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ABSTRACT: The character and timing of gyral development is one

manifestation of the complex orchestration of human brain develop-
ment. The ability to quantify these changes would not only allow for

deeper understanding of cortical development but also conceivably

allow for improved detection of pathologies. This article describes a
FreeSurfer-based image-processing analysis ‘‘pipeline’’ or methodol-

ogy that inputs an MRI volume, corrects possible contrast defects,

creates surface reconstructions, and outputs various curvature-

based function analyses. A technique of performing neonate recon-
structions using FreeSurfer, which has not been possible previously

because of inverted image contrast in premyelinated brains, is

described. Once surfaces are reconstructed, the analysis component

of the pipeline incorporates several surface-based curvature func-
tions found in literature (principle curvatures, Gaussian, mean curva-

ture, ‘‘curvedness,’’ and Willmore Bending Energy). We consider the

problem of analyzing curvatures from different sized brains by intro-
ducing a Gaussian-curvature based variable-radius filter. Segmented

volume data are also analyzed for folding measures: a gyral folding

index (gyrification-white index GWI) and a gray-white matter junction

folding index (WMF). A very simple curvature-based classifier is pro-
posed that has the potential to discriminate between certain classes

of subjects. We also present preliminary results of this curvature anal-

ysis pipeline on nine neonate subjects (30.4 weeks through 40.3

weeks Corrected Gestational Age), three children (2, 3, and 7 years),
and three adults (33, 37, and 39 years). Initial results demonstrate

that curvature measures and functions across our subjects peaked at

term, with a gradual decline through early childhood and further

decline continuing through to adults. We can also discriminate older
neonates, children, and adults based on curvature analysis. Using a

variable radius Gaussian-curvature filter, we also observed that

the per-unit bending energy of neonate brain surfaces was also
much higher than the children and adults. VVC 2008 Wiley Periodicals,

Inc. Int J Imaging Syst Technol, 18, 42–68, 2008; Published online in Wiley

InterScience (www.interscience.wiley.com). DOI 10.1002/ima.20138
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I. INTRODUCTION

The human brain is capable of performing extraordinary tasks. Its

abilities to communicate, synthesize information, and perform ana-

lytical tasks far outmatch those of other species. Human intellect is

thought to be a result of the disproportionately large cortical surface

area to whole brain volume compared to other species (Rakic,

1995). This increase in cortical surface area is achieved by

increased gyral folding. Interestingly this increase in cortical sur-

face area does not come with similar increases in cortical thickness.

In fact, the several orders of magnitude increase in the human gray

matter surface area compared with mice and monkey is achieved

with barely a doubling in the cortical thickness (Rakic, 1988). Thus,

it appears that cortical surface area to brain volume and cortical

folding are important parameters of cognitive development and

ability.

The presumed evolutionary increase in gyral folding seen in

humans compared with other species is recapitulated during human

brain development. Postmortem studies indicate that gyral folding

begins between 11 and 16 weeks gestational age, with all major

gyri present by 25 weeks and folding complete close to term

(Amunts et al., 1997). Many cerebral malformations are associated

with either too many small gyri (polymicrogyria) or too few large

gyri (pachygyria) (Barkovich et al., 2005). Pathological processes

in the developing brain can also alter gyral folding with hypoxic is-

chemic causing ulegyria and shunting after severe hydrocephalus

can result in stenogyria (Armstrong et al., 2007). With cortical fold-

ing related to brain function, measures of folding may also prove

useful in neuropsychiatric disorders. For example, in autism,

increases in white matter, especially if peripheral, should alter corti-

cal folding (Courchesne et al., 2004; Herbert et al., 2004). If we can

quantify the development of gyral folding, we may improve our

ability to characterize normal trajectories of brain development and

detect deviation with disease. Detecting when, during development,

deviations from normal begin to occur has the potential to improve

our understanding of when genes or external factors may impact

brain development and provide timelines for intervention.
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The mechanical forces that drive gyral folding are also poorly

understood. Two theories for the mechanical forces exist and

although not mutually exclusive they emphasize different processes.

The first theory suggests that tailored growth processes cause corti-

cal buckling (Caviness, 1975; Armstrong et al., 1995) possibly

because of shear forces when growth in outer cortical layers out-

strips growth in the inner layers. The second theory, the axonal ten-

sion theory, hypothesizes that gyral folding is dependent on differen-

tial stresses arising from locally distributed associative subcortical

axons (Van Essen and Drury, 1997; Hilgetag and Barbas, 2005; Hil-

getag and Barbas, 2006). Both theories imply that cortical folding is

a reflection of important mechanical forces generated by growth.

