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RCurrently there are no routinemethods to delineate the primary auditory cortex (PAC) of humans in vivo. Due to
the large differences in the location of the PAC between subjects, labels derived frompost-mortem brainsmay be
inaccurate when applied to different samples of in vivo brains. Recent magnetic resonance (MR) imaging studies
suggested thatMR-tissue properties can be used todefine the location of the PAC region in vivo. The basis for such
an approach is that the PAC region is more strongly myelinated than the secondary areas.
We developed a fully automaticmethod to identify the PAC in conventional anatomical data using a combination
of two complementaryMR contrasts, i.e., T1 and T2, at 3 T with 0.7 mm isotropic resolution. Our algorithmmaps
the anatomicalMR data to reconstructed cortical surfaces and uses a classification approach to create an artificial
contrast that is highly sensitive to the effects of an increasedmyelination of the cortex. Consistent with the loca-
tion of the PAC defined in post-mortem brains, we found a compact region on the medial two thirds of Heschl's
gyrus in both hemispheres of all 39 subjects. With further improvements in signal-to-noise ratio of the anatom-
ical data and manual correction of segmentation errors, the results suggest that the primary auditory cortex can
be defined in the living brain of single subjects.

© 2013 Published by Elsevier Inc.
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Introduction

The knowledge of the exact location and delineation of cortical areas
in the living human brain would benefit the interpretation of activation
obtained using functional imagingmethods such as functionalmagnetic
resonance imaging (fMRI) and positron emission tomography (PET).
Currently functional imaging studies mostly rely on parcellation
schemes that have been obtained frompost-mortem brains using archi-
tectonic methods (e.g., Brodmann, 1909; von Economo and Koskinas,
1925). The scheme of Brodmann (1909) has been implemented into
standard brain templates such as the Talairach atlas which is based on
one brain or the Montreal Neurological Institute (MNI) which is based
on an average ofmore than 100 brains. However, the precision of the lo-
cation of cortical brain areas, which have been defined in only a few
brains, is limited because of the large anatomical differences between
subjects. A current approach to overcome this problem is to use
surface-based alignment of the cortical folding patterns (Fischl et al.,
2008) or template-free registration (Tahmasebi et al., 2009) in conjunc-
tionwith probabilitymaps that are based on newly defined architecton-
ic properties of cortical areas in ten different brains (Mazziotta et al.,
2001; Zilles et al., 2002). The results suggest that cortical folds are
much better predictors of the cytoarchitectonically defined regions
than had been previously thought. Therefore this approach is extremely
valuable for group analyses of brain imaging studies. However, it may
still fail when applied to brain activity of individual subjects and even
groups of subjects if the cortical area of interest is small, and it seems
useful to acquire additional information to robustly localize specific
brain regions in individual brains. In the visual system, such additional
information has been obtained from retinotopic mapping experiments
(e.g., Sereno et al., 1995). In addition, anatomical information from indi-
vidual subjects can be used to estimate the shape of primary visual cor-
tex as recently suggested by Hinds et al. (2008). In the auditory
modality, however, comparable routine methods are not available,
and recent attempts to prove themirror-symmetric tonotopic organiza-
tion of the primary auditory cortex (PAC) areas using high resolution
fMRI showed contradictory results (Da Costa et al., 2011; Dick et al.,
2012; Formisano et al., 2003; Humphries et al., 2010; Langers et al.,
2007; Moerel et al., 2012; Schonwiesner et al., 2002; Striem-Amit
et al., 2011; Talavage et al., 2004;Woods et al., 2009). Thus, even the lo-
calization of the primary auditory cortex areas of humans and even
more so its delineation from the neighboring areas is still an unsolved
issue. The consequence is that activation observed on or near Heschl's
gyrus (HG) in functional imaging studies is often attributed to primary
auditory cortex irrespective of its exact location. This is misleading
even more so when coordinates of the primary auditory cortex
(Brodmann area 41) in Talairach or MNI brain templates are used.
From a number of architectural parcellation schemes (Beck, 1930;
Clarke and Rivier, 1998; Flechsig, 1908; Galaburda and Sanides, 1980;
Hopf, 1954a,b; Morosan et al., 2001; von Economo and Horn, 1930), it
is evident that a large number of functionally separate fields occupy
Heschl's gyrus and its immediate vicinity. If the functional parcellation
scheme of the core and medial and lateral belt areas that are known
from the monkey (see Hackett et al., 2001; Kaas and Hackett, 1998)
also applies to the human auditory cortex, about ten of such fields are
to be expected (i.e., the primary areas A1, R and RT, the medial belt
areas CM, RM, RTM, and the lateral belt areas CL, ML, AL, RTL). To better
understand the processing in these primary and secondary areas, rou-
tine methods are needed to delineate these areas in humans in vivo.

In recent years anatomical MR imaging has been used to deter-
mine fine grain differences in tissue properties in post-mortem
material (e.g., Fischl et al., 2008). First attempts have also been
made in vivo mainly to delineate the primary visual cortex (Bridge
et al., 2005; Duyn et al., 2007; Eickhoff et al., 2005). An anatomical
imaging approach has been suggested by Sigalovsky et al. (2006)
by mapping an intrinsic MR property, i.e. the longitudinal relaxation
rate (R1), of gray matter in auditory cortex. The basis for such a
Please cite this article as: Wasserthal, C., et al., Localizing the human prim
http://dx.doi.org/10.1016/j.neuroimage.2013.07.046
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definition is that the gray matter of primary areas is more strongly
myelinated than that of secondary areas. In high resolution MR im-
ages of post-mortem tissue such differences can be observed
(Fig. 1A), but in vivo images of humans must be acquired at a
much lower resolution such that the fine grain details of tissue MR
contrast are much less evident (Figs. 1B,C).

Sigalovsky et al. (2006) showed the distribution of R1 values within
the auditory cortex of a limited number of five subjects scanned at 1.5 T
at 1.3 × 1.0 × 1.3 mm3 resolution. In most of the hemispheres they
found the highest R1 values in posteriomedial Heschl's gyrus, which is
consistent with the location of PAC in architectural studies. However,
in four out of five subjects they obtained large areas with similar relax-
ation rates on the planum temporale, which have not been described in
any of the histological studies and are thus a matter of debate.

The aim of the current study was to identify the human primary au-
ditory cortex (PAC) area as defined in human architectonic studies, e.g.,
Brodmann area 41 (Brodmann, 1909), area TC (von Economo andHorn,
1930) or area Te1 (Morosan et al., 2001). We follow a fully automatic
approach of combining two different, complementary MR contrasts,
i.e., T1 and T2 weighted anatomical imaging, of 39 brains at 3 T with
0.7 mm isotropic resolution. These reflect both longitudinal and trans-
versal relaxation properties of brain tissue. Compared to using only
one contrast, this combination will thus be more reliable for identifying
the PAC in individual subjects and reduce the labeling of non-PAC areas,
i.e., on planum temporale. This was also recently shown by Glasser and
Van Essen (2011) using a global approach to combine T1 and T2weight-
edMRI. Here, we propose a novel data-driven technique tomap the dif-
ferences in the likelihood of increased myelin content in the primary
auditory cortex and adjacent higher-order regions.

