σ 2
r

ξ
, ξ = 1

trace(C(X′F ′FX)−1C′)
(4)

where σγ is the standard error of γ̂ , σ 2
r is the variance of the residual error e = F(y − Xβ̂),

and ξ is the efficiency. The significance (p-value) at the voxel can be computed from t with
degrees-of-freedom (DOF) equal to the rows of X minus the columns of X. From this, one
draws conclusions about the effect of the task at this location in the brain for this individual on
this particular occasion. If the contrast is multivariate (i.e., C has more than one row), then an
F-statistic would be used. The noise, summarized by its variance or standard error, is obviously
very important. Below, we describe the components that go into this noise as well as efforts
made to compensate for them. Note that γ̂ is not an absolute quantitative measure of neural
activation or energy consumption and does not carry meaningful physiological units. This means
that conclusions must be statements about the relative size of responses (i.e. “this condition has
a larger response than that condition”). (See Liu, Glover, Mueller, Greve, & Brown, 2012, for
more information about quantification of fMRI.) Note also that the efficiency depends on the
stimulus schedule and can be optimized in advance (Dale, 1999; Liu & Frank, 2004; Maus, Van
Breukelen, Goebel, & Berger, 2010).

After performing this analysis at each voxel separately, the results can be displayed as an
image called a statistical parametric map (SPM) as shown in Figure 4, Panels A–C. These images
show opaque color proportional to the t-value for voxels that have a t-value greater than 3.3 (i.e.,
p < .001). This collection of supra-threshold voxels is known as “activation.” If the t-value is
less than 3.3, then it transparently shows the gray-scale anatomical image. In this way, one can
glance at an image to see if there are any significant voxels, where they are in the brain, and how
much tissue they cover. The locus of activation is quantified based on the position of the supra-
threshold voxels; the size of activation is quantified based on the number of supra-threshold
voxels; and the intensity of activation quantified based on the γ̂ in the activation region.

The presence of supra-threshold voxels needs to be interpreted with care. Each voxel repre-
sents a separate statistical test. If a p-threshold of p < .01 is used and there are 122,880 voxels,
then one would expect 1,228 voxels to appear significant purely by chance, provided the statisti-
cal tests in each voxel are independent. In the MRI literature, this is referred to as “the problem
of multiple comparisons.” One solution is to apply a Bonferroni correction by dividing the p-
threshold by the number of voxels. In the above example, this would change the threshold for
significance from p < 10−2 to p < 10−7. While this controls false positives, it dramatically in-
creases false negatives. Another solution is to only look for “clusters” (i.e., contiguous regions of
supra-threshold activity). The basic idea being that false positives will be spatially random and
several adjacent supra-threshold voxels would be uncommon by chance. Closed-form distribu-
tion functions of cluster sizes have been derived under random field theory (Worsley, Marrett,
Neelin, Vandal, Friston, & Evans, 1996); this allows a p-value to be assigned to each cluster
depending on its size. These p-values can also be computed using simulations under the null
hypothesis (Hayasaka & Nichols, 2003). Another alternative is to threshold using false discovery
rate (FDR) in which the number of false positives with respect to the total number of positives
(instead of the total number of tests) is controlled (Genovese, Lazar, & Nichols, 2002).

4. Higher Level Analysis

In a full study, data on many (i.e., > 15) subjects are typically acquired, perhaps from differ-
ent groups, perhaps at different visit dates, and perhaps with some sort of intervention between
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FIGURE 4.
Significance SPMs for the Probe-vs.-Scrambled Contrast. Panels A–C show activation maps for 3 individuals. Panel D
shows the results of the random-effects test over 18 subjects. Thresholds are set at t > 3.3 (p < .001, uncorrected for
multiple comparisons). Red/yellow indicates Probe > Scrambled; blue/cyan indicates Scrambled > Probe.

visits. The analysis at the higher levels is conceptually the same as the first-level in that the
lower-level GLM contrast value γ̂ (and its standard error σγ ) are used as input to a new GLM in
which a new design matrix and contrast matrices are constructed, a new fit is performed, and a
new error term is computed. The new error term will be composed of low-level noise plus new
sources of noise that may be specific to the level being analyzed. In this section, we summarize
how the higher-level analysis is performed and introduce the problem of anatomical variability
between subjects and registration to an atlas space.

The higher-level GLM can be written as

Hz = HGϕ + Hu (5)

where z is the vector of lower level γ̂ at a given voxel, G is the group design matrix, ϕ is vector
of regression coefficients to be estimated, u is the noise at the higher level, and H is a matrix
that accounts for heteroscedasticity across the lower level measurements. Analyses are often
performed using a “random effects model” in which H = I (Friston, Holmes, & Worsley, 1999).
Increasingly, mixed effects models that take into account the variance from the lower level are
becoming popular (Beckmann, Jenkinson, & Smith, 2003). See Zhou, Konstorum, Duong, Tiue,
Wells, Grown, Stern, & Shanbaba (2012) for a thorough review of Bayesian hierarchical analysis
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of multilevel fMRI data, one form of mixed effects modeling. As with the first-level analysis,
contrasts and p-values can be computed to create new SPMs (Figure 4, Panel D). At each of the
higher levels, we can quantify the location, size, and amplitude of the response as described by
the first-level.

