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Abstract. We propose a general database-driven framework for coher-
ent synthesis of subject-specific scans of desired modality, which adopts
and generalizes the patch-based label propagation (LP) strategy. While
modality synthesis has received increased attention lately, current meth-
ods are mainly tailored to specific applications. On the other hand, the
LP framework has been extremely successful for certain segmentation
tasks, however, so far it has not been used for estimation of entities other
than categorical segmentation labels. We approach the synthesis task as
a modality propagation, and demonstrate that with certain modifications
the LP framework can be generalized to continuous settings providing
coherent synthesis of different modalities, beyond segmentation labels.
To achieve high-quality estimates we introduce a new data-driven regu-
larization scheme, in which we integrate intermediate estimates within
an iterative search-and-synthesis strategy. To efficiently leverage popula-
tion data and ensure coherent synthesis, we employ a spatio-population
search space restriction. In experiments, we demonstrate the quality of
synthesis of different MRI signals (T2 and DTI-FA) from a T1 input, and
show a novel application of modality synthesis for abnormality detection
in multi-channel MRI of brain tumor patients.

1 Introduction

Medical imaging enjoys a multitude of image modalities, each locally quantifying
and mapping different characteristics of the underlying anatomy. For instance,
while CT images display local tissue densities, diffusion weighted images quan-
tify the tissue directionality. Even derived quantities such as local fractional
anisotropy (FA) can be seen as modalities, as they quantify certain charac-
teristics of the anatomy. There is increased interest in methods which perform
subject-specific synthesis of a certain target modality, from a given source modal-
ity. The ability to automatically generate different appearances of the same
anatomy, without an actual acquisition, enables various applications such as
creating virtual models [1], multi-modal registration [2–4], super-resolution [5],
atlas construction [6] and virtual enhancement [7]. Most of the current methods
are tailored to specific applications. Some approaches perform synthesis using
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explicit models, for example for simulating US from CT [2] or modality con-
version between T1 and T2 [3]. Explicit modeling is application-dependent and
does not generalize easily. Other approaches use existing databases for synthesis.
In [8] the FLAIR channel is created from T1 and T2 for brain MRI, the MR
inhomogeneity field is estimated in [9], synthesis of an alternative modality to
facilitate the registration in correlative microscopy is considered in [4], and in
[10, 11] synthesis of high-resolution images is tackled. Despite being database-
driven, the above works focus on specific problems, and propose case-specific
approaches that differ significantly from one another. Admittedly, the general
synthesis problem poses additional difficulties over the specific versions, due to
the multitude of possible scenarios. Different modalities characterize different
physical properties, and the target modality might contain richer information
than the source.

We propose a general framework for modality synthesis which avoids explicit
modeling and operates by utilizing a database of images with arbitrary target
and source modalities. For each point in the target image, we perform a local
patch-based search in the database and nearest neighbor information is used
for estimating the target modality value for this point. The intuition behind
our method comes from the observation that local and contextual similarities
observed in one modality often extend to other modalities. Our method can be
seen as a generalization of so-called label propagation (LP) strategies (cf. [12–
14]), especially of the recent patch-based approaches [15, 16]. LP has been very
successful for certain segmentation tasks, being the de facto standard for brain
anatomy segmentation. To our best knowledge, LP has so far been exclusively
used in the setting of segmentation, with discrete, categorical labels. We show
in this work that with certain generalizing modifications, the LP framework can
be adapted to continuous non-categorical tasks with high-quality synthesis of
arbitrary modalities. We refer to our approach as modality propagation (MP).

Label propagation operates in two steps. First, for each location in the tar-
get image a set of label candidates is determined from the database. Second,
these candidates are fused into a single label based on one of the numerous
fusion strategies. Label fusion has been shown to be crucial for achieving high-
quality results for segmentation. However, currently available fusion strategies
are specific to discrete categorical labels. For our general setting, dealing with
continuous values, we replace the fusion step with a data-driven regularization
approach. We show that this improves the quality – similar to fusion strategies
– while being applicable to general problems, beyond segmentation. Our data-
driven regularization is inspired by Image Analogies [17], using both source and
target modalities within an iterative search-and-synthesis strategy.