In contrast to previous work, our mapping approach is based on a
local, unsupervised classification technique. It takes into account the
limitations of MR imaging as well as the variability of the auditory cor-
tex anatomywithout having to resort tomodel-based or interactive out-
lier removal, non-linear transformations and extensive low pass
filtering of the data. This ensures the reliability and reproducibility of
the mapping results. Another important advantage is that our method
can be easily extended to compare the feature distributions of further
regions aswell as to combine information from any number of different
measurements. For example, the method may in the future be adapted
to delineate functional areas within and outside the PAC by considering
additional, complementary MR scans as input, such as susceptibility
weighted imaging and angiography data or functional activation maps.

We carefully analyze the reliability of the estimated PAC regions in
the individual brains based on anatomic definitions of the human audi-
tory cortex (Brodmann, 1909; Morosan et al., 2001; von Economo and
Horn, 1930) and investigate the robustness of our approach.

A true validation of the individual localization results would re-
quire additional information, in particular functional measurements
that reveal stable, comparable patterns of the functionally separate
fields, such as tonotopy. Unfortunately, irrespective of the ongoing
attempts at parcellating the auditory cortex based on topographic
maps (e.g., Da Costa et al., 2011; Dick et al., 2012), the robust locali-
zation and precise delineation of the human PAC areas in vivo remain
elusive, as recently summarized by Moerel et al. (2012): “To date, it re-
mains unclear how the location and orientation of the auditory core re-
lates to these tonotopic gradients. Several imaging studies suggested
that the primary tonotopic gradient is oriented in posteromedial to
anterolateral direction along HG (Formisano et al., 2003; Riecke et al.,
2007; Seifritz et al., 2006). Conversely, recent studies argued that the
main gradient runs in anterior–posterior direction (Da Costa et al.,
2011; Humphries et al., 2010; Striem-Amit et al., 2011)”. Unfortunately,
no tonotopic results are available that describe individual or group
maps in standard space. These limitations complicate the interpretation
and empirical evaluation of functionally separate fields by a comparison
with different in-vivo topographic maps. Hence, despite their inherent-
ly limited use for a precise localization of the human PAC areas,
ary auditory cortex in vivo using structural MRI, NeuroImage (2013),
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A) post mortem image (FLASH sequence), 0.1mm

B) in vivo MPRAGE, 0.7mm C) in vivo TSE, 0.7mm

Fig. 1. Post mortem tissue scanned at 0.1 mm with a FLASH sequence (A) and the two contrasts we acquired for our study (B–C). Each image is in coronal orientation and centered to
Heschl's gyrus. In (A) the lower two thirds of the graymatter in this region clearly show a shift in intensity similar to thewhitematter. This, however, is not apparent in the in vivo images.
Also note that the lower layers seem to be compressed within deep sulci left and right of Heschl's gyrus in panel (A).
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the art, withwhichwe compare our in vivo groupmaps, i.e., to the prob-
abilitymaps of the PAC region from the ex vivo studies byMorosan et al.
(2001).

Material and methods

Concept of mapping

The presented algorithm generates from d ≥ 1 MR measurements
per subject a cortical surface overlay that reveals individual differences
in the local cortical myelination. Highlighted regions in the in vivomaps
can be understood as brain regions with a high likelihood of increased
myelin content similar to that of the primary cortex region of interest.

For the purpose of localizing the PAC in the in vivomaps, we acquired
anatomical MR images with two different contrasts (d = 2). For each
subject and hemisphere we generated a reconstruction of the inner
(i.e., gray–whitematter) and outer (i.e., graymatter–CSF) cortical bound-
ary in the form of triangle meshes. The MR intensities perpendicular to
the inner cortical boundary were then mapped to these surfaces. The
MRcontrasts (T1 andT2) provide partial, indirect and complementary in-
formation about averagemyelin density. By combined analysis of theMR
feature distribution the differences in tissue properties between Heschl's
gyrus and adjacent areas are boosted by using a statistical classifier.

Unlike with previous work, we propose an unsupervised, local ap-
proach that provides a robust, reproducible, data-driven classification of
the MR intensities, and implies a reliable estimate of the individual loca-
tion and shape of the PAC region. Each individual PAC area can be defined
Please cite this article as: Wasserthal, C., et al., Localizing the human prim
http://dx.doi.org/10.1016/j.neuroimage.2013.07.046
by analyzing in the resulting surface overlays the spatial layout of
highlighted patches in the temporal lobes of each of the cortical hemi-
spheres under study. In each case, thefinal classification result is obtained
by iteratively optimizing the separability of the two different MR feature
distributions that are estimated based on the local feature samples froma
compact, ellipsoid sampling region over the subject's Heschl's gyrus and
an adjacent sampling region that more likely covers other cortex areas
within the subject's temporal lobe. The ellipsoid embeddings of the sam-
pling regions are initialized by mapping the Heschl's gyrus label from a
standard atlas to the single cortical surfaces, and labeling the surrounding
surface region, respectively. These sampling regions are then iteratively
deformed until the overlap of the two local distributional estimates in
the feature space is minimized. Finally, the optimal decision boundary
is used to compute the cortical surface overlays, and highlighted, hyper-
intense surface regions overlapping the deformed ellipsoids are consid-
ered as the most likely in vivo estimates of the human PAC area.

Our algorithm avoids extensive, model-based improvements of the
raw data. That is, possible artifacts due to imaging limitations and
(pre-) processing error are taken into account, but outliers are currently
neither explicitlymodeled nor removed. The chosen regularization con-
straints follow basic anatomical knowledge about myelin distribution,
cortex anatomy and structure–function relationships that do not intro-
duce a strong bias.

Image acquisition

In this study, we used two specificMR contrasts, namely T1weighted
MPRAGE (Magnetization–Prepared Rapid Acquisition Gradient Echo)
ary auditory cortex in vivo using structural MRI, NeuroImage (2013),

http://dx.doi.org/10.1016/j.neuroimage.2013.07.046
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and T2 weighted TSE (Turbo Spin-Echo). These two protocols have been
chosen because of their myelin sensitivity, and give a good gray/white
matter contrast.