Prior to comparison across subjects, one needs to make sure that one is comparing the ap-
propriate values. If two subjects each have 100,000 voxels, which voxel in Subject 1 should be
compared against which voxel in Subject 2? One solution is to align or register the brains of
all subjects to an “atlas” (Collins, Neelin, Peters, & Evans, 1994). The human brain has a lot of
structural variability, but there are some features that are consistent across all brains. These fea-
tures are preserved in an atlas, which is typically formed from an average across a large sample
of brain images from a representative population after the images have been rotated, translated,
stretched, and sheared to make their features align better. More elaborate intersubject alignment
schemes are becoming common (Ashburner, 2007; Fischl, Dale, Sereno, Tootell, & Rosen, 1998;
Postelnicu, Zollei, & Fischl, 2009). Prior to group analysis, each subject’s brain is transformed to
align its features with those of the atlas. The voxel of analysis in Equation (5) then corresponds
to a voxel in the atlas space (also known as “standard” space). The images in Figure 2 are in a
standard space known as “MNI152” (Collins et al., 1994).

There are several publically available software packages that will perform fMRI analysis
from first-level through higher levels. Some of the prominent ones are Statistical Parametric Map-
ping (SPM; www.fil.ion.ucl.ac.uk/spm), FMRIB Software Library (FSL; www.fmrib.ox.ac.uk/
fsl), and Analysis of Functional NeuroImages (AFNI; afni.nimh.nih.gov/afni).

5. MRI Biophysics

To understand the sources of fMRI signal and noise, one needs to understand how the BOLD
signal is formed. In this section, we describe the nature of the measurement, including the scanner
acquisition parameters, tissue parameters, how these parameters interact to form signal, as well as
scanner-related noise sources. Although a complete description of how individual nuclei interact
with a magnetic field requires a quantum mechanical description, a classical physics approach
is adequate to describe how groups of atoms generate the observable properties in most MR
imaging (Hanson, 2008). We will focus our discussion on protons because most conventional
fMRI imaging is dominated by signal from the nucleus of water-bound hydrogen atoms, which
are protons, but our description is applicable to all MR observable nuclei. Our discussion is also
necessarily brief; for in-depth descriptions of this material see (Brown, Perthen, Liu, & Buxton,
2007; Buxton, 2009; Liang and Lauterbur, 2000; Nishimura, 1996).

Protons exhibit a quantum mechanical property called “spin.” This spin causes the proton
to have a magnetic moment and an intrinsic angular momentum. Normally, the spin axes (and
corresponding magnetic moments) point in uniformly random directions canceling each other out
over the volume of a voxel. When placed in the strong static magnetic field of a scanner (called
the B0 field), the distribution becomes nonuniform with slightly more spins pointing along the
axis of the scanner bore. This creates a net magnetization vector in the voxel, something like a
compass needle pointing north. When the net magnetic moment is perturbed from its equilibrium
position using a pulse of radio frequency (RF) energy, it exhibits resonance behavior. The RF
pulse causes the vector to tip at a certain angle away from the B0 field and precess around in a
circle like a spinning top that has been disturbed. When the RF pulse is turned off, it continues
to move in a circle but slowly realigns with the magnetic field (a process called “relaxation”).
As it relaxes, it reemits RF energy, which is then received by a coil and detected by the scanner
electronics. This is the fundamental quantity measured in all MRI; all other quantities are derived
from this quantity.

http://www.fil.ion.ucl.ac.uk/spm
http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl
http://afni.nimh.nih.gov/afni
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When the RF pulse is first applied, magnetization vectors of neighboring voxels tend to pre-
cess in phase at the resonance frequency, which is proportional to the strength of the magnetic
field. However, the exact frequency of precession depends on slight perturbations the local mag-
netic field caused by factors such as the chemical environment and the structure of the tissue,
so, over time, nearby protons within the voxel will become out of phase. The rate at which this
happens is called the T ∗

2 (pronounced TEE-TWO-STAR) relaxation rate. The rate at which the
magnetization vector becomes realigned with the magnetic field is called the T1 relaxation rate,
which is also dependent upon the chemical/structural environment. Different tissues have dif-
ferent chemical/structural environments and so different T1 and T ∗

2 . MRI works by creating an
image where the signal intensity at each location is related to the T1, T ∗

2 , or proton (or spin) den-
sity (PD) at that location, thereby revealing the different tissue types. Figure 2, Panel A shows a
T ∗

2 -weighted image; Figure 2 Panel B shows the same slice in a T1-weighted image.
An image is not formed by simply sampling the signal intensity at each location in the brain.

When the RF pulse is transmitted, it excites the spins across a slice2 of the brain. These spins
slowly reemit the excitation energy, so the measured signal is a composite from spins across the
whole slice. Such a measurement actually represents a single complex point in the frequency
space of the Fourier transform of the image of the slice. The frequency space is referred to as
“k-space.” Data samples are acquired at different points in k-space by making subtle manipula-
tions to the magnetic field. When a full grid of k-space samples has been acquired, an inverse
Fourier transform is applied to create an image of the slice. Typically, only the magnitude is used
for fMRI. This Fourier-based image reconstruction implies that the data are sampled at known
frequencies in k-space. However, small spatial variations in the B0 field can cause this assump-
tion to be violated, resulting in compression and stretching in parts of the image (referred to as
B0 distortion Jezzard & Balaban, 1995). This can also cause parts of the image to become darker
than one would expect given the tissue there. Comparisons between Panels A and B in Figure 2
show a typical example of image distortion and signal loss by small spatial variations in the B0

