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ABSTRACT

Background: The APOE �4 allele is an established risk factor for Alzheimer disease (AD), yet
findings are mixed for how early its effects are manifest. One reason for the mixed results could
be the presence of interaction effects with other AD risk factors. Increasing evidence indicates
that testosterone may play a significant role in the development of AD. The aim of the present
study was to examine the potential interaction of testosterone and APOE genotype with respect
to hippocampal volume in middle age.

Methods: Participants were men from the Vietnam Era Twin Study of Aging (n � 375). The mean
age was 55.9 years (range 51–59). Between-group comparisons were performed utilizing a hier-
archical linear mixed model that adjusted for the nonindependence of twin data.

Results: A significant interaction was observed between testosterone and APOE genotype (�4-
negative vs �4-positive). Those with both low testosterone (�1 SD below the mean) and an �4-
positive status had the smallest hippocampal volumes, although comparisons with normal
testosterone groups were not significant. However, individuals with low testosterone and �4-
negative status had significantly larger hippocampal volumes relative to all other groups. A main
effect of APOE genotype on hippocampal volume was observed, but only when the APOE-by-
testosterone interaction was present.

Conclusions: These findings demonstrate an interaction effect between testosterone and the
APOE �4 allele on hippocampal volume in middle-aged men, and they may suggest 2 low testos-
terone subgroups. Furthermore, these results allude to potential gene–gene interactions between
APOE and either androgen receptor polymorphisms or genes associated with testosterone
production. Neurology® 2010;75:874–880

GLOSSARY
AD � Alzheimer disease; AR � androgen receptor; BMI � body mass index; CI � confidence interval; ICV � intracranial
volume; MGH � Massachusetts General Hospital; UCSD � University of California, San Diego; VET � Vietnam Era Twin;
VETSA � Vietnam Era Twin Study of Aging.

The APOE �4 allele is a major risk factor for late-onset Alzheimer disease (AD),1 but
evidence for its association in middle-aged samples with brain structures, especially the
hippocampus, and cognitive functioning has been mixed.2,3 One reason for mixed results
in genetic studies may be that interactions with other biologic or environmental factors
have obscured main effects.4 Testosterone is one such biologic factor that may interact
with APOE genotype.
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In men, testosterone levels begin to decline as
early as the 4th decade of life, and lower levels
are predictive of AD and mild cognitive impair-
ment.5,6 Animal studies have demonstrated that
in the brain, especially the hippocampus, testos-
terone influences the production and deposition
of �-amyloid, a key component of the neuronal
plaques associated with AD,7 and in older men
testosterone is positively associated with hip-
pocampal blood flow.8 The binding of testoster-
one to androgen receptors (ARs) has been found
to be markedly reduced in mice that express the
�4 allele,9 leading to the hypothesis that APOE
genotype differentially effects regulation of the
AR.10 Indeed, having an �4 allele combined
with low levels of testosterone has been found to
be a significant predictor of AD.11

The aim of the present study was to test for
interactive effects of APOE genotype and tes-
tosterone on hippocampal volume in middle-
aged men. Along with being a primary site of
AD neuropathology,12 the hippocampus is
rich in ARs,13 making it vulnerable to the age-
related decline in testosterone levels. Extrapo-
lating from previous animal models,9,10 we
hypothesized that an interaction between
APOE genotype and testosterone would be
present in humans such that being both �4-
positive and having low testosterone levels
would be associated with smaller hippocam-
pal volumes relative to other combinations of
APOE genotype and testosterone level.

METHODS Participants. Data were obtained from partici-
pants in the Vietnam Era Twin Study of Aging (VETSA), a
longitudinal study of cognitive and brain aging with a baseline in
midlife.14 VETSA participants were randomly sampled from the
Vietnam Era Twin (VET) Registry, a nationally distributed sam-
ple of male–male twin pairs who served in the United States
military sometime between 1965 and 1975. The VET Registry’s
composition and method of ascertainment have been described
elsewhere.15 In total, 1,237 men ages 51 to 60 participated in the
VETSA project between 2003 and 2007. In comparison to cen-
sus data, VETSA participants are similar in demographic and
health characteristics to American men in their age range.16 Neu-
roimaging (n � 474) and endocrine (n � 783) data were col-
lected concurrently between 2005 and 2007. The present
analyses are based on data from 375 VETSA participants for
whom neuroimaging, endocrine, and APOE genotyping data
were available.