We acquired data of 39 subjects in a 3 T scanner (Siemens Trio)
using an 8-channel head coil for RX and a body coil for TX. While the
typical resolution for structural MRI is 1 mm, we decided to scan at a
higher resolution in order to reduce partial volume effects. More specif-
ically, the MPRAGE images were acquired with an isotropic spatial reso-
lution of 0.7 mm (TR = 2500 ms, TE = 4.94 ms, TI = 1100 ms, 7° flip
angle, matrix size 320 × 320 × 256, bandwidth ¼ 140Hz

px , 1 average),
and the TSE images were scanned with 0.7 mm isotropic resolution
(TR = 3000 ms, TEeff = 355 ms, matrix size 320 × 320 × 256, band-
width ¼ 520Hz

px , ETL = 161, 1 average). Both scans were acquired for
each subject in one session in about 14 and 18 min respectively.

Field maps have not been acquired. The product sequences were
changed in matrix size and FOV (given by matrix size and pixel resolu-
tion), without applying pre-scan normalization.
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Segmentation and surface reconstruction

Segmentations and cortical surface reconstructions were obtained
from theMPRAGE images using the FreeSurfer toolkit (FST). This includ-
ed by default the re-sampling of the data to 1 mm isotropic resolution,
brain extraction, intensity normalization and surface topology correc-
tion (for an overview of the underlying algorithms and procedures see
Dale et al., 1999; Fischl et al., 1999a, 2001; Ségonne et al., 2004).

The surfaces generated by FreeSurfer share the same topology and
differ only in their spatial embedding. That is, eachmesh vertex is iden-
tified via a unique label, and is defined at different coordinates, e.g., on
the white/gray matter boundary, the gray matter–CSF boundary and
on the inflated mesh.

One important aspect of FreeSurfer's MGZ file format is that the
available metadata supports the transformation of each individual
brain into a normalized space without modifying the underlying data.
For example, the spherical registrationw.r.t. the anatomical information
present in the “fsaverage” surfacemodifies the spatial embedding of the
surfacemeshes only.Moreover, it allows registering theMPRAGE image
with the TSE image of each subjectwithout re-sampling (i.e., by running
spmregister and mri vol2vol with the attribute no-resample).
From our experience, an affine transformation of the different brain
scans provides sufficient accuracy of the co-registration. Severe differ-
ences were not identified by manual inspection using the surface over-
lays. If the image distortion is low (or similar for both contrasts), the
cortical surfaces generated by FreeSurfer will then fit both data sets
(see Figs. 1B and C). Other cases should be excluded, or the distortions
should be corrected, which was not necessary in the present study.
U
N
C

A) profile lines

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Fig. 2. This figure illustrates the surface mapping by stochastic sampling of the MR volumes. Pa
values sampled along these profile lineswereweighted (B). The x–axis in (B) indicates the relat
and 19 the last point on the pia mater. The kernel weights are given at the y-axis.
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Volume-to-surface mapping

Our method uses the cortical surfaces for two main reasons. First,
the surfaces provide a compact representation and more reliable es-
timates for the spatial extent and relations of the identified brain re-
gions on the folded cortex. For example, we will use the surfaces in
their inflated configurations for visualization purposes. Compared
with the original, anatomically correct surfaces, the inflated versions
are less occlusive.

Second, it allows us to use the anatomical knowledge that the cortex
is a highly folded sheet of gray matter with an average thickness of 2–
4 mm and a spatially variant columnar and laminar organization to re-
duce the complexity of the input data prior to analysis (Fischl and Dale,
2000).

In the cortex-based representation of the MR intensities one
value per MR contrast is assigned to each surface vertex. In order
to obtain an accurate representation, our mapping approach samples
the MR volumes in surface normal direction. It uses orthogonal pro-
file lines from the vertices of the inner cortical surface (see Fig. 2A),
and samples the MR intensities along these profile lines at 20 equi-
distant points. These samples are then averaged in order to generate
a value that is representative for the MR intensity of the gray matter
over this vertex. The length of each of these profiles is chosen in ac-
cordance with the local cortical thickness estimated by FreeSurfer
(Fischl and Dale, 2000) and determines the local scale of the
weighting function.

In order to emphasize intensities of the inner two thirds of the gray
matter and minimize partial volume effects at the border of the gray
matter, these values are combined using a Gaussian weighting function
centered on the sixth sample point, see Fig. 2B. Taking samples at 20
equidistant points gives a good trade-off between the numerically opti-
mal approximation of a Gaussian kernel and computational efficiency.

The resulting mapping of the two MR volumes (MPRAGE and TSE)
to the cortical surfaces is exemplarily shown for one subject in Figs. 3A
and C.

Properties of the feature space

After theMRvaluesweremapped to the surface vertices, each vertex
provides a sample x! in a d-dimensional feature space. Here, d = 2, i.e.,
this space is spanned by the intensities of the two MR contrasts we
acquired.

The resulting feature space cannot be readily analyzed by using a
global, unsupervised approach, because intensity variations within the
gray matter due to different contribution of the receiver coils and mag-
netic field inhomogeneities may outweigh the intensity variations
caused by the regionally varying cortical myelination. The standard
 0  2  4  6  8  10  12  14  16  18

B) profile weights

nel (A) shows how transcortical profiles lines were defined, and panel (B) shows how the
ive position of the sample, zero denoting the start point on the gray–whitematter interface

ary auditory cortex in vivo using structural MRI, NeuroImage (2013),
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practice of correcting shading artifacts by employing amodel of intensity
variations within the different tissue types and experimental estimates
of the transmit and receive field inhomogeneities may, however, intro-
duce its own bias. To address this problem, rather than modifying the
rawdata,we take advantage of one important property of these inhomo-
geneities, namely their low spatial frequency. As indicated by our results,
the sensitivity to uncertainty in the intensity variations can be effectively
reduced by restricting the feature space analysis to spatially compact
regions.

We therefore define two sampling regions on the surfaces, Rin and
Rout. As exemplarily shown in Fig. 3, these regions are compact and of
sufficiently small size regarding the cortex region of interest. Intensity
variations caused by magnetic field inhomogeneities within and be-
tween these two regions are negligible compared with the global varia-
tions, and should not have a significant effect on the performance of the
statistical classifier. The inner region Rin is based on the anatomical label
“transversetemporal” generated by FreeSurfer (Desikan et al., 2006;
Fischl et al., 2004). It represents Heschl's gyrus, whereas the surround-
ing sampling region Rout is defined as a dilated version of the former.

These regions do not primarily define the anatomical search space,
but imply an initial classification of the samples that is sufficiently ro-
bust to regionally varying cortical myelination due to shading. More-
over, if Heschl's gyrus has been properly labeled in the individual
cortical surfaces, the induced classifier allows the distinguishing of sam-
ples taken from the two differently myelinated tissue classes within the
PAC and adjacent non-PAC areas.