field.
The BOLD signal is created through a complex interaction between the MR physics and

the living tissue. Active neurons expend energy which requires oxygen. Oxygen is delivered by
hemoglobin in the blood vessels that run through the tissue. Energy usage by the tissue causes
oxygen to be extracted from the blood, converting oxygenated hemoglobin (HbO) to deoxy-
genated hemoglobin (HbR). The BOLD signal is related to the amount of HbR present in the
blood. The deoxygenated blood is pumped back to the lungs to acquire more oxygen so that
the process can be repeated. The nearby vasculature react to the neural activation by dilating,
producing an increase in blood flow and volume in the nearby tissue. This washes out the HbR,
changing its concentration and so the BOLD signal. The key property that makes fMRI possi-
ble is that HbR has different magnetic properties than HbO. Specifically, blood with more HbR
has a shorter (i.e., smaller) T ∗

2 . This change in blood properties causes the Blood Oxygen Level
Dependent (BOLD) effect. BOLD-weighted images (e.g., Figure 2, Panel A) will then show the
pattern of regional differences that depend upon the relative concentration of HbR, and from
this the pattern of neural activity is inferred. This pattern is a snapshot because the blood flow
and changing neural activation makes the pattern change over the course of a few seconds. The
temporal relationship between the neural activity and the change in the BOLD signal is the
hemodynamic response mentioned above (see also Figure 1, Panel B). This relationship is quite
complicated and not yet well understood (Logothetis & Wandell, 2004). It may also depend on

2Prior to RF transmission, a third set of coils creates a controlled spatial gradient in the B0 field so that only the
spins in a given slice are on-resonance. The location of this slice is adjusted each shot so that all slices in the brain are
imaged. Other types of MRI acquisitions will excite the spins across the entire brain.
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many physiological variables not related to neural activation (Buxton, Uludag, Dubowitz, & Liu,
2004).

The value measured at a given voxel at a given time is governed by the following equation
(Liang and Lauterbur, 2000):

y(v, t) = PD(v) · sin(α(v, t)) · (1 − e
−T R(v,t)

T1(v) ) · e
−T E

T ∗
2 (v,t)

(1 − cos(α(v, t))e
−T R(v,t)

T1(v) )

+ w(v, t) (6)

where v is the voxel index and t is the time of acquisition. The equation depends on three scanner
acquisition parameters (TR, TE, and α) and three tissue MR parameters (T ∗

2 , T1, and PD) while
w(v, t) is thermal noise (sometimes called background noise). Acquisition parameters can be
selected to emphasize certain image contrast properties (something like setting the shutter speed
on a camera). The flip angle α controls how far the RF pulse tips the spins from alignment with
the magnetic field. The TR (mentioned above) is the repetition time which sets the rate of RF
pulses applied to each slice. Since an image can only be measured after an RF pulse, the TR
effectively controls the sampling rate. The TR is typically in the range of 2–3 sec for fMRI
studies resulting in a Nyquist rate around 0.17–0.25 Hz. The TE is the echo time, which is the
time delay between the RF pulse and the acquisition of the image; the TE controls the amount of
T ∗

2 weighting. In the case study described in Section 2 α = 77°, TE = 30 ms, and TR = 2 sec.
The (unknown) tissue parameters indicate how the tissue interacts with the magnetic field.

An acquisition proceeds as follows: an RF pulse with flip angle α is applied to a slice of the
brain, this tilts the spins by α; after the RF pulse ends, the spins slowly realign with the main
magnetic field (time constant T1) and dephase with nearby spins (time constant T ∗

2 ); the measured
signal, y, is dependant on the number of spins inside the voxel (PD) weighted by both the T1 and
T ∗

2 decay; another RF pulse is applied after TR seconds, and the process is repeated. Imaging
takes place in the scanner while the subject is engaged in a behavioral task of known timing. The
value from Equation (6) is used as input to Equation (1) which is solved to compute an estimate
of the HRF amplitude for an assumed HRF shape. This estimate is subject to uncertainty because
of the noise in the first-level measurement.

6. Sources of Time Series (First-Level) Noise

Time series noise (n in Equation (1)) manifests as any part of the measurement that does not
fit the matrix model. It is summarized by its variance estimate σ 2

r and temporal covariance V .
It creates uncertainty in the estimate of the HRF amplitude (γ̂ in Equation (2)); this uncertainty
is quantified by the standard error of γ̂ (σγ in Equation (4)). Equation (6) links the biophysics
to both the HRF amplitude its uncertainty. Ideally, the measurement y would only change in
response to neurally driven changes in T ∗

2 . However, changes in any of the seven parameters in
Equation (6) (α, TR, TE, T1, T ∗

2 , PD, w) will propagate to unmodeled changes in y; this includes
fluctuations in T ∗

2 that are not linked to neural activation. In the remaining portion of Section 6,
we trace these fluctuations first by describing scanner-related sources of noise and then move on
to the more complicated subject-related sources. See Table 1 for a summary of sources of time
series noise.