Current methods for describing gyral folding and maturation are

largely qualitative and determined by visual inspection of MR

images in a single plane (van der Knaap et al., 1996; Battin et al.,

1998; Ruoss et al., 2001). These methods have proposed basic grad-

ing criteria where maturation of gyri are associated with the gyri

transitioning from broad gyri with shallow sulci to narrow gyri with

deep sulci. The dynamic range of this qualitative measures is small

(integer grading from 0 to 3) allowing for little distinction between

different types of gyral folding. In addition, these measures assess

only the ratio of width to depth of gyri and sulci, are tedious, and

are biased by the plane chosen for evaluation.

Quantitative methods are few with the gyrification index (GI)

the primary measure. Traditionally, the GI is computed on a slice-

by-slice manner, and is the ratio of the complete cortical length

including folds extending into the cortex to the ‘‘outer’’ cortical

length (Zilles et al., 1988). It is inherently a 2D measure, and the

cortical lengths are computed separately for each slice in a volume.

Initially, the GI was developed for postmortem and specimens, but

this method is also now used on MR images. Although quantitative,

the GI does not assess the complex 3D nature of gyral folding and

is very sensitive to variations in the size of the sub-arachnoid space.

From a folding complexity perspective, several studies have

attempted to quantify folding and/or complexity. Fractal dimension

analysis has often been used as a technique for measuring ‘‘com-

plexity’’ (Hofman, 1991; Kiselev et al., 2003; Im et al., 2006) as

well as folding measures derived from cortical thickness analysis

(Tosun et al., 2006; Van Essen et al., 2006) and metric distortions

that arise from registering surfaces to an average template (Wisco

et al., 2007). Although fractal measures are interesting in the

abstract, we find them difficult tools to use as a means of under-

standing the topology of cortical folding. Numerous studies based

on cortical thickness employ regional shape measures based on

functions of mean curvature.

Some other approaches to complexity have tried a completely

different track, trying to understand and describe folding by tracing

the development of several primal folding templates or ‘‘sulcal

roots’’ that correspond to the first folding locations during antenatal

life (Cachia et al., 2003a,b; Mangin et al., 2003; Mangin et al.,

2004a,b; Regis et al., 2005; Andoh et al., 2006). These are objects

derived from mean curvature minima and saddle points. The highly

variable pattern of folding noted across adult brains can be recov-

ered from successive scale-space analysis. Folding patterns are

decomposed and their core embedded patterns simplified. Concep-

tually, Mangin’s work constructs ‘‘tree like’’ structures tracing the

development of simple folds to complex pattern at different scales.

Our work is a complement to this approach. Sulcal roots provide a

means for logically constructing how simple folds become complex

patterns without focusing on the detailed curvature characteristics

of the final patterns. Our work is less concerned with the exact loca-

tion of the maximal sulcal depth and its branching pattern and more

focused on the surface topology which we analyze using several

curvature functions. We focus on the topology as we feel that this

had the potential to be more directly linked to the cellular and mo-

lecular processes of neuronal proliferation and migration.

Additional studies have attempted to consider the intrinsic ge-

ometry of the cortex from a more purely mathematical and compu-

tational basis (Griffin, 1994), but follow-up studies in a similar vein

using contemporary computing power have not been pursued.

Moreover, these studies have focused on adult, not pediatric or

developing newborn brain surfaces.

More recently, spherical wavelets have also used to quantify

cortical folding (Nain et al., 2007; Yu et al., 2007). Development of

surface folding was modeled through increasing wavelet powers

and these wavelet coefficients were fitted to the Gompertz function,

a model of self-limited growth. This allows predictions as to when

cortical folding might occur during development and also provides

measures as to the differential folding rate across developing surfa-

ces. The Gompertz function has been used successfully in the past

to describe brain volumetric growth (McLennan and Grilles, 1983;

Koop et al., 1986).

Other methods exist for constructing surfaces that do not rely on

explicit segmentation, as proposed recently by Rieger (Rieger and

van Vliet, 2002; Rieger and van Vliet, 2004; Rieger et al., 2004).

These methods are based on orientation fields obtained by using

gradient structure tensors at different scales. These tensors in turn

are derived from embedded iso gray level surfaces within the image

itself. Such approaches may also yield useful results, but we chose

to create tessellated surfaces so that the constraint of topological

correctness would allow us to more easily detect local inconsisten-

cies that may result from noise.

Our work further expands upon previous studies, most notably

that of Batchelor (Batchelor et al., 2002), who explored volumetric

and surface folding, as well as Rodriguez-Carranza et al. (2006),

who presented an overview system for measuring surface folding.

While our volumetric analysis is related to Batchelor’s, our surface-

based analysis differs. Batchelor (following (Van Essen and Drury,

1997)) computes mostly integral measures of some curvature func-

tions—we consider the distribution of curvature functions and are

less concerned with cumulative integral measures.