Fig. 5 shows a plot of the distribution of feature vectors from both
initial regions. Evidently, the samples taken from the inner region (col-
ored in green) are shifted towards increased MPRAGE and decreased
TSE intensities compared to the samples taken from Rout. As the inner
region is initialized using the “transversetemporal” gyrus label, this ob-
servation is in accordance with our presumption of an increased
myelination of the PAC, which is related to this gyrus.
U
N
C
O

R
R
E
C
T

A) MPRAGE projection

C) TSE projection

Fig. 3. This figure shows the values ofMPRAGE (A) and TSE (C) computed for the left hemisphere
(B,D) show a portion of the maps centered at the estimated location of the transverse tempora
yellow for high intensities. The black lines indicate the boundaries of the initial regions Rin and
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Our results indicate that the automatic, atlas-based approach pro-
duces sufficiently accurate and robust initializations for the unsupervised
tissue classification.

The two MR contrasts only provide partial, indirect information
about the myelin content, which can be used to delineate the core
areas of the auditory cortex. These presumably comprise three fields
according to the myeloarchitectonic literature (e.g., Beck, 1930;
Hackett et al., 2001; Kaas and Hackett, 1998; Morosan et al., 2001;
Wallace et al., 2002), which show only subtle differences inmyelin con-
tent. As indicated by the dashed isolines in Fig. 5, the MR contrasts re-
veal clear differences in myelin content between the highly
myelinated primary auditory cortex and the less densely myelinated
higher order areas adjacent to the PAC. Thus, rather than implying a
parcellation into the multiple functionally different auditory cortex
fields, the desired classifier will optimally separate the two clusters
(k = {in,out}) in the feature space that correspond to the highly mye-
linated PAC and the less densely myelinated non-PAC areas.
E
D
 P

R
O

O

Mapping the differences in the likelihood of increased myelin content

Using the feature space that is defined by the projected MR intensi-
ties and the two predefined surface regions, the parameters of a multi-
variate normal distribution Nk(μk,Σk) can be estimated for each of the
classes k = {in,out}. With these distributions it is possible to assign to
each surface vertex a likelihood for following the distribution Lin of fea-
tures from the inside class (i.e., showing MR intensities similar to those
within the highly myelinated PAC region), or the outside distribution
Lout (i.e., representing dissimilarMR intensities). Therefore, we evaluate
the probability density function,

Lk x!
� �

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þd Σkj j

q exp −1
2

x!− μ!k

� �⊤
Σk x!− μ!k

� �� �
; ð1Þ
B) MPRAGE detail

D) TSE detail

of one representative subject, and projected onto the inflated inner cortical surface. Panels
l gyrus in detail. The heat scale used for the MPRAGE and TSE values uses red for low and
Rout (cf. Properties of the feature space section).

ary auditory cortex in vivo using structural MRI, NeuroImage (2013),
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where d is the number of dimensions of the feature space (in our case
d = 2).

The values Lin − Lout allow a visual representation of the properties
of the initial feature space in a convenientmanner. For example, Figs. 4A
and b provide a visual display of the map resulting from the classifica-
tion in terms of a surface overlay, which is referred to as likelihood-
difference map. The likelihood-difference will be positive (colored in
green) if a feature vector is better represented by the inside distribution
Lin, negative (i.e., blue) if it is better represented by the outside distribu-
tion Lout, or close to zero (i.e.,white) if both distributionsfit equallywell.
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Fig. 5. Initial feature space due to the atlas labeling of the “transversetemporal” gyrus
(matching Figs. 3, 4). The shapes of the estimated feature distributions within the inner
and outer sampling regions are indicated by dashed isolines. The decision boundary that
is imposed by the initial distributional estimates is indicated by the red contour.
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In order to avoid numerical problems, we use the difference in the
values Lin and Lout instead of log-likelihood or likelihood ratios for com-
puting the classification (inside, outside and neither).

As a consequence of our local analysis it will be highly probable
that likelihood-difference values close to zero represent features fitting
neither of the distributions. If the feature values are – due to global in-
homogeneities – not comparable to the locally estimated gray value dis-
tributions, both likelihoods (Lin and Lout) will be close to zero for many
vertices on the surface. Thus, taking the likelihood-difference does not
allow for the global analysis of the myelin distribution, but greatly re-
duces the risk of false positive tissue classifications at the local basis.
That is, the likelihood-difference may or may not allow a complete
and detailed parcellation of the cortex, but will significantly differ local-
ly between the estimated PAC and non-PAC areas.
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Optimization

Our algorithm compares the two distributions drawn from the re-
gions Rin and Rout. A classifier amplifies the regions' complementary
properties being represented by MR intensities, which are sensitive to
myelination. It is therefore critical that the regions are initialized in a
way that the inside region will overlap the PAC to a higher degree
than the outside region, i.e., containsmore samples from the highermy-
elinated cortical region. This condition is easily fulfilled by the gyrus
label “transversetemporal” provided by FreeSurfer. The PAC is known
to mainly reside on the first transverse temporal gyrus, called Heschl's
gyrus (HG) and the location of HG can therefore be used as an anatom-
ical landmark for setting up the initial sampling region Rin in each of the
cortical hemispheres under study. The exact shape and extent of the
PAC in relation to this simple estimate of a compact and the higher my-
elinated area along HG are, however, not known in individual subjects.
Moreover, the initial estimate may be very weak because the quality of
ary auditory cortex in vivo using structural MRI, NeuroImage (2013),
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Fig. 6. This figure shows in (A) the final estimate of the PAC region as the green labeled
surface patch together with the deformed contour of the inner sampling region due to
the initial atlas label in black for the same data set used in Figs. 3, 4. Notice the increase
in hyper–intensities within the PAC estimate compared with the initial likelihood map-
ping in Fig. 4B. Panel (B) shows the feature space after optimization of the distributional
estimates and induced classifier. The underlying MR feature distributions are optimally
separable compared with the two clusters in Fig. 5.
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the anatomical labeling highly depends on the anatomical information
in the FreeSurfer atlas, which may not be representative for every sub-
ject. That is why the individual PAC estimate is refined in a data-
driven optimization.

We use an iterative process for simultaneously optimizing the place-
ment of the regions (Rin and Rout), the resulting likelihood estimates and
induced classifier. The optimization is implemented as a gradient ascent
in parameter space using the Jensen–Shannon divergence as a criterion.