Scanner-Related Noise Scanner-related noise originates both from thermal noise and from
instability in the scanning process itself. The thermal noise (w in Equation (6)) comes from
Brownian motion of ions. Ions are charged particles, and the movement of charged particles is
an electric current. This produces a fluctuating electromagnetic field, which is picked up by the
electronics used to measure the MR signal. This electromagnetic noise is similar to the noise of
a radio tuned to a frequency where there is no broadcast and is well modeled by spatially and
temporally independent homoscedastic Gaussian noise.
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TABLE 1.
Sources of first-level noise.

Source Mitigation

Thermal Optimize acquisition parameters; spatially smooth; eliminate
external noise sources in the scanner room.

Scanner instability Diagnose and minimize with QA protocol.
Head motion Stabilize/restrain head; use prospective motion correction.
Spin history Motion-related nuisance regressors.
Heartbeat External monitor, nuisance regressors.
Heart rate variability External monitor, nuisance regressors.
Respiration External monitor, nuisance regressors.
Respiration variability External monitor, nuisance regressors.
CO2 variability External monitor, nuisance regressors.
Resting-state/spontaneous Independent Component Analysis.
Neural activation
HRF model error Include temporal derivative.

Thermal Noise Thermal noise can be reduced by spatial smoothing or by adjusting the ac-
quisition parameters. Spatial smoothing is the averaging of the waveform at a voxel with those
of nearby voxels. If the signals in nearby voxels exhibit greater spatial similarity with each other
than with the noise (generally true), then smoothing will result in an increase in SNR at the
cost of spatial resolution. Smoothing also assures that the data meet the requirements needed
by random field theory in the correction of multiple comparisons (Hayasaka & Nichols, 2003).
In addition, smoothing improves intersubject alignment (discussed below). Smoothing is an ex-
tremely common preprocessing step in fMRI, and few operations will have as dramatic effect
on the results as spatial smoothing (Strother, La Conte, Hansen, Anderson, Zhang, Pulapura, &
Rottenberg, 2004).

The acquisition parameters (TR, TE, α) can be selected to maximize the BOLD contrast
with respect to the thermal noise. While this improves the overall SNR, the effect has diminishing
returns (Kruger & Glover, 2001; Triantafyllou, Hoge, Krueger, Wiggins, Potthast, Wiggins, &
Wald, 2005). To understand why, consider that Equation (6) is the sum of two components. The
first component is the actual MR signal (dependent upon the tissue and acquisition parameters).
The second component is the thermal noise. While the thermal noise is pure noise, the MR
signal has both neurally driven changes (signal in Equation (1)) and changes due to fluctuations
in the parameters which show up as noise in Equation (1). Thus, one can think of the BOLD
measurement as having a single neurally driven signal component and two noise components,
one thermal and one related to nonneural fluctuations in the MR signal. Adjusting the acquisition
parameters can maximize the MR signal with respect to the thermal noise, but even if the relative
thermal noise were reduced to zero, there would still be noise caused by the nonneurally driven
changes in the MR signal. The actual contribution of thermal noise is hard to quantify exactly
because it is highly dependent on acquisition parameters such as flip angle, TE, and voxel size.
However, in the case study described in Section 2, the thermal noise generally accounted for only
about 10–20 % of the total temporal noise variance in gray matter (Greve et al., 2010).

Scanner Instability Noise Noise caused by scanner instability can come from several
sources. The RF power used to flip the spins by angle α may fluctuate slightly from shot to
shot. The electronics that control the location in k-space at which a sample is made may fluctuate
from shot to shot which changes the location in k-space of a sample from the assumed frequency
grid. This can cause a shot to shot change over the entire image when the inverse Fourier trans-
form is applied. Its distribution is not well characterized, but it does have some temporal and
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spatial correlation. In the well-operating scanners of the case study, the instability noise only
accounted for a few percent of the total variance (Greve et al., 2010). Both thermal noise and
instability are present when scanning a “phantom” (i.e., an inanimate object such as a bottle of
water)—so no human needs to be present to characterize these sources of image noise.

Subject Motion-Related Noise When a human is placed in the scanner, noise from motion
and physiological effects will be introduced. An assumption of Equation (1) is that all the data
points in the measurement vector (y) come from the same location in the brain. This location is
a voxel which encompasses a tiny box inside of the scanner, and the location of this box is fixed
with respect to the scanner. Thus, if the subject moves during the run, then the time course will
come from one brain region during the beginning of the scan and from a different part of the
brain after the motion. This can cause a large error when fitting the task time course to the voxel
time course. Efforts are made to restrain the subject’s head during the MRI scan, but the head is
not rigidly restrained and some motion may take place. Given that the typical fMRI voxel size is
about 4 mm, even a small amount of motion can degrade the measured time course.

Motion can also interact with the MR physics in a complicated way to cause something
called the “spin history effect.” This causes some parts of the brain to brighten or darken dramat-
ically for a few time points after the motion (Friston, Williams, Howard, Frackowiak, & Turner,
1996). These effects are unmodeled in Equation (1) and so increase the noise. They are also
irreversible.