This article presents a methodology for analyzing curvature in

the developing brain from preterm to adult. Although the word fold-
ing is universally understood, as a mathematical concept it does not

have a specific definition. Our focus on this article is to study curva-
ture, which is well defined and understood. While we might men-

tion the term folding in this article, we wish to stress that it is curva-

ture, and functions of curvature, that we quantify. More specifically,

we present a multistages pipeline to segment, process, reconstruct,

and curvature-analyze brain surfaces.

In summary, therefore, this article’s core purpose is to present a

methodological approach for analyzing the curvature information

of reconstructed brain surfaces from preterm minimally myelinated

brains through adult myelinated brains. The methodology described

in detail in section II. In particular, we present a practical technique

for extending FreeSurfer’s reconstruction pipeline to process mini-

mally myelinated neonate brains which have been manually seg-

mented following the techniques of the Center for Morphometric

Analysis which provides we believe an exceedingly high degree of

confidence in the segmentation (sections II.B, II.C) as well as a sim-

ple FreeSurfer-based volume-based analysis (section II.D). Prepro-

cessed volumes are then surface reconstructed, providing curvature
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data at each vertex of the resultant surface (sections II.E). We

reconstruct and analyze the surface of the gray-white matter junc-

tion—a biologically significant area since it represents the area

available for neuronal connections and through which all neuronal

connections must pass.

We consider several functions of the curvatures on the gray-

white junction (section II.F), and in particular we note that the core

methodological contribution of this article lies in the manner by

which we process this data. Most studies are concerned with the

mean curvature of surfaces and occasionally the Gaussian curva-

ture. We consider additionally the underlying components of the

Gaussian curvature directly, and moreover propose an additional

curvature function, the sharpness function, as a meaningful analysis

component. Moreover, our analysis of these curvature functions is

different to the current trend in the literature, which tends to focus

on providing one-dimensional integral functions based on curvature

values. Simply stated, the current trend is to sum a particular curva-

ture function across the surface of interest. We provide an inher-

ently two dimensional analysis based on a histogram-centroid

approach (section II.G) that offers, we believe, more discriminating

power in classifying brain types than those provided by one dimen-

sional integration alone. Finally, recognizing that integral

approaches are also useful, we also provide an integral approach

based on the Willmore energy function, which we then filter using

the Gaussian curvature to regions of local curvature (section II.H).

This Gaussian-filter approach is also offered as a means to compare

regions of scale-based folding across surfaces of different area. The

Methods concludes with a brief discussion on curvature compari-

sons across different sized brain gray-white surfaces from preterm

to neonates in section II.J. The potential of this approach to provide

information on gyral formation and maturation is tested on a small

number of meticulously prepared data sets that included newborn

preterm through term newborns where gyri are forming, young

children, and adults.

A secondary purpose is to provide the results of this approach

on a sample dataset that contains neonate subjects, pediatric sub-

jects, and adult subjects. This is offered as a proof-of-concept and

conceptual validation of the methods. Section III is organized in

parallel to section II and considers for each part of the methodology

its results as well as a discussion of these results. To capture the

time period when marked increases in gyral folding occur, we

included preterm and term neonatal brains as well as older myelin-

ated brains. These datasets are also selected so as to provide distinct

populations each of which is marked by quite age-specific folding

patterns. Since full brain manual segmentation is also an extremely

time consuming process, our data sample is comparatively low. We

argue, however, that should our methods identify interesting age- or

shape-based information on such a small sample set, it strongly

suggests our techniques offer the means to analyze larger more

statistically significant sets of data.

II. METHODS

The organization of this article closely follows the structure of Fig-

ure 1. Each labeled section of the pipeline has a corresponding

methods component (section II) that describes its function and a

corresponding results and discussion component (section III) that

analyzes the output of the component.

The schematic pipeline shown in the figure accepts an MRI vol-

ume as its input and analyzes various volumetric and reconstructed

surface properties derived from the input data. Processed data are

output at various pipeline stages. The methods section proceeds

along each pipeline stage, describing the main data components and

the various functional methods applied to the data as it progresses

along the pipeline. Where appropriate, limitations to a particular

component are discussed.

A. Stage 1: Data Collection. Nine neurologically normal neo-

nates with corrected gestational ages (CGA) 30–40 weeks, three

normal pediatric subjects of ages 2, 3, and 7 years, and three normal

adults of ages 33, 39, and 40 years were imaged. T1 weighted 3D

SPGR images were collected on a GE 1.5T scanner, with TR/TE 5
30/8, flip angle 5 25 to 308, matrix 5 256 3 192, FOV 5 220 3

Figure 1. An overview of the curvature analysis pipeline. Data components are represented by the rectangular blocks, and operations on these

data objects by the oval bubbles. The pipeline consists of eight components, with outputs generated at stages 4, 6, 7, and 8 as shown. [Color
figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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165 mm or 200 3 150 mm, and slice thickness 1.2 to 1.5 mm

depending on head size.