As part of the primary VETSA project, participants traveled
to either the University of California, San Diego (UCSD) or
Boston University for a day-long series of assessments. To be
eligible for the primary VETSA project, both members of a twin
pair had to agree to participate and be between the ages of 51 and

59 years at the time of recruitment. Aside from standard exclu-
sion criterion for MRI studies (e.g., metal in the body), there
were no additional eligibility requirements.

Standard protocol approvals, registrations, and patient
consents. Informed consent was obtained from all participants
prior to data collection, and institutional review board approval
was obtained at all participating institutions.

Procedures. Testosterone collection and assay. Testosterone
was obtained via saliva collection on the assessment day, as well
as on 2 days during a participant’s typical week. These at-home
samples were collected approximately 2 weeks prior to the assess-
ment day. Samples were collected at waking, 30 minutes after
waking, 10:00 AM, 3:00 PM, and bedtime on all days. Project
staff worked with the participants to individualize collection
times to work schedules and wake-up times when necessary. Par-
ticipants were mailed a saliva collection kit which included indi-
vidualized instructions, labeled 4.5-mL Cryotube vials, Trident
original sugarless gum, straws, tissues, a daily log, pen, reminder
watch, and a storage container with an electronic track cap for
detecting compliance with the protocol. Samples were sent via
overnight mail to the University of California, Davis, for assay.

Samples were centrifuged at 3,000 rpm for 20 minutes to
separate the aqueous component from mucins and other sus-
pended particles. Salivary concentrations of free testosterone
were estimated in duplicate using commercial radioimmunoas-
say kits (Beckman Coulter Inc., formerly Diagnostics Systems
Laboratories, Webster, TX). Assay procedures were identical to
those outlined by Granger and colleagues.17 Intraassay and inter-
assay coefficients of variation were 3.141 pg/mL and 4.878 pg/
mL. The least detectable dose for the assay was 1.3697 pg/mL.
All samples from each participant were analyzed in the same
assay; 1 to 3 individuals were included in the same assay batch.
Assays were always performed without knowledge of the zygosity
of the twin pair. Values greater than 3 SD above the mean wak-
ing testosterone level, the highest level of the day, were recoded
as missing. Data from participants who reported taking testoster-
one supplements were also set to missing.

MRI acquisition and processing. Acquisition parameters
and postprocessing details are described in detail elsewhere.17 Briefly,
neuroimaging was performed within 24 hours of the assessment day
at either the UCSD Medical Center or Massachusetts General Hos-
pital (MGH). Images were acquired on Siemens 1.5-T scanners.
Although scanners were not identical, scanning sequences were de-
signed for use across scanners and vendors. Sagittal T1-weighted
magnetization-prepared rapid gradient echo sequences were em-
ployed with inversion time � 1,000 msec, echo time � 3.31 msec,
repetition time � 2,730 msec, flip angle � 7°, slice thickness �

1.33 mm, voxel size 1.3 � 1.0 � 1.3 mm. Raw DICOM MRI
scans from both sites were downloaded to MGH for postprocessing
and quality control.

Hippocampal volumes were obtained using segmentation
methods based on the publically available FreeSurfer software
package.18 The automated, fully 3-dimensional whole brain seg-
mentation procedure uses a probabilistic atlas and applies a
Bayesian classification rule to assign a neuroanatomic label to
each voxel. This process required only qualitative review to en-
sure no technical failure of the application. We created a
VETSA-specific atlas, and automated volumetric measurements
based on this atlas were within the 99% confidence interval (CI)
with respect to the gold standard manual measurements.19 Direct
comparisons of FreeSurfer to manually derived measurements in
other samples have demonstrated high degrees of agreement be-
tween the approaches,18 with correlations as high as 0.82 for
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hippocampal volume estimates.20 The observed hippocampal
volumes did not differ across the scanning sites. An estimate of
total intracranial volume (ICV) was also derived from the Free-
Surfer atlas scaling factor on the basis of the transformation of
the full brain mask into atlas space.21 Estimated ICV was used to
control the hippocampal measures for differences in head size.19

APOE genotyping. APOE genotype was determined from
blood samples using established methods.22,23 All genotypes were
independently determined twice by laboratory personnel at the
VA Puget Sound Healthcare System who were blind to the geno-
type and the identity of the cotwin. Of the 375 participants
utilized for the present analyses, 2 (0.5%) possessed a 2/2 geno-
type, 58 (15.5%) were 2/3, 16 (4.2%) were 2/4, 220 (58.7%)
were 3/3, 70 (18.7%) were 3/4, and 9 (2.4%) were 4/4. These
rates are roughly equivalent to those found in the general popu-
lation.24 Participants with at least 1 copy of the �4 allele were
classified as being �4 positive (�4�); all other participants were
classified as �4 negative (�4�).