More precisely, we evaluate the separability of the two probability
density functions, which are estimated based on the classification in-
duced by the regionsRin and Rout. It is defined as the Jensen–Shannon di-
vergence between two multivariate normal distributions (Bar-Hillel
et al., 2006), which is given by

DJS ¼
1
2

ln Σ��� ��−1
2

ln Σinj j−1
2

ln Σoutj j
� �

; with

Σ� ¼
X

k∈ in;outf g

1
2

Σk þ μ!k− μ!�� �
μ!k− μ!�� �⊤� �

and

μ!� ¼
X

k∈ in;outf g

1
2
μ!k:

ð2Þ

The region Rin is represented as the intersection of an ellipsoid with
the inflated surface. This ellipsoid w is defined by the parameter vector

w ¼ c!; v!a; v
!

b; v
!

c; a; b; c
� �

;

where the center point ( c!) is given by the coordinates of a vertex of
the inflated surface; three orthogonal unit vectors define the main
axes ( v!a , v!b and v!c) with lengths a, b and c. As Rout is a function of
the inner region, it has no degrees of freedom (see below).

The parameter values at iteration m ≥ 0 are denoted wm. Initially
(m = 0), we define the center vertex c! to be the surface point closest
to the center of mass given by the coordinates of vertices assigned to
the aparc label “transversetemporal”. To initialize the axes' orientation
and length, we use the eigenvectors e!i

n o
and eigenvalues {λi, i =

1, 2, 3}, of the covariancematrix Σ of the coordinates of the labeled verti-
ces. That is,

v!a ¼ e!1; v
!

b ¼ e!2; v
!

c ¼ e!3;

a ¼ 2
ffiffiffiffiffiffi
λ1

p
; b ¼ 2

ffiffiffiffiffiffi
λ2

p
; c ¼ 2

ffiffiffiffiffiffi
λ3

p
:

The separability criterion (2) is then iteratively maximized by find-
ing in each step the value

wmþ1 ¼ arg maxDJS w′
mð Þ;

w′
m∈h wmð Þ

i.e., by applying perturbations h to the parameter valueswm of the ellip-
soid embedding known from the previous iteration. The iterative pro-
cess stops if no further improvement is being made (i.e., wm + 1 =
wm). The function h for changing the center point coordinates, rotating
and adjusting the lengths of the main axes of an ellipsoid with parame-
ters wm is given by

h wmð Þ ¼
(
wm; v!; v!a; v

!
b; v
!

c; a; b; c
� �

c!; v!a � R; v!b � R; v!c � R; a; b; c
� �

;

c!; v!a; v
!

b; v
!

c; da; b; c
� �

;

c!; v!a; v
!

b; v
!

c; a;db; c
� �

;

c!; v!a; v
!

b; v
!

c; a; b; dc
� �)

; with
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v!∈ v! : v! adjacent to c!
n o

;

R∈ Rx ϕð Þ;Ry ϕð Þ;Rz ϕð Þ
n o

and ϕ∈ 2
Å
;−2

Å
� 	

;

d∈ 0:8;1:2f g:

In order to evaluate the divergence DJS w′
mð Þ , the regions Rin and Rout

have to be reconstructed in each iteration based on the estimates wm.
As before, the inner region Rin is generated by intersecting the
reconstructed ellipsoid with the inflated surface. Rout is determined by
expanding Rin using a vertex-based dilatation. If the resulting surface
patch Rout has approximately twice the size of the inner region, Rin is re-
moved from the outer region.

Analysis of the mapping results

The likelihood-difference maps can be directly used for the system-
atic evaluation of the method as well as for the validation and compar-
ison of the localization results with anatomic definitions of the PAC (see
Figs. 7–10).

In the present study, we also investigated the robustness of the
proposed classification approach to initialization and optimization
(i.e., sampling and weighting) parameters. An extensive further evalua-
tion of a possible bias due to imaging and model errors, e.g., in the pre-
processing steps of the FreeSurfer pipeline, further improvements and
fine-tuning of the mapping approach will be subject to future work.

A histogram analysis has been performed to assess the robustness of
the optimization to the initial anatomical labeling of the gyrus-based
(“transversetemporal”) region of interest (cf. Desikan et al., 2006). The
ary auditory cortex in vivo using structural MRI, NeuroImage (2013),
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Fig. 7. Examples of individualmapping results due to our approach for in-vivo localization of the human PAC area. Each row shows the likelihoodmap (left) and curvature overlay (right)
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PAC estimate section).
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Oproposed local approach can be expected to fail in cases where the un-

derlying assumption does not hold that the inner sampling region Rin
overlaps the highly myelinated PAC to a higher degree than the region
Rout. Due to the inherent limitations of image registration techniques
to precisely map brain regions of high anatomical variability, the initial,
atlas-based estimate of the inner sampling regions in the individual
brainsmay ormay not properly cover Heschl's gyrus, and the contained
PAC area, respectively. The robustness of our method to initialization
error has been shown by comparing the estimated parameters of the
joint distribution of likelihood values over the entire hemispheres due
to the automatic, atlas-based initialization of Rin (case 1) and selectively
introduced initialization error (cases 2 and 3). For the case study 2, the
over- and underestimation of the shape and location of HG have been
simulated by largely perturbing the parameter values wm,m = 0, of
the automatically estimated ellipsoid embedding.More precisely, we let

v!∈ v! : v! within 1cm distance to c!
n o

;

R∈ Rx ϕð Þ;Ry ϕð Þ;Rz ϕð Þ
n o

and ϕ∈ 20∘;−20∘
 �
;

d∈ 0:5;1:5f g:
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For case study 3, we selected subjects with multiple transverse tem-
poral gyri and systematically mis-initialized Rin on the second transverse
temporal gyrus. We also initialized Rin within the motor cortex region of
single subjects and compared the different mapping results.

Further, the results due to the Gaussian weighing of the rawMR in-
tensities have been compared with that due to an experimentally de-
fined optimal kernel.

The anatomical information provided by the curvature overlays
(see, e.g., Fig. 7) helps neuroscientists to identify hyper-intense patches
(i.e., compact cortex regions with high likelihood-difference values) in
the temporal region of each individual hemisphere and to compare
the location and extent of these regions with anatomic definitions of
the human auditory cortex due to Brodmann (1909), Morosan et al.
(2001), von Economo and Horn (1930).

In addition to the surface overlays we used volumetric representa-
tions of the resulting maps in the form of gray matter ribbons (Fig. 11).
These ribbons have been initialized as emptymatrices that are registered
with the underlying MR data sets and have the same spatial resolution.
The positive likelihood-difference values have then been projected
from the vertices back to voxels between the individual anatomical
ary auditory cortex in vivo using structural MRI, NeuroImage (2013),

http://dx.doi.org/10.1016/j.neuroimage.2013.07.046
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Fig. 8. Additional examples of individual mapping results due to our approach for in-vivo localization of the human PAC area. Here, we selected further subjects with a different temporal
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surfaces, such that locally maximum intensities in the ribbons indicate
the PAC region and possibly further areas with similar tissue properties
(middle column in Fig. 11). The superimposed pial surfaces and gray–
white matter boundaries (blue and red contours in Fig. 11) provide ana-
tomical information and support the visual inspection of the results.
These individual 3D representations have been used for the analysis of
possible misclassifications due to partial volume effects and artifactual
intensity fluctuations present in the MR data, as well as pre-processing
and mapping errors.