B. Stage 2: Manual Segmentation. Once collected, these

images were semiautomatically segmented using Cardviews (Rade-

macher et al., 1992; Filipek et al., 1994; Center for Morphometric

Analysis, 1992; Kennedy and JW Meyer and PA Filipek and VS

Caviness Jr., 1994; Caviness et al., 1996a; Filipek et al., 1997;

Nishida et al., 2006). Although highly time sensitive (segmenting a

single brain can take 2 weeks), this method is highly accurate and

the process incorporates several intra- and inter-segmenter reliabil-

ity, validation, and consistency components. These techniques have

been developed at the Center for Morphometric Analysis (CMA)

and have been extensively published (Kennedy, 1986; Kennedy and

Nelson, 1987; Caviness et al., 1989, 1995, 1996a,b; Filipek et al.,

1989, 1991; Kennedy et al., 1989; Filipek and Kennedy, 1992).

Segmentation is typically performed in coronal image in a slice-by-

slice fashion. For this article, the gray/white junction surface and

the outer cortex/CSF boundary were segmented.

This segmentation regime divided the brain into two regions.

The first region was an outer cortical ribbon containing the cortex

mantle and comprising gray matter, i.e., the tissue volume con-

tained between the gray/white surface and outer cortex/CSF bound-

ary. The second region comprised all the remaining inner noncortex

tissue. Typically, this contained white matter and deep cortical gray

structures including ventricles.

C. Stage 3: Contrast Correction. Having defined segmentation

boundaries, it was now possible to directly specify the contrast

intensities for all our regions. This is an important step, since the

unmyelinated brains of the neonate subjects showed a ‘‘contrast

inversion’’ when compared to adult brain images. T1 weighted neo-

nate volume data often has white matter recorded with a ‘‘dark’’ in-

tensity, and gray matter with a ‘‘light’’ intensity, as shown in Figure

2. The manual separation of ‘‘cortical’’ and ‘‘noncortical’’ tissue

was made on a coronal slice-by-slice basis for each volume of each

subject in this study (note that the sagittal view shown was gener-

ated after manual coronal slicing and surface reconstruction).

With the defined surface boundaries, the pipeline simply ‘‘flood

filled’’ each contiguous tissue region in each segmented slice with

predefined contrast values. These values were selected to be com-

patible with FreeSurfer defaults for gray and white matter, as shown

in Figure 3. Also note the dramatic change in folding pattern

between the subject on left at 31 weeks corrected gestational age

and the 39 week subject on right.

Given these segmented surfaces, and contrast-corrected tissue

regions, the pipeline split along two paths. The first path analyzed

the volume-based surfaces for initial curvature/folding properties;

Figure 2. Differing T1 intensity con-

trasts for neonate at 39 weeks corrected
gestational age (on left) and adult control

(on right). The yellow trace (visible in

color prints of the figure) defines the
gray/white matter boundary in this slice

plane. [Color figure can be viewed in the

online issue, which is available at

www.interscience.wiley.com.]

Figure 3. Examples of manually seg-
mented volumetric coronal slices. On the

left is a neonate at 31.1 weeks corrected

gestational age; on the right, a neonate

at 39.7 weeks corrected gestational age.
The ‘‘gray’’ voxels are cortex; the ‘‘white’’

voxels are a summation of white matter,

deep cortical gray structures, and ven-
tricles. [Color figure can be viewed in

the online issue, which is available at

www.interscience.wiley.com.]
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the second path continued on to reconstruct tessellated surfaces of

the tissue junctions.

D. Stage 4: Folding Analysis on Volumetric Data. The man-

ual segmentation described in section II.B greatly simplifies quanti-

tative volumetric measurements. For the purposes of this article, we

considered two tissue classes: the cortical volume Vg, i.e., exterior

to the gray-white junction, and the subcortical volume Vw, i.e., the

entire region interior to the gray-white junction. The Vw includes all

tissue classes interior to the gray-white junction (ventricles, thala-

mus, amygdala, hippocampus, and similar deep cortical gray

structures).

We can also estimate the approximate surface area in mm2 of

various tissue interfaces by counting the voxel ‘‘faces’’ that define

the border between two tissue classes. In this manner, the gray-white

surface area Agw is approximated by counting the number of voxel

faces between the cortical and noncortical tissue. Similarly, the cort-

ical surface area Agc is approximated by counting the number of

voxel faces between the cortical and CSF tissue classes. Of course,

we expect any surface areas calculated in this manner to overesti-

mate the actual areas. Nonetheless, despite the relative simplicity of

this approach, we do believe it can provide meaningful data.