After describing our MP framework in the next section, we demonstrate its
properties on synthesis of MR-T2 and DTI-FA maps from MRI-T1 in (Sec 3.1).
In Sec 3.2, we present the potential of our framework by proposing a novel
approach for abnormality detection in multi-channel brain MRI where we syn-
thesize patient-specific pseudo-healthy T2 images from T1, in order to highlight
differences to the actual patients’ T2 scans.
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2 Coherent Synthesis via Modality Propagation

In the context of modality propagation, the process of synthesis refers to the
following task: Given a source image I with modality-specific information of the
underlying anatomy, we seek to generate a corresponding target image S of the
same anatomy but from another modality. The new image S is constructed using
both subject-specific image I and a population database. This database contains
N exemplar image pairs T = {(In, Sn)}Nn=1 where images In and Sn are assumed
to be spatially aligned. The idea behind MP is that local similarities between
structures both visible in I and in the database images {In} should indicate
similarities between {Sn} and S, the image to-be-synthesized. By finding corre-
spondences between input I and database {In}, information can be transferred
from the set {Sn} in order to synthesize S. This approach can be applied to
arbitrary pairs of source and target modality.

For each image point x the estimate S(x) is determined through patch-based
nearest neighbor search within the population database T . Previous works per-
form this search based on information extracted from images I and {In} only.
In this context, we develop an iterative search-and-synthesis strategy which is
inspired by Image Analogies [17]. The key idea is to incorporate the partly syn-
thesized image into the nearest neighbor search.

Our algorithm is based on two main components which aim for improved
coherency: 1) patch-based search in a restricted space, 2) iterative synthesis
using intermediate results yielding a data-driven regularization.

Search Space Restriction: For each image point x we perform a patch-based
nearest neighbor search within the database images T . The restriction of the
search space is achieved on two different layers, a spatial and population layer.
We enforce spatial restriction by assuming affine alignment of all subjects both
within the population database and between the database and the input image
I. Depending on the expected accuracy of the registration, this allows us to
restrict the search to a small search window Wx centered at the point x. A
search window placed in a particular database image In is denoted by W In

x .
Restriction at the population layer is achieved by obtaining a subset of

database images that are most “similar” to I. The input image is divided into
equally sized cells, and for each cell, the k nearest neighbors in terms of sub-
image dissimilarity are determined within the population database. The size of
the sub-images is equal to the size of the cells, and the k neighbors can be dif-
ferent for different cells. The patch-based search for all image points within a
particular cell is restricted to the same set of k database images. For notational
convenience, we define a set of the kNN image indices as N k

x linked to an image
point x, instead of a cell.

The search space restriction is important for two reasons. First, a smaller
search space yields lower computation times, in particular when dealing with
larger databases. Second, and more importantly, the spatial restriction increases
correlation between high patch similarity and correct anatomical correspon-
dence.
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Fig. 1. Correlation coefficients between synthesis and ground truth after 1st, 2nd, and
3rd iteration in red, green, and blue for T2 and FA. The box plots summarize the CC
distribution between ground truth and all database images.

Iterative Synthesis: The actual task of synthesizing the output image S is
performed in an iterative manner. The first iteration is similar to well-known
label propagation methods. A patch P I

x centered at the image point x is extracted
from the input image I. Based on the restriction strategy mentioned above, we
perform a nearest neighbor search by evaluating patch dissimilarities between
P I
x and all patches in the spatio-population search space as

(n̂, ŷ) = arg min
n∈Nk

x ;y∈W In
x

d(P I
x , P

In
y ) . (1)

For d we consider sum of squared differences (SSD), though other definitions,
e.g. based on correlation, are possible. Based on Equation (1), we determine
the best matching patch to be the one centered at ŷ in the database image In̂.
The synthesis image is then updated by setting S(x) := Sn̂(ŷ). Once this is
performed for all image points, we obtain a fully synthesized image S.