The noise caused by motion is nonnormal, heteroscedastic, nonstationary, and temporally
correlated. It can also be correlated with the task if the subject moves with the task (e.g., flinching
in response to a disturbing picture). The effects of motion can be reduced by applying a motion-
correction (MC) algorithm (Cox & Jesmanowicz, 1999). MC attempts to adjust the translation
and rotation at each time point so that each voxel represents a single location in the brain at all
time points. This cannot undo all the effects of motion (Friston et al., 1996), and itself requires
some interpolation. It is worth noting that there are many efforts to measure and compensate
for motion prospectively, thus reducing the effects of motion greatly (Thesen, Heid, Mueller, &
Schad, 2000; Tisdall, Hess, & van der Kouwe, 2010; Ward, Riederer, Grimm, Ehman, Felmlee,
& Jack, 2000).

Physiological Noise All changes in blood flow affect the BOLD signal by changing the
concentration of HbR (and so the T ∗

2 ). Ideally, the flow would only change in response to neu-
ral activation. Unfortunately, changes in flow can be caused by other factors unrelated to neural
activity, such as heartbeat and respiration. These factors are referred to as “physiological noise.”
The brain also has complicated autoregulatory mechanisms that attempt to keep blood flow con-
stant (Payne, 2006). When the heart beats, it sends a surge of blood through the vasculature,
and this can be detected in the BOLD signal. The heart rate is about 1 Hz, much faster than
neurally driven changes in the BOLD signal. Unfortunately, the heart rate is also faster than the
Nyquist rate in most fMRI studies, resulting in the heartbeat effects being aliased into the much
lower task frequencies. The heartbeat can be measured at high sample rates using an external de-
vice synchronized with the scanner. This measurement can then be used to construct “nuisance”
regressors that are appended as columns to the design matrix in Equation (1) to model these ef-
fects (Glover, Li, & Ress, 2000). Nuisance regressors can also be constructed based on heart rate
variability—low frequency changes in heartbeat that appear to account for a large fraction of the
BOLD noise (Chang, Cunningham, & Glover, 2009).

Respiration can have a number of effects on the BOLD signal. As the chest cavity expands
and contracts, it actually changes the magnetic field strength in the brain by tiny amounts. Though
small, this causes the entire image to stretch or compress slightly with the breath (Brosch, Ta-
lavage, Ulmer, & Nyenhuis, 2002). From a noise perspective, this acts like a type of motion ar-
tifact. Respiration rates are generally about 0.3 Hz. Like heartbeat, respiration is typically faster
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than the BOLD Nyquist rate. The respiration rate also controls the amount of carbon dioxide
(CO2) in the blood. CO2 causes blood vessels to dilate, which increases flow. As the respiration
rate changes, the concentration of CO2 changes. This changes the blood flow which changes the
BOLD signal. As with heartbeat, nuisance regressors can be derived from a respiration monitor
and included in the BOLD model design matrix (Birn, Diamond, Smith, & Bandettini, 2006).
CO2 concentration can also be tracked directly with an external device to create nuisance regres-
sors (Wise, Ide, Poulin, & Tracey, 2004).

The brain also has endogenous neural activity that is not related to the task (Biswal, Yetkin,
Haughton, & Hyde, 1995; Chang and Glover, 2009). This activity draws blood just like task-
related activity, but since there is no model for it in the design matrix the effects of this endoge-
nous activity go into the error term. These fluctuations happen in the absence of a task so they
are sometimes called “resting state networks” (RSNs). In a “functional connectivity” study, the
RSNs themselves are the object of investigation (Fox, Snyder, Vincent, Corbetta, Van Essen, &
Raichle, 2005; Vincent, Snyder, Fox, Shannon, Andrews, Raichle, & Buckner, 2006). RSNs are
currently a very active area of fMRI research. The use of model-free spatio-temporal analysis
has become a prevalent tool for the study of RSNs. These include the use of independent compo-
nent analysis (ICA), which decomposes the entire 4D data set into independent spatial patterns
and corresponding temporal waveforms (Beckmann & Smith, 2004; Calhoun, Adali, Pearlson, &
Pekar, 2001). Temporal waveforms that correspond to RSN noise, as well as noise from motion
and physiological sources, can be determined and removed from the analysis. Since the noise
is generally low frequency, polynomial nuisance regressors are often added to the design matrix
(Worsley, Liao, Aston, Pere, Dunackn, Morales, & Evans, 2002).

Noise Associated with HRF Model Errors When analyzing the data, it is generally assumed
that the neural activation follows the timing of the stimulus that the HRF takes a fixed, known
shape, and that the response to each presentation is identical (e.g., as in Figure 1, Panel A). These
assumptions can be violated in a number of ways. The shapes frequently used to model the HRF
were derived from empirical data (Cohen, 1997; Friston et al., 1994; Glover, 1999), but it is well
known that the shape changes across subject and brain region (Aguirre, Zarahn, & D’Esposito,
1998; Handwerker, Ollinger, & D’Esposito, 2004; Henson, Price, Rugg, Turner, & Friston, 2002;
Hopfinger, Buchel, Holmes, & Friston, 2000; Miezin, Maccotta, Ollinger, Petersen, & Buckner,
2000). These HRF model errors add noise, although this is generally small fraction of the total
noise. More importantly, they bias the estimate of the response amplitude by causing the estimate
to be too low. This makes the activation more difficult to detect and can cause a bias between
groups (see below). The effect of these errors tends to drop with stimulus duration (Huettel et
al., 2009). It is quite common to model these errors by constructing additional regressors that
correspond to the temporal derivative (i.e., first order Taylor series expansions) of the assumed
HRF (Friston, Fletcher, Josephs, Holmes, Rugg, & Turner, 1998) or other basis sets (Woolrich,
Behrens, & Smith, 2004a). While this will account for some of the error, it is not sufficient by
itself to recover the true amplitude of the HRF. In the first-level analysis, the additional regressors
can be used in an F-test (Liu & Frank, 2004). Since only a single value is passed to higher level
analyses, these additional regressors essentially act as nuisance regressors when considered from
the effect on the higher level. Bias due to small delay errors (< 1 s) can be reduced by computing
a signed magnitude of the derivative and nonderivative regression coefficients (Calhoun, Stevens,
Pearlson, & Kiehl, 2004), though this does introduce some nonlinearity into the process. There
are some nonlinear methods that attempt to fit both the shape and the amplitude (e.g., Woolrich,
Jenkinson, Brady, & Smith, 2004b), but these are computationally intensive and not in general
use.