Evaluation of the PAC estimate

In combination with the anatomical information provided by the
MPRAGE volumes, the gray matter ribbons have been used to compare
the location, shape and extent of the individual PAC estimates with an-
atomic definitions of the human PAC according to Brodmann (1909),
Morosan et al. (2001), von Economo and Horn (1930).

Since our algorithm does not employ smoothness constraints, it does
not necessarily provide accurate segmentations of the cortex regions of
interest. The chosen constraints rather imply a classification of the MR
features, fromwhich a segmentation of the PAC regions could be derived
in a further step. For example, the contour shown in Fig. 6A has been
Please cite this article as: Wasserthal, C., et al., Localizing the human prim
http://dx.doi.org/10.1016/j.neuroimage.2013.07.046
drawn after convergence based on the parametrization of the optimal
sampling region Rin. It indicates the location of the PAC estimate in one
of our subjects, but does not represent the PAC area boundary. In this
case, the optimal, elliptic sampling region underestimates the PAC area,
and does not completely cover the hyper-intense surface patch that can
be considered as the PAC. While being relatively straightforward for a
neuroscientist to outline the corresponding surface region based on the
color-coded overlay and anatomical knowledge, the automatic segmen-
tation must be seen as an ill-posed, inverse problem. This is due to the
fact that the solution does not continuously depend on the data (as
both, the raw input data and the final in-vivomaps provide noisy and in-
complete information), while the problem may have multiple possible
solutions (because the shape and spatial extent of the PAC area may
vary dramatically across subjects and hemispheres). These difficulties
can be alleviated by imposing additional constraints – in the form of var-
iational principles or information about the statistical properties of the
solution space (e.g., a model of the human PAC shape variation) – into
an adequate segmentation algorithm, which will be subject to future
work. Hence, the surface overlays were used here in combination with
the location of the final contours to manually inspect the underlying
hyper-intense regions within the temporal lobes (green color in Figs. 7
to 10) w.r.t. their spatial extent and homogeneity.
ary auditory cortex in vivo using structural MRI, NeuroImage (2013),
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T
D
 P

R
O

O
F

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

A B) automatic initialization

C D) weak initialization

Fig. 9. This figure compares mapping results due to the automatic (top row) and weak initializations (bottom) of the sampling regions. As discussed in the Robustness of the classification
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Further, group average maps have been computed over the left and
right hemispheres and directly comparedwith themaximumprobability
maps of the PAC due toMorosan et al. (2001) (see Fig. 13). Therefore, the
surfaces have been aligned across individuals using spherical registration
(Fischl et al., 1999b) with the anatomical information present in
FreeSurfers “fsaverage” template and then the individual likelihood of in-
creasedmyelination has been averaged at each surface node. Areas in the
population averagemapwere finally identified by comparisons with the
probabilistic cytoarchitectonic areas of interest that have been indepen-
dently mapped to the FreeSurfer template. In order to generate the sur-
face label for region Te1 the volume-basedmaximum probability map of
each post-mortem subject provided by Morosan et al. (2001) has been
mapped to a surface reconstruction of the subject's cortical hemispheres.
These surfaces have then been brought into the register as described
above and the individual surface labels were mapped to the “fsaverage”
surface using a vertex-wise logical disjunction. As a result, the red con-
tour in Fig. 13 encloses the maximum extent of region Te1 in the
surface-based maximum probability maps of Te1.

Results

In our study, the algorithm always converged after 10 to 25 itera-
tions and identified a higher myelinated region of plausible size on the
medial two thirds of Heschl's gyrus in each of the 78 hemispheres. Rep-
resentative examples are provided in Figs. 7 and 8. The optimization
strategy with default parametrization boosted effects of differences in
the tissue-specific MR properties between the primary and secondary
auditory cortex areas.

Robustness of the classification algorithm

We found evidence that the presented analysis is robust to initializa-
tion. The over-simplified shape constraint in combination with a lower
boundon the sampling region size effectively prevented trivial solutions
(i.e., the inside region did not converge into a single point or became too
Please cite this article as: Wasserthal, C., et al., Localizing the human prim
http://dx.doi.org/10.1016/j.neuroimage.2013.07.046
Elarge to allow correct classifications) without imposing a strong bias on
the individual shape and size of the PAC estimates. The atlas-based ap-
proach produced sufficiently accurate and robust initializations, from
which the final estimates identified a higher myelinated region of plau-
sible size on the medial two thirds of Heschl's gyrus in all hemispheres
under study (see Shape, anatomical location and spatial extent of the
PAC estimate section).

Another stronghint for the robustness of themethod to initialization
is provided by the observed regions that indicate primary cortex areas
beyond the PAC (see Shape, anatomical location and spatial extent of
the PAC estimate section).

Furthermore, the Gaussian weighting of MR intensities along the
normal profiles provided a good approximation of the weighting that
optimized the separability of the distributions induced by the initial
classifier (see Fig. 12A).

Optimization of the Jensen–Shannon divergence (Eq. (2)) resulted
in fitting the inside region to a cortex region with positive likelihood-
difference, and hence higher myelination. Fig. 12B shows that the algo-
rithm always converged after 10 to 25 iterations and produced compa-
rable results for further possible choices for the objective function. That
is, optimizing the Jensen–Shannon divergence optimized other criteria
as well. There were, however, advantages of the chosen criterion,
most importantly that the Jensen–Shannon divergence encouraged rea-
sonably small regions and ensured convergence of the gradient ascent
implementation. Local classification errors, as further discussed below,
did not appear in the group average map in Fig. 13, and could be attrib-
uted to sampling error rather than ill-posed optimization criteria.

The myelin maps were robust to the precision of the automatic ini-
tializations (case 1). However, as expected, the local approach failed in
caseswhere the inner sampling region Rin did not overlap the highlymy-
elinated PAC to a higher degree than the region Rout.We observed no sig-
nificant difference (i.e., p N 0.2, paired t-tests) in the parameters of the
joint distribution of likelihood values in the resulting surface overlays
when comparing the automatic (case 1) and weakened (case 2) initial
estimates. However, the results differ significantly when reducing the
ary auditory cortex in vivo using structural MRI, NeuroImage (2013),

http://dx.doi.org/10.1016/j.neuroimage.2013.07.046


R
R
E
C
T
E
D
 P

R
O

O
F

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

A B

C D

E F

Fig. 10.Mapping results due to the automatic initialization (middle row) of the sampling regions and the initialization in the motor cortex area (bottom row) for two subjects. The black
contours in panels e and f represent the primarymotor cortex in terms of a probability map of BA 4p taken from the FreeSurfer atlas at the threshold of p N 0.1 (FST). In both hemispheres
and cases, the regions of hyper-intense green labeling within the temporal cortex represent anatomically correct in-vivo estimates of the individual PAC area. Notice that the overall like-
lihood patterns were largely unaffected, i.e., the discriminatory power of the statistical classifier was comparable in both cases of initialization. This demonstrates the robustness of our
method to atlas-based initialization.