A limitation of this process is that the rich information in {Sn} remains
unused during search. This might yield inaccurate anatomical coherency and
noisier outputs. Coherency of S can be greatly improved when intermediate
results are considered in a subsequent refinement. After obtaining an initial
estimate of S, for subsequent iterations the patch-based nearest neighbor search
is performed using a modified version of Equation (1) where we incorporate
information from the synthesized modality:

(n̂, ŷ) = arg min
n∈Nk

x ;y∈W In
x

(1− α) d(P I
x , P

In
y ) + α f(PS

x , P
Sn
y ) . (2)

Note, this definition covers the one for the first iteration when α = 0. The
metric f depends on the nature of the target modality. In case of scalar-valued
modalities, it can be the same as d. Integrating the synthesized data into the
search yields a significant improvement on the spatial coherency. One can think
of the function f(PS

x , P
Sn
y ) as a data driven regularization term. The effect of

this term will be demonstrated in our experiments.
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Fig. 2. Visual results for synthesis of T2 and FA maps from T1 MRI input. Synthesis
is shown for the 1st and 3rd iteration. Note the reduction of noise and improved con-
sistency of structural appearance both in T2 and FA. In particular, the white matter
tracts in FA and the ventricle structures in T2 are well synthesized.

3 Experiments

Modality Propagation (MP) is a general tool that can be applied to possibly
any source-target modality pair. Here we present two different applications of
the algorithm: synthesis of T2 and FA MRI signals from T1, and abnormal-
ity detection via modality synthesis. We also analyze the impact of individual
components, such as the iterative search-and-synthesis strategy.

We use the same parameter settings throughout all experiments. The size
of patches P is 3 × 3 × 3 voxels, and the local search window W is set to
9 × 9 × 9. The database sub-image indices N k are determined for cells with
the same size as the search windows. We determine k = 5 nearest neighbors
from the database for each cell. Synthesis starts with a weighting factor α =
0, as no synthesized information is available initially. In subsequent iterations,
the weighting is increased to reach α = 1 yielding increased importance of the
intermediate synthesis. This has the effect of data driven regularization. We
found that 3 iterations are in general sufficient for MP to converge.

3.1 Synthesis of T2 and DTI-FA from T1 MRI

The first application is synthesis of T2 and FA from corresponding T1-weighted
MR brain images. The goal of this experiment is to demonstrate synthesis of
different structures mapping different physical properties, from the same input
source. A possible use case for this is modality translation, e.g. for multi-modal
registration [3]. We use the NAMIC database which has T1, T2 and Diffusion
Tensor images (DTI) for 20 individuals, 10 normal controls and 10 schizophre-
nia patients (http://hdl.handle.net/1926/1687). We compute FA maps with the
3D Slicer software (http://www.slicer.org). Images are linearly registered, skull-
stripped, inhomogeneity corrected, histogram-matched within each modality,
and resampled to 2 mm resolution.

We apply a leave-one-out cross-validation, so each synthesis result is based
on 19 subjects. This allows us to compute the similarity between the synthesized
and the real images. Graphs in Figure 1 show the quantification of this image



6 D. H. Ye, D. Zikic, B. Glocker, A. Criminisi, E. Konukoglu

T1 “Pseudo-healthy” T2 Synthesis Abnormality Maps

Input Orig. Tumor T2 Warped Atlas MP Orig. – Atlas Orig. – MP Manual Seg

Fig. 3. Visual results for the abnormality detection using synthesis of “pseudo-healthy”
images. We compare our results with a deformable atlas approach. The abnormality
maps are computed by subtracting the warped atlas and the synthesized T2 from the
original T2. For comparison, we also show manual tumor segmentations.