In addition to systematic shape errors, the responses to repeated identical stimuli may not be
the same. For example, the amplitude of the response to the second of two closely spaced stimuli
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TABLE 2.
Sources of within-subject/cross-visit level noise.

Source Mitigation

Scanner changes Track and reduce with QA protocol
Head placement Use scanner auto-alignment; train technician
Subject wakefulness Scan at same time of day; survey wakefulness
Caffeine/nicotine/etc. Control/monitor subject chemical use

may be less due to refractory effects (Huettel & McCarthy, 2000). The subject may be presented
with tens or hundreds of presentations of the same stimulus type (e.g., emotional distractors), and
the response may change with repetition. In primary sensory areas, the response is stable across
repeated presentations within visit (Miezin et al., 2000), but care must be taken to avoid practice
effects (Kelly & Garavan, 2005).

Nuisance Regressors The nuisance regressors are added with the ultimate goal of reducing
the uncertainty in the HRF amplitude contrast (quantified by its standard error σγ ). However,
they must be used with care. Adding regressors to the design matrix can reduce the residual vari-
ance σ 2

r , but this can also reduce the efficiency ξ . The final effect on σγ will be unknown. If
σ 2

r is reduced more than the efficiency, σγ will decrease and detectability will increase. How-
ever, it is possible for σ 2

r to decrease and σγ to increase if the efficiency is sufficiently reduced,
paradoxically causing a reduction in the amount of detected activation even though more noise
is accounted for.

7. Source of Higher Level Noise

In this section, we describe the sources of noise in the higher level analysis, where the γ̂ are
combined across visit, subject, and group, and perhaps site.

Within-Subject/Cross-Visit Level Noise Sources (Table 2) Subjects are often scanned lon-
gitudinally to track disease process or evaluate an intervention. When a subject returns to be
scanned for a second time, differences may appear between the BOLD signal in the two visits
that have little to do with changes in neural activity. These differences have several origins. First,
the subject may not be placed in the scanner in exactly the same position which can change the B0

distortion. This can be reduced by using an on-line automatic slice positioning method (van der
Kouwe, Benner, Fischl, Schmitt, Salat, Harder, Sorensen, & Dale, 2005) and/or by proper train-
ing of study staff to position the subject’s head in the coil and position the slices. It is also possible
that the scanner itself has changed between visits. This may take the form of degradation in scan-
ner hardware over time, recalibration of the scanner, and/or hardware or software upgrades. For
this reason, it is recommended that a quality assurance (QA) protocol (Friedman & Glover, 2006;
Greve et al., 2010) be implemented to assure consistent scanner performance. Subjects may also
have changed in ways that do not relate to the task performance but can affect the HRF amplitude.
These factors include the amount of sleep the previous night (Thomas and Kwong, 2006), caf-
feination level (Liu, Behzadi, Restom, Uludag, Lu, Buracas, Dubowitz, & Buxton, 2004), and re-
cent alcohol (Levin, Ross, Mendelson, Kaufman, Lange, Maas, Mello, Cohen, & Renshaw, 1998)
and nicotine (Kumari, Gray, ffytche, Mitterschiffthaler, Das, Zachariah, Vythelingum, Williams,
Simmons, & Sharma, 2003) consumption. These can be reduced by instructing or monitoring
subjects’ sleep patterns and/or use of chemicals.
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TABLE 3.
Sources of cross-subject and cross-group level noise.

Source Mitigation

Anatomical variability Use high-DOF intersubject registration methods
HRF model error Include temporal derivatives
Head motion variation across group Use weighted-least squares/mixed effects models

Within-Group/Cross-Subject Level Noise Sources (Table 3) A group is a cohort of individu-
als who have been classified together by some criteria, e.g., diagnosis (Alzheimer’s, Schizophren-
ics, healthy), handedness, gender, age, etc. These subjects will have natural variation in their HRF
amplitude across the population that is purely related to functional/neural differences. However,
some of the differences may be due to HRF model error mentioned above, i.e., individuals may
have the same HRF amplitude but different shapes, and the different shapes cause the estimate
of the HRF amplitude to differ. If the HRF error is delay-related, the effect can be reduced by
adding a temporal derivative of the HRF to the design matrix then passing up to the next level a
signed magnitude of the main and derivative regression coefficients as discussed above.