Stage 4 presents two ‘‘folding’’ measures based on the volumet-

ric data: the GWI, or Gyrification-White Index, and the WMF, or

white matter folding

GWI ¼Agw

Agc

ð1Þ

WMF ¼ Agw=V
2=3

w ð2Þ

where all quantities are calculated from segmented volumes and do

not require a complete surface reconstruction. The above are whole

brain surface based calculations.

The GWI differs from the more traditional GI of Zilles et al.

(1988),

GIðnÞ ¼ AðnÞpial
AðnÞgc

ð3Þ

in that it uses the gray/white junction in the numerator instead of

the outer ‘‘pial’’ surface. In addition, the original formulation of the

GI was calculated on a slice-by-slice basis (explicitly shown by the

n in the above equation). We did not use GI for several reasons. In

the first place, we were unable to reliably disambiguate the pial sur-

face manually in our neonate subjects due to contrast issues in the

original data. The gray/white junction, however, was reliably identi-

fied in all our cases. Moreover, within FreeSurfer, the pial surface,

Apial, is derived in an iterative process starting at the gray/white

junction, Agw and extending outwards towards the skull. In other

words, Apial 5 f(Agw); therefore, the GWI is related functionally to

the GI. Finally, we believe from a biological perspective that the

gray/white junction is a fundamentally important surface since all

connection between the cortex and deeper structures must pass

through this boundary.

Note that since the GWI is defined as the ratio between two non-

touching surfaces, it can potentially be sensitive to the distance sep-

arating the surfaces. We believe that, as long as the volumes are

segmented accurately, the cortical thickness will vary little across

similarly aged subjects. By normalizing the volume data, the effects

of cortical thickness would further be mitigated. Our study, how-

ever, was specifically interested in absolute measures (see section

II.J); thus, a possible cortical thickness side effect of ‘‘unnor-

malized’’ GWI is acceptable.

The WMF contains a 2
3
exponent in its denominator, making it

quite sensitive to absolute sizes. Despite this, it has the attractive

feature of being a function of only a single tissue class. The GWI,

however, is largely scale invariant but depends on two different tis-

sue classes. Taken together, we believe both indices provide useful

measures on the folding of the manually segmented volumetric

data.

Our volumetric analysis corresponds to the zero-order measures

of Batchelor et al. (2002), with our GWI conceptually related to

Batchelor’s ‘‘convexity ratio,’’ or CR. Note that the CR uses a con-

vex hull derived from the gray-white surface to approximate an

‘‘outer shrink-wrap’’ of the cortex and is thus a derived measure. A

function similar to the GWI has been proposed as the IGAR by

Rodriguez-Carranza et al. (2006). Both these definitions as well as

Batchelor’s Isoperimetric Index, IPR (which is similar to the WMF)

require full surface reconstruction.

Our Eqs. (1) and (2) are based on volume-segmented data and

do not require surface reconstruction, while the IGAR and IPR do

require surface reconstruction. Of course, the measures are concep-

tually similar but operate on different ‘‘inputs.’’ To emphasize this

difference, we use our designation of GWI and WMF. Why then

would one use volume-segmented versions—particularly as they

would be less accurate than measures on the reconstructed surfaces?

We propose here to use these measures as fast validation—trends

observed in an analysis of reconstructed surfaces should also be

reflected (albeit less accurately) by an analysis of the volume seg-

mentation directly. Also, the WMF provides some insights into

scale issues of the surfaces. If the surfaces were increasing in scale

only, but maintain constant folding, we would expect the WMF to

be largely linear across subjects of increasing age.

E. Stage 5: Surface Reconstruction. The surface reconstruc-

tion proceeded in an automated/manual/automated iterative fashion.

Using FreeSurfer, the segmented/contrast corrected coronal slices

were combined into topologically correct surfaces (Dale et al.,

1999; Fischl et al., 1999; Makris et al., 2003, 2005; Ju et al., 2005;

Fennema-Notestine et al., 2006; Lyoo et al., 2006). In its default

mode of operation, FreeSurfer typically processes MRI volume data

directly, automatically attempting the segmentation and skull strip-

ping steps. These initial operations were not necessary since our

data was manually segmented and contrast corrected. We simply

inserted our data slightly upstream into the FreeSurfer reconstruc-

tion process.

The input data were typically collected with in-plane resolution

<1 mm and slice thickness >1 mm. Internally, FreeSurfer

resampled the data in a conformed 1 mm3 isotropic voxel space and

created candidate tessellated surfaces. Surface reconstruction

details, in particular, smoothing of surfaces and noise robustness

concerns, are discussed in Milad et al. (2005). In this manner, we

were able create surfaces in the same absolute coordinate frame

space and cross compare across different brains (see section II.J for

a discussion on normalization). Each surface is inspected for topo-

logical errors and manually corrected by an experienced technolo-

gist where necessary. This step involves making voxel-based inten-

sity changes to the original input data, and then recreating the
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tessellated surfaces from the edited data. Typically, only a few ver-

tices out of thousands require manual editing for topology correc-

tion. All our data, viz. the neonates, children, and adults, were sub-

jected to the same manual segmentation, contrast correction, and

FreeSurfer surface creation process.