11C. Wasserthal et al. / NeuroImage xxx (2013) xxx–xxx
U
N
C
O

histogram analysis from the entire cortical hemispheres to the temporal
lobes only. In particular, a mis-initialization of the inner sampling region
on the second transverse temporal gyrus, if present, yielded misclassifi-
cations. As visible in Fig. 9, in these cases the PAC region tends to be
overestimated in individual subjects, while the overall likelihood-
difference and the discriminatory power of the classifier tends to de-
crease. This effect is indicated by the less intense labeling in Fig. 9C com-
paredwith Fig. 9A. An exceptionwas observed in case study 3:We found
no striking impact of the initializations in the motor cortex on the shape
and location of the individual PAC estimates (see Fig. 10). This clearly in-
dicates the robustness of themethod to initialization given that the inner
sampling region Rin overlaps a regionwith tissue properties that are sim-
ilar to those of the highly myelinated PAC.

Shape, anatomical location and spatial extent of the PAC estimate

The group result given in Fig. 13 shows that the average location of
the PAC area as defined by our method in vivo (the intense green pat-
tern in Fig. 13) is well within the maximum probability location of the
Please cite this article as: Wasserthal, C., et al., Localizing the human prim
http://dx.doi.org/10.1016/j.neuroimage.2013.07.046
primary auditory cortex (red line in Fig. 13) as defined in post-
mortem brains by Morosan et al. (2001). The regularity of the pattern
even indicates that our method provides a more compact definition of
the PAC region across subjects compared with the surface-based repre-
sentation of area Te1. More precisely, the location of strongest labeling
with a more medial geometric center compared to themaximum prob-
ability map for Te1 may suggest a better correspondence to areas Te1.1
and Te1.0. However, this observation needs further investigation. Also,
it must be noted that the maximum probability map of the PAC region
is originally defined in post-mortem volume data and had to be brought
into the register with the template surface shown in Fig. 13. Observed
differences in the shape of the in vivo and post-mortem estimates of
the PAC area may be attributable to registration error.

A second auditory area of less intense labeling was observed in the
group map posterior to the medial part of Heschl's gyrus outside the
probability map for primary auditory cortex.

We did not repeatedly observe hyper-intense patches on planum
polare such as identified in the R1-maps by Sigalovsky et al. (2006).
The single observations were canceled out in the group map.
ary auditory cortex in vivo using structural MRI, NeuroImage (2013),
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The green pattern enclosed by the black contour in Fig. 13 indicates
that the primary motor cortex can be identified in the group map.

In addition to the primary auditory and motor cortex regions, we
further observed less intense patches of labeling within the location of
the somatosensory cortex posterior to the motor cortex. In direct com-
parison with the results presented by Dick et al. (2012), Glasser and
Van Essen (2011) and anatomic definitions of the primary motor and
somatosensory cortices (e.g., Brodmann, 1909), these estimates were
less reliable.

The primary visual cortex was not apparent in the group result. Our
algorithm classified the MR feature values within the visual cortex as
Please cite this article as: Wasserthal, C., et al., Localizing the human prim
http://dx.doi.org/10.1016/j.neuroimage.2013.07.046
F

fitting “neither” known local distribution (indicated by the white label-
ing in Fig. 13).

On a single subject level, visual inspection of the results showed that
a region on the medial two thirds of Heschl's gyrus was labeled in each
subject and hemisphere (see Figs. 7, 8 and 11 for examples of in vivo
maps of single subjects with a different temporal cortex anatomy).
This area can be identified in each of the individual brains under study
with a similar precision compared to the population-average map.

However, depending on the signal to noise ratio of the anatomical
data, whichmainly depends on the subjects headmotion during the an-
atomical scans, the likelihood-difference values can vary (compare
Figs. 11A and B). Furthermore, misclassifications could be observed
that are due to artifacts in the MR, such as the artifacts produced by
blood flow within large vessels (Fig. 11C). We also observed errors in
segmentation especially in deep sulci that introduce large bias to the
classification result, and alter the homogeneity and shape of the esti-
mated cortex regions.
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Discussion

The results of our study show that the proposed local, data-driven
approach is able to boost the effects of the differences in the measured
tissue properties between the PAC and secondary auditory cortex.
These differences are mainly due to higher myelin content within the
lower layers of primary cortical areas that have been adequately em-
phasized by the definition of the profile lines and Gaussian weighting
(Fig. 2). The primary auditory cortex area due to the statistical classifier
could be identified in all individual subjects with a similar precision
compared to the population-average map and is in close correspon-
dence with anatomic definitions of the PAC.

We are fully aware of the problem that there is currently no gold
standard of defining the PAC in vivo. Therefore any firm conclusion on
the power of in vivo architectonicmethods in general and ours in partic-
ular must await future progress in tonotopic mapping and/or combined
in vivo and subsequent post-mortem studies (e.g., Seewann et al., 2012)
on the same subjects. However, a comparison with the current state of
the art, i.e., the probabilistic maps provided by Morosan et al. (2001)
suggests the feasibility of our approach. Its full potential must, however,
be refined in future studies (see below).

A second argument on the feasibility of our approach is that it eluci-
dated a second auditory areawith highmyelin content located posterior
to the medial part of Heschl's gyrus. Its location is outside the probabil-
ity map for primary auditory cortex as defined by cytoarchitecture
(Morosan et al., 2001), but may be consistent to the medial part of
area ttrII described by Beck (1930) as an area that is most similar to
the primary areas w.r.t. myelin content. Wallace et al. (2002) described
an area PA with a similar location and also stated that the myelin stain-
ing profile was similar to that of the PAC area. A similar auditory area
was also observed in some subjects of a tonotopic fMRI study by
Formisano et al. (2003) and more recently by Dick et al. (2012) using
functional and myeloarchitectonic mapping. This second auditory area
has not been described by Sigalovsky et al. (2006) possibly due to
lower resolution and/or field strength. Also the study of Glasser and
Van Essen (2011) did not resolve this additional area possibly due to
the whole brain approach and compensation of MR intensity variations
(by bias field and outlier removal, re-sampling and smoothing). The
benefit to be gained from the combination of d ≥ 1 MR contrasts to re-
duce the labeling of non-PAC areas on planum temporale thus needs
further investigation.