Anatomical variability is a major source of noise when comparing across subject. As with
all analyses, the assumption is that all the values in the input data vector (z in Equation (5))
come from the same place in the standard atlas brain, but individuals differ considerably in both
brain structure and how function maps to that structure, and it is not clear exactly how this
mapping between individuals should be performed. If the registration procedure does not align
functional units properly, then there will be differences between the subjects because the γ̂ being
compared come from different brain regions. This will increase the variability within the sample,
though the effect of registration errors can be reduced by spatial smoothing or by using high-DOF
registration methods.

Cross-Group Level Noise Sources (Table 3) Comparing across groups (e.g., Alzheimer’s
patients versus age-matched controls) adds several more sources of noise. The anatomical vari-
ability between subjects can be even more important between groups because different groups
may have systematic differences in brain structure that cause their registration to standard space
to be systematically different (Shen, Sterr, & Szameitat, 2005). This means that at a given point
in the standard brain, the HRF amplitudes from one group could come from one place in the
brain while the amplitudes from a second group could come from a different place. While group
correlated registration errors can lead to added variability, they can also generate a bias in the
group effect. For this reason, the use higher order registration methods are recommended. There
may also be systematic differences in the shape of the HRF between groups (D’Esposito, Zarahn,
Aguirre, & Rypma, 1999), which can bias the amplitude comparisons, though these can also be
reduced by passing the signed magnitude of the nonderivative and derivative components to the
higher level as mentioned previously. Finally, different groups may have differences in first-level
noise (Maxim, Sendur, Fadili, Suckling, Gould, Howard, & Bullmore, 2005) which can create
heteroscedasticity at the higher level. This potential noise source should be controllable by the
use of a mixed effects modeling in the higher level analysis. There can also be differences in vas-
cular physiology between groups that can affect the BOLD response. For example, the baseline
cerebral blood flow (CBF) will affect the amplitude of the HRF. The CBF can change with age,
the use of caffeine or other drugs, and disease state (Fleisher, Podraza, Bangen, Taylor, Sherzai,
Sidhar, Liu, Dale, & Buxton, 2009). It might be possible to reduce this confound by measuring
CBF using an additional MRI acquisition called arterial spin labeling (ASL) (Alsop & Detre,
1996).
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TABLE 4.
Sources of variation across site.

Source Mitigation

Field strength Choose scanners of the same strength
Manufacturer Analyze with B0 distortion correction; to the extent possible standardize

protocol across vendors
RF noise Use weighted-least squares/mixed effects models
Head restraint Use same head restraint method
Stimulus delivery Match stimulus delivery devices
Personnel/screening Training and documentation; protocol standardization
Acquisition parameters Match acquisition parameters as closely as possible
Head coil Match head coils

Noise Sources in Multiple Site Studies (Table 4) Scanning different subjects at multiple
sites can greatly increase the number and diversity of the sample pool. However, it also introduces
new sources of noise related to different hardware, research protocol, and personnel (Glover,
Mueller, Turner, van Erp, Liu, Greve, Voyvodic, Rasmussen, Brown, Keator, Calhoun, Lee, Ford,
Mathalon, Diaz, O’Leary, Gadde, Preda, Lim, Wible, Stern, Belger, McCarthy, Ozyurt, & Potkin,
2012). Scanner hardware can differ in many ways, with the two most prominent being field
strength and manufacturer. Field strength directly affects the T ∗

2 and so systematically affects
the size of the measured BOLD hemodynamic response. Even when the scanners have the same
field strength, they may have been manufactured by different companies. There are details in the
ways that the scanners are constructed, configured, and programmed that can cause differences in
the results (Friedman, Stern, Brown, Mathalon, Turner, Glover, Gollub, Lauriello, Lim, Cannon,
Greve, Bockholt, Belger, Mueller, Doty, He, Wells, Smyth, Pieper, Kim, Kubicki, Vangel, &
Potkin, 2008). Many of these effects can be mitigated by appropriately selecting the scanner
parameters to be as similar as possible across the scanners (Brown et al., 2011; Suckling, Ohlssen,
Andrew, Johnson, Williams, Graves, Chen, Spiegelhalter, & Bullmore, 2008). Sites may have
different RF noise environments (Greve et al., 2010) due to differences in room shielding and/or
the presence of electronics (such as a projector) inside the room.

The subjects will likely have different experiences at different sites, and this difference may
introduce systematic changes across site. For example, different sites may use different head
restraints which can affect the amount of motion and subject comfort. Sites may also differ in
the way they deliver stimuli to the subject (e.g., back projection vs. goggles) or record subject
responses (e.g., keyboard vs. button box). Each site will also have its own personnel responsible
for executing the study. Different personnel mean that recruiting and screening practices may
be different resulting in a different group sample for each site. Finally, the locale of each site
may differ in terms of access to chemicals that affect the hemodynamic response (e.g., caffeine,
nicotine, alcohol, etc.).

Some site differences, such as magnet vendor, may have the same differential effect on all
subjects. Other site differences, such as the ease of access to nicotine or caffeine, may cause
the magnitude of between-subject differences to vary by site, producing site-by-subject inter-
actions. All of this suggests that site be taken into account when performing the higher level
analysis with data pooled from multiple sites. For a small number of sites (less than 6), modeling
site as a fixed effect is recommended; for a larger number, a random effects model is possible
(Glover et al., 2012). It is also suggested that the experimental design be balanced across site.
For a thorough review of recommendations for all aspects of multisite fMRI, see work from the
Function Biomedical Informatics Research Network (Glover et al., 2012).
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FIGURE 5.
Residual noise power spectrum averaged over gray matter. The center dark line is the mean across 18 subjects (with
standard error bars). The lines above and below are the maximum and minimum across the 18 subjects. The values
have been scaled so that the mean in the high frequency (white noise) range is 1. The prominent dip in the spectrum at
0.015 Hz is due to the fitting of the task waveforms shown in Figure 1, Panel A. The time series were demeaned resulting
in zero power at DC.