To better visualize cortical surfaces that might be ‘‘buried’’

within sulcal banks, FreeSurfer also allows the ability to create

inflated representations of the folded surfaces. This inflation is

more analogous to ‘‘blowing up’’ a crumpled paper bag than inflat-

ing a balloon for example. In the latter, the surface is elastic and

stretched considerably in the inflation process. FreeSurfer, however,

inflates the surface while attempting to minimize geometric distor-

tions and maintain the relative geometric relationships in the sur-

face topology—hence a crumpled paper bag is a more apt analogy.

Once inflated, the curvature values of the original folded surface are

typically displayed on the inflated surface.

F. Stage 6: Curvature Functional Analysis. The reconstructed

gray-white matter tessellated surfaces that FreeSurfer creates con-

tain a rich variety of information associated with each vertex of the

created mesh. Any given surface in 3D has, at each point, an infinite

number of possible curvatures Kii 2 J and will over this set of cur-

vatures have two mutual orthogonal tangent directions for which

the curvatures are extremal. These two curvatures are a maximal

curvature k1 and a minimal curvature k2. Collectively, these are

referred to as the principal curvatures (do Carmo, 1976)

k1 ¼ argmaxKi
i

k2 ¼ argminKi
i

ð4Þ

Several polynomial functions of the principal curvatures are often

used in differential geometry. These are the mean curvature H and

the ‘‘curvedness’’ C (Koenderink and van Doorn, 1992), defined as

H ¼ 1

2
ðk1 þ k2Þ ð5Þ

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

2

r
ð6Þ

A useful operation relating the intrinsic curvature to the actual sur-

face is the Willmore energy (Tom James Willmore, 1997, Rieger

et al., 2004),

Eb ¼
Z
A

ðk1 � k2Þ2dA ð7Þ

¼
Z
A

H2dA�
Z
A

KdA ð8Þ

We further analyze the Willmore integrand, which we have

observed that when projected across surfaces is proportional to the

apparent ‘‘sharpness’’ of folding:

S ¼ ðk1 � k2Þ2 ð9Þ

Note that k1, k2, H, and C all have units of inverse length (mm21)

while S and Eb have units of inverse area (mm22).

Equations 4 through 9 all quantify extrinsic properties of a sur-

face. Extrinsic curvature is the curvature that is apparent to an ob-

server able to study the three-dimensional space in which a surface

resides and quantifies the rate of deviation between one surface and

another. Intrinsic curvature, on the other hand, is the curvature of a

surface that is apparent to an observer ‘‘embedded’’ within the

surface itself and concerns the differential relationship between

different points on the surface.

More mathematically, the intrinsic curvature is defined at each

point in a differential manifold. For 3D surfaces it is defined as the

product

K ¼ k1k2 ð10Þ

and is referred to as the Gaussian curvature with units of inverse

area (mm22). The Gaussian curvature of a surface is invariant under

distance preserving changes, no matter how the surface is folded,

provided that the act of folding introduces no tears or shears. In this

manner, a flat sheet has K 5 0 since k1 5 k2 5 0. By folding the

sheet into a cylinder, the Gaussian remains 0 since at each point on

the cylinder’s body the minimum curvature is still 0. If the Gaussian

curvature is positive and constant, it is isometric to a sphere and if

negative it is isometric to a saddle.

Please refer to Appendix A for a more detailed overview of Eqs.

(5) through (10), as well as their geometric interpretation.

G. Stage 7: Histogram-Centroid Classifier. With the excep-

tion of the integrative bending energy Eb, all the curvature functions

created in Stage 6 are functions of their physical location on the sur-

face. In practical terms, this implies that at each vertex point of the

tessellated triangle surface structure, there is specific ‘‘local’’ value

for each of the curvature functions {k1, k2, K, H, C, S}. The Eb func-

tion integrates over their entire surface, and is thus ‘‘global.’’

One mechanism to represent the distribution of the ‘‘local’’ cur-

vature function in 2D space is using a histogram-centroid approach.

We can analyze the distribution of curvatures across a surface as a

histogram where the x-axis of the histogram shows actual curvature

values, and the y-axis indicates the occurrences of these values.

The resulting plots would show the spread of curvature values

across a particular subject gray/white surface for a given curvature

function. The x-centroid of a given curvature-function histogram is

simply the average value of that curvature-function across the sur-

face. The y-centroid position denotes the relative occurrence of this

average value on the surface.