Health and medical data. Due to the well-established rela-
tionship between low testosterone, increased body mass index
(BMI), and increased health problems,25-27 we included measures
of BMI and overall health as additional covariates. Each partici-
pant underwent a medical history interview during which they
were asked whether a physician had diagnosed them with any of
48 medical conditions (e.g., hypertension, high cholesterol, dia-
betes). The total number of conditions endorsed was utilized as a

proxy for overall health.

Statistical analysis. Data were analyzed using a multilevel,
mixed linear model (SAS Proc Mixed, SAS version 9.2), which
allowed for the utilization of all available data while adjusting for
the nonindependence of the observations. Given the natural
clustering of twin data, each member of a twin pair was identi-

fied by a unique ID number as well as a twin-pair specific num-
ber, referred to as the family ID. Similarly, each assay batch was
assigned a unique ID number so as to control for the clustering
imposed by the laboratory processing. Both family ID and batch
ID were entered as random effects in the model. Although the
present sample was collected as part of a twin study, the analyses
performed were not traditional twin analyses. Zygosity was not
utilized as a covariate, and hippocampal volumes and testoster-
one levels did not differ between monozygotic and dizygotic
groups.

Analyses examined the effects of APOE genotype, testoster-
one, and their interaction on the left and right hippocampal
volumes. The statistical model included estimated ICV, age, and
handedness as initial covariates. Significant relationships were
evaluated using the type III test of fixed effects, controlling for all
other elements of the model. Due to the fact that clinical guide-
lines for the assessment of testosterone levels suggest sampling
during the morning hours, generally between 8 and 10 AM,28 we
utilized the average 10 AM sample from all 3 collection days as
our primary hormone measure. We also examined the average
testosterone level for all samples from the 3 collection days. Be-
cause the VETSA sample is a relatively young, nonpatient sam-
ple, we believed that testosterone effects were most likely to be
observed toward one end of the distribution. Therefore, we uti-
lized a statistical definition such that participants were classified
as having low testosterone if their levels were 1 SD or more
below the mean, while all other participants were classified as
normal. The 10 AM value is most comparable to the measures
used in large epidemiologic studies. Our cutoff for this time
point of 59.8 pg/mL is similar to or more conservative than
cutpoints for hypogonadism based on free testosterone in large
epidemiologic studies.29,30

RESULTS Demographic and other descriptive data
are presented in table 1. The present sample was mar-
ginally older than the remaining VETSA participants
(average age 55.9 vs 55.2), had a slightly smaller pro-
portion of Caucasians, and had a lower average BMI.
The present sample also had a lower prevalence of the
APOE �4 allele relative to the remaining VETSA par-
ticipants: 25.0% vs 31.7%. The majority of the par-
ticipants (89%) described their overall health as good
or better.

The average 10 AM testosterone level across the
sampling days was 93.7 pg/mL (SD � 33.9). The
correlations between days ranged from 0.34 to 0.58
(Cronbach � � 0.69). The average testosterone level
across all sampling days was 95.0 pg/mL (SD �
28.5). In contrast to the 10 AM measures, the correla-
tions between the daily averages were noticeably
higher, ranging from 0.67 to 0.78 (Cronbach � �
0.88). Dichotomizing the 10 AM testosterone sample
resulted in 54 individuals in the low testosterone
group and 321 in the normal testosterone group. For
the daily average measurement, 60 participants were
classified as having low testosterone. The tetrachoric
correlation between the 2 dichotomous testosterone
measures was 0.81 (95% CI 0.70–0.89). Partici-
pants who were classified as having low testosterone
were not older than their normal testosterone coun-

Table 1 Sample characteristics

Present study
participants
(n � 375)