8. Discussion

Noise is important to understand and quantify because it creates uncertainty and can lead to
the drawing of both false positive and false negative conclusions. With the exception of model
error and possibly motion, the first-level noise sources will not bias the expected value of the
estimate of the HRF amplitude. They will, of course, make it more difficult to detect activation
(i.e., increased false negatives). Aside from the thermal noise, the fMRI noise is generally het-
eroscedastic, temporally correlated, and nonstationary (Turner & Twieg, 2005). A power spec-
trum of the residual time series noise from the case study described in Section 2 is shown in
Figure 5; the noise is clearly nonwhite, with much power in the lower frequencies. These non-
ideal statistical properties bias the estimates of the standard error σγ , and so bias the first-level t-
and F-statistics by generally making them larger than they should be (false positives) due to the
low-frequency nature of the noise (Bullmore, Long, Suckling, Fadili, Calvert, Zelaya, Carpenter,
& Brammer, 2001). This biases estimates of the volume of activation computed by counting the
number of voxels above threshold. The nonthermal noise generally accounts for about 80–90 %
of the variance in fMRI time series (Greve et al., 2010); this makes thresholded statistical maps of
an individual subject highly variable (McGonigle, Howseman, Athwal, Friston, Frackowiak, &
Holmes, 2000). To some extent, this can be corrected by adding appropriate regressors or using of
temporal whitening as discussed previously, but we recommend that the HRF amplitude estimate
(or contrasts thereof) be used in higher level analyses (Smith, Beckmann, Ramnani, Woolrich,
Bannister, Jenkinson, Matthews, & McGonigle, 2005) rather than supra-threshold voxel counts
or other noise-dependent statistics. The magnitude of σγ may be affected by visit and group
membership (e.g., schizophrenics may move more than healthy controls). This can result in het-
eroscedasticity at higher levels. To some extent, this can be reduced by including σγ in a mixed
effect model.

At the higher levels, the sources of noise are also very complicated with poorly understood
distributions. Permutation methods (Hayasaka & Nichols, 2003) are becoming more common to
control for this. At the higher level, bias is more of a concern because of systematic differences
between populations that can affect the HRF amplitude estimate in ways that do not relate to
underlying changes in neural activation (e.g., HRF shape variability and anatomical variability).



DOUGLAS N. GREVE ET AL. 413

Methodology to reduce the impact of these sources of noise is a very active area of research.
While one always wants to reduce noise, one needs to consider the cost of reduction and weigh it
against the potential benefit. For example, at the first-level, the noise is dominated by physiolog-
ical effects and subject motion with thermal and instability noise playing progressively smaller
roles (Greve et al., 2010; Triantafyllou et al., 2005). This suggests that measures to reduce the
relative contribution of thermal noise (e.g., increasing field strength) may have very little ef-
fect in the final fMRI analysis (though increasing the field strength may be very beneficial for
other MRI applications). Likewise, at the level where subjects are combined, the intersubject
variance may account for 50–90 % of the total noise (Brown et al., 2011; Smith et al., 2005;
Suckling et al., 2008), depending upon the number of stimulus presentations and other factors.
Thus, efforts to reduce first-level noise of any kind, even when successful, might have very little
impact at the higher levels.

9. Conclusion

The purpose of fMRI is to draw conclusions about neural activation in an individual at a
single time point or across time points, across individuals, or across groups. Noise is introduced
at each of these levels and causes uncertainty and/or bias in the final conclusions. At the lowest
level, fMRI reveals changes in neural activation based on changes in the deoxygenation of blood
(the BOLD effect). The analysis is performed by fitting the (known) stimulation time course with
the BOLD signal at each point in the brain. This yields an estimate of the amplitude of the BOLD
signal in response to the stimulus. This amplitude is then used as a surrogate of neural activation,
though the relationship between the two is complicated and not well understood. Noise at this
level manifests itself as error in the fit. This noise may be due to the scanner (thermal noise or
instability), subject motion, deviations between the assumed and actual HRF shape, or any phys-
iological effect that changes blood flow, but is not related to neural activation (e.g., respiration).
Across days or weeks, variation can be caused by changes in the scanner, subject wakefulness
level, and consumption of vaso-active chemicals such as caffeine. When comparing across sub-
jects, the subjects’ brains must be registered to a common space. Errors in this registration can
cause error at the higher level analysis. Group differences in the underlying shape of the HRF
can create differences in the higher level analysis even when no amplitude difference exists. In a
multisite study, vendor and field-strength differences can also be a source of noise.

The field of fMRI is very rich in methodology, both in terms of acquisition and analysis, and
this survey has only touched on the most general of these methods. fMRI data is also rich in noise
sources, not all of which have been reviewed here, and some of which are still being discovered
and understood. While noise in fMRI does represent a substantial challenge to its practical use,
fMRI has been successfully used in a large number of studies to map the functions of the human
brain.
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