For a given subject’s tessellated surface which contains R verti-

ces, and a given choice b of histogram bins, we can normalize* the

histogram data across all our subjects according to:

fn ¼ b

R
fh ð11Þ

where fn denotes the normalized histogram, fh the original histo-

gram function. The same parameters were used for histogram nor-

malization across all the brains. Given this histogram spread func-

tion, we now propose a feature extraction/classifier that uses geo-

metric centroids to possibly cluster similar histograms together. A

centroid is the ‘‘average’’ of all points in an object X. The geometric
centroid of a physical object with uniform density coincides with its

*Histogram normalizing is not to be confused with normalizing the actual shapes
of subject brain surfaces.
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center of mass. Our classifier simply considers the negative and

positive curvature distributions of the histogram functions fn sepa-

rately, and determines their respective geometric centroids.

Therefore, for a curvature histogram function fn and for each

subject i we can create a set of ordered pairs nxi ; nyi
� � 8fn < 0 for

the negative centroid of subject i and pxi ; pyi
� � 8fn � 0 for the posi-

tive centroids of subject i. By plotting each negative and positive

ordered pair for given subject’s histogram centroid, we hope to

cluster together curvature functions that show similar distributions

over a brain. In the ideal case, each different subject age group, or

rather curvature function distributions that are ‘‘similar’’ would

cluster together.

H. Stage 8: Scale Factor Filtering and Analysis.
Geometrically, the human brain curves at several different scales—

and in the simplest sense we can identify two scale factors First,

there is the large scale curving of the brain as a whole—a roughly

spherical or ovoid structure divided into two hemispheres with scale

factors in the order of the actual skull diameter. Then, at a much

smaller scale, we note the curvature of the pattern of folds embed-

ded on the cortical surface, with scale factors in the order of indi-

vidual gyri and sulci. From a cortical developmental perspective,

we are concerned primarily with these parts of the surface that

curve at this smaller scale. It is at these regions of curvature where

the surface changes are most pronounced as the cortex buckles and

folds. Developmentally, three scale factors are recognized: primary,

secondary, and tertiary folding. For the purposes of this study, we

do not specifically attempt to differentially isolate these scale fac-

tors; indeed, here we simply consider a macro scale encompassing

the whole brain, and a micro scale that attempts to consider only

the gyral folding (be it either primary, secondary, or tertiary).

Moreover, given the resolution of our input data, there is an in-

herent uncertainty in determining exactly how ‘‘flat’’ the smooth

parts of the sulcal banks indeed are. We would ideally like to

restrict of our curvature analysis to parts of the surface we confi-

dently feel are within our measurement abilities at the scale of gyral

and sulcal folding.

A ‘‘flat’’ surface has an intrinsic Gaussian of zero. Logically, we

are interested therefore in regions where the intrinsic Gaussian is

nonzero. These regions represent areas where the cortex is folding

due to the stretching or compression on an underlying surface.

However, because of the practicalities of our input measurement re-

solution, all of the surface has potentially nonzero Gaussian curva-

ture. In fact, we are unable to resolve with certainty if small Gaus-

sian curvatures are in fact zero or simply curving at a large brain-

macro scale. A more reasonable question then becomes one of

thresholding. Below what threshold can we assert that the values

are too small to conceivably contribute to Gaussian folding at the

gyral/sulcal scale?

Consider the Gaussian curvature at a single point on the cortical

surface. A surface curving through this point has an intrinsically

maximal curvature for the case of a perfect sphere, i.e., k1 ¼ k2 ¼ 1
r

where r is the sphere’s radius. If we imagine such a sphere touching

the surface at this point, the area of the spherical cap over the face

of one voxel approaches a circle inscribed in the voxel as r
increases. In addition, with increasing r the length of an arc across

this spherical cap approaches the length of the actual voxel itself.

The arc-length, l is defined as

l ¼ ur ð12Þ

where y is a radian angle, and r is the radius length. Using the arc-
tan function, we can express Eq (12) as

l ¼ arctan
v

r

� �
r ð13Þ

where v is a voxel length. Since our curvature space has been nor-

malized to 1 mm in plane, v5 1 mm, we can easily solve iteratively

for r. When r 5 2.5 mm, the curvature is 0.4000 mm21 and the arc-

length is 0.9513 mm; when r 5 5.0 mm the curvature is 0.2000

mm21 and the arc-length is 0.9870 mm.