Our method further generated feasible labelings in the group map
along the pre- and post-central gyri, corresponding to the strongly my-
elinated primary motor cortex and somatosensory cortex, which is also
a primary region. These results demonstrate the validity and robustness
of our method, since our classifier was optimized for the localization of
the auditory cortex region.
ary auditory cortex in vivo using structural MRI, NeuroImage (2013),
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However, the primary motor and somatosensory cortices have been
more clearly revealed by recent global approaches that are based on al-
ternative concepts for myelin mapping, for example (Dick et al., 2012;
Glasser and Van Essen, 2011). Reduction of theMR signal inhomogene-
ities due to different sensitivities of theMR coil elements could probably
delineate these regionsmore clearly in future studies.We are convinced
that methods will be developed that produce more homogeneous data
than we used in this study. Moreover, we think that with homogeneous
data ourmethodwouldworkwithout the atlas-based initialization step.
The impact of field inhomogeneities and the bias due to (local) curva-
ture and anatomical labeling nonetheless need further investigation.

The primary visual cortex was not apparent in the group result, pre-
sumably due to larger intensity variations and partial volume effects in
this cortex region. It is well known that automatic segmentation does
not reliably extract the primary visual cortex due to the comparatively
small cortical thickness. It is common practice to manually refine auto-
mated segmentations and correctly identify the pial surface and gray–
white matter boundary (e.g., Schira et al., 2009). The result of our
study suggests that the unsupervised, local approach does not account
for such variations in the measured tissue properties and for possible
sampling error due to sub-optimal pre-processing.

We found evidence that our method is robust to the chosen con-
straints on the sampling and optimization parameters. The data-
driven approach is however sensitive to the signal to noise ratio of
the anatomical data that mainly depends on the subjects' head mo-
tion and spatial resolution of the MR measurements. Partial volume
effects and possible artifacts in the MR data (e.g., due to blood flow
within large vessels) caused misclassifications. Although these mis-
classifications were rather small in size, this is a serious problem
that can only be solved in an automatic way if the data are acquired
at a higher spatial resolution. Unfortunately, this is not feasible due
to too long scan time and headmotion. However, averaging repeated
scans of single subjects acquired in several sessions and using, e.g., a
32 channel coil instead of only 8 channels as done here could im-
prove the signal to noise ratio and thus the precision of the localiza-
tion of PAC in individual brains.
Please cite this article as: Wasserthal, C., et al., Localizing the human prim
http://dx.doi.org/10.1016/j.neuroimage.2013.07.046
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Conclusion

Wepresented a fully automaticmethod thatwas shown to be able to
define the humanprimary auditory cortex area in vivo. A statistical clas-
sifierwas applied to a combination of anatomicalMR intensities to com-
pute individual maps of regional differences in the myelin content in
cortical gray matter. The primary auditory cortex area due to the classi-
fier could be identified in individual subjects with a similar precision
compared to the population-average map and exhibited a close corre-
spondence with anatomic definitions of the PAC.

In contrast to previouswork, ourmethod is based on a standard atlas
for observer-independent initialization and simple prior models of cor-
tex anatomy and regional myelin content homogeneity. Most notably,
our results showed that the PAC area can be estimated without
resorting to re-sampling and surface-based smoothing of the data, as
well as removal of artifacts and outliers in the raw data. This largely
avoids bias at the cost of obtaining neither necessarily smooth segmen-
tations of the PAC, nor a complete, detailed parcellation of the entire
cortices of individuals. However, the methodmay be improved towards
smooth area delineation by adaptingmore sophisticated, global optimi-
zation schemes, e.g., combinatorial approaches such as graph cuts
(Rohkohl and Engel, 2007), for template-free simultaneous classifica-
tion and estimation under spatial smoothness constraints.

As this method is based on conventional anatomical MR images, the
necessary data can be acquired on a routine basis. Thus, the primary au-
ditory and also motor cortex areas could be extracted from the data of
exactly those subjects who participated in an MR experiment and be
used as specific templates for fMRI data analysis. Future validations
must determine whether such an approach is more precise than using
probability maps defined in post-mortem data (e.g., Fischl et al., 2008;
Tahmasebi et al., 2009). To use this method for single subject delinea-
tion of the PAC area from neighboring secondary cortex, the data must
be improved, e.g., by minimizing head motion and/or averaging across
repeated scans, by correcting for global intensity variations during
data acquisition, by eliminating small artifacts produced by blood ves-
sels and by improving automatic cortex segmentation. In particular
ary auditory cortex in vivo using structural MRI, NeuroImage (2013),
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Fig. 13. Likelihood-difference maps averaged across all 39 subjects. Green areas indicate
population average regions with higher myelin content. The region of hyperintense
green labeling within the temporal cortex is our probabilistic in-vivo estimate of the
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prerequisite for several model-based improvements and possible fine-
tuning of the in-vivomaps: It is for example known that themyelin con-
tent varies with curvature and cortical thickness, and themeasured MR
intensities may be adjusted to compensate for this effect (e.g., Sereno
et al., 2012). Amore sophisticated sampling of theMR volumes in radial
distance or a curvature-dependent weighting of the samples may then
much better account for regional differences in the “true” columnar or-
ganization and compression of the lower cortex layers (as apparent in
Fig. 1A) and reveal much smoother and more clearly separable PAC
areas in the individual maps.

To further increase the quality of the results, it may be beneficial to
utilize ultra-high field MRI (Cohen-Adad et al., 2012; Duyn, 2012a)
and/or other MR contrasts, e.g., proton density, magnetization transfer,
or susceptibility weighted imaging (Duyn, 2012b) to exploit additional
complementary tissue information that more clearly reveal the
myeloarchitectonic differences between the multiple human cortex
areas. Finally, the results in single subjects must be compared to other
means of defining the primary auditory cortex, i.e., by tonotopic map-
ping experiments using high resolution fMRI.
Please cite this article as: Wasserthal, C., et al., Localizing the human prim
http://dx.doi.org/10.1016/j.neuroimage.2013.07.046
We think that the proposed classification approach supports amulti-
modal approach of joint functional detection and estimation of specific
brain regions in vivo. In contrast to previous work, inclusion of further
MR scans as well as functional activation maps (and possibly data
from other modalities at different resolutions) is straightforward.
Adding data sets would simply alter the dimensions d of the feature
space. Our approach further supports the quantitative evaluation of
the benefit to be gained from additional experimental data. Moreover,
it preserves the spatial resolution and specificity of current MRI by
largely avoiding the unquantifiable bias possible due to re-sampling,
correction and smoothing of the rawdata. This is essential for the robust
localization and precise delineation of the human PAC areas, and even
more so of higher-order functional fields.
O
O
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