Remaining VETSA
participants
(n � 862) t or �2 p

Age, y, mean (SD) 55.9 (2.6) 55.2 (2.4) t � �4.43 �0.01

Education, y, mean (SD) 13.8 (2.0) 13.9 (2.1) t � 0.61 0.54

Ethnicity, % of sample

Caucasian 86.63 92.17 �2
(3) � 9.42 0.02

African American 6.15 3.37

Hispanic 2.41 1.69

Other 4.81 2.77

Handedness, % right 85.6 86.6 �2
(1) � 0.23 0.63

Self-reported health status,
% of sample

Excellent 13.3 11.6 �2
(4) � 4.01 0.40

Very good 38.1 36.1

Good 37.6 40.2

Fair 10.5 10.5

Poor 0.5 1.6

Total illnesses,a mean (SD) 1.72 (1.7) 1.81 (1.83) t � 0.79 0.43

Body mass index, mean (SD) 28.60 (4.2) 29.63 (5.2) t � 3.68 �0.01

APOE �4�, % of sample 25.0 31.7 �2
(1) � 5.60 0.02

Abbreviation: VETSA � Vietnam Era Twin Study of Aging.
a Total illness is a composite measure reflecting the total number of medical conditions
reported by the participant during a medical history interview.
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terparts, nor did they differ with respect to the prev-
alence of the �4 allele. There were no significant
differences in the proportion of �4� and �4� partic-
ipants in the low or normal testosterone groups.

10 AM testosterone measures. Results from the mixed
linear models are presented in table 2. For the left
hippocampus, a significant main effect of APOE ge-
notype was observed, as was a significant interaction
effect between APOE genotype and testosterone.
There was no significant main effect of testosterone.
As can be seen in the figure, participants with at least
one copy of the �4 allele and low testosterone had the
smallest left hippocampal volumes of the 4 groups,
although they were only significantly different from
their �4� low testosterone counterparts. The �4�
participants with low testosterone levels had signifi-
cantly larger left hippocampal volumes relative to all
other groups. Removal of the interaction from the
model resulted in a loss of the significant main effect

of APOE genotype, suggesting the presence of a sup-
pression effect in which the interaction increases the
predictive effect of the genotype.31 The same pattern
of results was observed for the right hippocampus.
After including BMI and total illnesses as additional
covariates in the models, all previously significant
main and interaction effects remained significant.

Daily average testosterone measures. When the daily
average testosterone measure was utilized, effects for
the right hippocampus were consistent with the 10
AM measure; there was a significant main effect of
APOE genotype and a significant interaction with
testosterone. However, the previously observed main
and interaction effects for the left hippocampus were
less pronounced. The effect of APOE genotype on
left hippocampal volume was nearly significant (p �
0.06), while the interaction with testosterone was not
significant. As with the previous analyses, �4� par-
ticipants with low testosterone levels had smaller hip-
pocampal volumes relative to the other groups;
however, only the comparison with the �4� low tes-
tosterone group was significant. The main effect of
APOE genotype once again became nonsignificant
when the interaction was removed from the model.

DISCUSSION We observed a significant interaction
between APOE genotype and testosterone with a pat-
terning of group differences that was consistent with
our initial hypothesis. Participants with the combi-
nation of at least one copy of the �4 allele and low
testosterone possessed the smallest hippocampal vol-
umes, although comparisons relative to the normal
testosterone groups were not statistically significant.
Testosterone alone had no impact on hippocampal
volume, yet the main effect of APOE genotype did
become significant after the APOE-by-testosterone
interaction was included in the model. Had our ex-
amination of the relationship between APOE geno-
type and hippocampal volume not included the
interaction with testosterone, we would have con-

Figure Left hippocampal volume as a function of APOE and 10 AM

testosterone levels

The total number of participants in each group is as follows: normal testosterone/�4 nega-
tive n � 241, normal testosterone/�4 positive n � 80, low testosterone/�4 negative n � 39,
low testosterone/�4 positive n � 15.