similarity. We use correlation coefficient (CC) as its normalized values allow us
to compare the different experiments. The horizontal lines shown in red, green
and blue indicate the CC after the 1st, 2nd and 3rd iteration of MP, respectively.
To provide a comparative context, we also compute the CC between the ground
truth and all database images. These values are summarized as box plots in
the same figure. We make several observations: 1) The synthesized images are
significantly closer to the real one than any other database image. 2) Synthesis for
T2 gets closer to ground truth than for FA. We believe this is due to the fact that
physical properties quantified by FA are very different from the ones quantified
by T1 and T2. T1 and T2 capture more similar structures. Furthermore, FA
contains more local information in terms of anisotropy and directionality of
the tissue, and synthesizing FA from T1 is less accurate. 3) The improvement
obtained by the 2nd and 3rd iteration is higher for FA than for T2. As the
type of local information in FA is different, the anatomical coherency is not
entirely captured using T1 as input. However, using the synthesized channel in
the nearest neighbor search greatly improves the structural coherency.

Visual examples for T2 and FA synthesis after the 1st and 3rd iteration
are shown in Figure 2. These images demonstrate the impact of the iterative
algorithm. We observe that the prominent structures, such as the ventricles or
the large white matter bundles, are accurately constructed. Smaller structures,
such as small fiber tracts in the FA maps or thin sulci in T2, are less accurate.
A larger training database could yield higher accuracies for smaller structures.
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3.2 Abnormality Detection in Multi-Channel MRI

In our second application we build a system for abnormality detection which is
based on the concept of comparing a suspicious image to an image of a healthy
subject. Automatic techniques often make use of an atlas constructed from a
healthy population. The atlas is spatially aligned with the test image, and sub-
traction of the two reveals differences (or abnormalities) in the test image. The
main difficulty is the nonlinear registration in the presence of pathologies.

We take a synthesis approach making use of the properties of different MR
signals commonly acquired for tumor patients. While for this particular tumor,
pathological tissue enhances in T2 yielding a hyper-intense appearance, it does
not substantially alter the intensity profile in (non-contrasted) T1. The patient’s
T1 image serves as input for synthesis of a “pseudo-healthy” T2 image by em-
ploying a database of 100 healthy subjects for which both T1 and T2 images
are available (IXI database http://biomedic.doc.ic.ac.uk/brain-development/).
Abnormality maps are computed by subtracting the synthesized T2 from the
original T2 image. We use images of 20 tumor patients from the BRATS dataset
(http://www2.imm.dtu.dk/projects/BRATS2012/)1.

For comparison, we use an atlas constructed from the healthy-subjects and
non-linearly registered onto the patients’ T1 images. Figure 3 presents the visual
results. The first four columns display patients’ T1 and T2 images, the aligned
atlas and the pseudo-healthy image synthesized using MP. The fifth and sixth
column display the abnormality maps obtained by computing the differences be-
tween the patient’s T2 image and the registered atlas, and the synthesized image.
The last column displays manual tumor delineations. The abnormality maps ob-
tained using MP are much cleaner, especially in areas not related to tumor, and
abnormal areas are more prominent. Our approach provides a simple alterna-
tive which avoids the challenging nonlinear registration problem in presence of
pathologies. These maps could be used for further segmentation steps.

4 Summary

We propose Modality Propagation, a general algorithm for patient-specific syn-
thesis of arbitrary modalities, which employs population data, and generalizes
the patch-based label propagation scheme. As main contributions of our work,
we see: 1) Generalization of the LP strategy to arbitrary modalities, and show-
ing that this general framework can obtain high-quality coherent results for
applications beyond segmentation; 2) We propose an efficient data-driven regu-
larization scheme for improvement of the result quality, as a general alternative
to LP fusion strategies; 3) We propose a novel scheme for abnormality detection
in multi-channel brain MRI, which utilizes the proposed MP framework. With
increasing availability of population databases we believe our work can be an
important component for developing subject-specific analysis tools.

1 BRATS is organized by B. Menze, A. Jakab, S. Bauer, M. Reyes, M. Prastawa, and
K. Van Leemput. The database contains fully anonymized images from following
institutions: ETH Zurich, Univ. of Bern, Univ. of Debrecen, and Univ. of Utah.
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