Table 2 Mixed linear model resultsa

Left hippocampus Right hippocampus

Estimate SE F p Estimate SE F p

10 AM average

APOE �4 262.17 100.20 6.17 0.02 262.57 107.36 5.66 0.02

Testosterone 101.36 90.38 0.12 0.73 69.19 96.34 0.63 0.43

Interaction �240.29 106.70 5.07 0.03 �231.24 113.95 4.12 0.04

Daily average

APOE �4 190.51 103.25 3.74 0.06 275.84 111.69 5.77 0.02

Testosterone 95.25 96.34 0.09 0.76 154.01 104.20 0.24 0.62

Interaction �155.63 110.96 1.97 0.16 �247.35 119.51 4.28 0.04

a F and p values indicate the type III test of fixed effects, controlling for all other components of the model.
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cluded that APOE genotype does not influence hip-
pocampal volume in middle-aged adults without
dementia. While there have been previous findings of
APOE-by-testosterone interactions, to our knowl-
edge this is the first demonstration of such an effect
on brain structure in middle-aged adults without
dementia.

Interestingly, individuals who lacked the �4 allele
and had low testosterone were found to have signifi-
cantly larger hippocampal volumes relative to all
other groups. This result, while not predicted by our
a priori hypothesis, is nevertheless consistent with a
number of animal studies in which the relationship
between APOE genotype, testosterone, ARs, and the
hippocampus have been shown to be highly com-
plex. For instance, expression of the testicular femini-
zation mutation in mice, which truncates the
N-terminal activation domain and renders the AR
nonfunctional, has been found to attenuate the detri-
mental effect of APOE �4 on some but not all
hippocampal-dependent tasks.32 Comparable effects
have been observed through the use of castration
with no alteration of the AR.33 Treatment of cas-
trated rats with a selective AR modulator has also
been shown to restore AR expression within the
brain and improve hippocampal-dependent learning
and memory despite the absence of circulating testos-
terone levels.34 These results suggest that the interac-
tion of circulating testosterone levels and the APOE
genotype may be affected by other factors such as
variations of the AR or modulators of the AR within
the hippocampus. Thus, our findings may suggest
the presence of 2 low testosterone subgroups.

It remains unclear what the exact biologic mecha-
nism is that underlies the present results. One possi-
bility is that low testosterone levels, occurring
independently of the APOE genotype, result in fewer
or less efficient ARs within the hippocampus, leaving
the region more susceptible to the effects of the �4
allele. Such a mechanism could be viewed as support-
ive of the lack of a main effect for testosterone we
observed, as well as the presence of the interaction
increasing the predictive effect of APOE �4. Alterna-
tively, it is possible that the APOE �4 genotype may
influence the hypothalamus, and as a result alter the
function of the hypothalamic-pituitary axis. This
could then result in lower testosterone levels via dis-
rupted innervations of the testes, as well as differ-
ences in hippocampal volume as a result of changes
in hormones such as cortisol. If this later scenario
were the case, however, we would have likely ob-
served a significantly higher prevalence of �4� par-
ticipants in our low testosterone group relative to the
normal testosterone group. No such differences were
observed in the present sample.

The observed interaction between APOE and tes-
tosterone likely represents a form of gene-by-
environment or a gene-by-gene interaction. APOE
and testosterone are linked through a common met-
abolic pathway, the catabolism of the constituent
cholesterol esters of lipoproteins, and the associated
gene pathways offer a number of possible gene–gene
interactions. It is important to note, however, that
the level of free testosterone is not determined solely
by genes, and that in adult men environmental influ-
ences account for roughly 50% of the variance in
testosterone level.35,36 Further examination of this re-
lationship will need to establish candidate genetic
and environmental factors that influence testosterone
levels in order to determine if they indeed interact
with APOE genotype.

There are some potential limitations of this study.
First, the all-male composition of this sample limits
our ability to generalize these findings to women. To
a large extent, research on estrogen loss in women
parallels the work that has been done on testosterone
in men, establishing connections with APOE,37 as
well as demonstrating effects on hippocampal struc-
ture and gene expression.38,39 In addition to estrogen,
women also experience late-life declines in testoster-
one.40 The distinct pattern of age-related changes of
testosterone and estrogen in men and women may
complicate any potential comparison; nevertheless,
the possibility of similar interactions in women war-
rants future investigation. Second, even with our
very large MRI sample, there were only a small num-
ber of participants with both an �4 allele and low
testosterone. Similarly, we were unable to examine
�4 dose effects or the effects of other APOE alleles
(e.g., �2). Thus, it will be important to see if our
results are replicated in independent samples. Fi-
nally, the present analyses were cross-sectional; thus,
we are unable to determine if the observed interac-
tions are the result of age-related changes in hormone
levels or represent longstanding relationships.
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