This arc is traced across a spherical cap. For a given r, the area

of this spherical cap patch S becomes

A ¼
I
S

dA

¼ 2pr2 1� cos
1

2
arctan

1

r

� �� 	
ð14Þ

As r?1 the surface area of this spherical cap bounded by a single

1 mm2 voxel face will tend to that of a circle inscribed exactly

within the voxel face

lim
r!1A ¼ p

4

ffi 0:7854
ð15Þ

We can use Eqs. (13) and (14) as thresholds on the Gaussian curva-

tures, bounded by r, and generate a table of bending energy values

where we only consider parts of the cortical surface that are

‘‘bending’’ because of folding at our r scale. For values of the sur-

face where K > 1/r2, the thresholded mean bending energy for the

surface is calculated by approximating Eq. (7) as

EbðrÞm ¼ 1

N

XS
i¼1

ðVi : k1 � Vi : k2Þ2Vi : A 8Vi : K >
1

r2
ð16Þ

where the function iterates over the entire surface S and only evalu-

ates vertices Vi where the K at that vertex exceeds the threshold 1/

r2. The total summation is divided by the number of vertices N that

satisfied the threshold condition. In a similar manner, we created a

thresholded area normalized function

EbðrÞn ¼
PS

i¼1 ðVi : k1 � Vi : k2Þ2Vi : APS
i¼1 Vi : A

8Vi : K >
1

r2
ð17Þ

which is essentially Eq. (16) divided by the area that satisfied the

threshold condition. Following the discussion in section III.I, a fur-

ther boundary on the curvature values should be set at curvatures

less than 1.5 mm22

I. Pipeline Output Summary. Table I presents a summary of the

relevant pipeline outputs. For the most part, curvature measures and

functions have been defined in the literature. Novel contributions

from this article are the ‘‘sharpness’’ function, S, the vertex- and

area-normalized and thresholded bending energy and the histo-

gram-centroid classifier. Note that expressions similar to the GWI

and WMF of this article have been reported in the literature but

have been evaluated on reconstructed surfaces. In this curvature
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pipeline, we apply them to segmented volume data, i.e., not on a

reconstructed surface, affording us the ability to quantify some

‘‘folding’’ parameters without a time-consuming surface

reconstruction.

J. Intersubject Analysis and Normalization. As mentioned

in section II.E, subjects’ initial volumetric data is internally

resampled by FreeSurfer to a 1 mm3 isotropic space. In this manner,

our data collection space is normalized across the varying in-plane

and slice thickness resolutions in which the subjects were scanned.

The reconstructed gray white surfaces are therefore dimensionally

faithful representations of the subjects’ actual brain surface.y

The stated goal of this article is an analysis of the curvature

properties of the developing human gray white surface. An obvious

question regarding gross geometric scaling effects arises, simply:

how can one differentiate between changes in curvature due to scale
vs. changes due to folding? This problem is exemplified by Figure 4

where a histogram of the Gaussian curvature of two spheres is

shown. These spheres differ only in radius such that r1 > r2. The
Gaussian curvature of a sphere of radius r is by definition 1/r2,
implying that the two shapes in fact have their respective histogram

x-axis position dependent on their size. Therefore, if we scale all

brains so that they are the same volume, not only will we change

the curvature but also we will change the intrinsic Gaussian which

indicates that the shape is fundamentally different. These funda-

mental shape changes reflect the fact that these two spheres are

not biologically equivalent as properties such as the surface area to

volume also change.

In fact, in the developing brain, we have observed that cortical

volume grows at a more rapid rate than white matter volume as the

cortex folds. During this time, overall brain volume also increases

(Nishida et al., 2006). Therefore, in human brain development fold-

ing and volume increases are intimately related, and it is not clear

that these processes can be separated.

On the basis of this reasoning, we do not make an attempt to

normalize the reconstructed shapes from a scale perspective, and

remind the reader that the results we present combine effects of cur-

vature changes due to both growth and folding. Our underlying

Table I. Summary of the pipeline outputs.

Curvature (folding) Measure Expression (units) Reference Expression Data Source Expression Type

Gyrification-White Index GWI ¼ Agw

Agc
[1] Segmented volume Scalar

White matter folding WMF ¼ Agw=V
2=3
w

[2] Segmented volume Scalar

Maximum principle curvature k1 (mm21) [3] Reconstructed surface Vector field

Minimum principle curvature k2 (mm21) [3] Reconstructed surface Vector field

Mean curvature H ¼ 1
2
k1 þ k2ð Þ mm�1ð Þ [3] Reconstructed surface Vector field

Curvedness C ¼
ffiffiffiffiffiffiffiffiffi
k2
1
þk2

2

2

q
mm�1ð Þ [4] Reconstructed surface Vector field

Sharpness S ¼ k1 � k2ð Þ2 mm�2ð Þ CP Reconstructed surface Vector field

Gaussian K 5 k1k2 (mm21) [3] Reconstructed surface Vector field

Bending energy Eb ¼
R
A k21 þ k22
� �

dA [5] Reconstructed surface Scalar

Vertex-normalized bending energy EbðrÞm ¼
PS

i¼1
Vi :k1�Vi :k2ð Þ2Vi :A

N 8Vi : K > 1
r2

CP Reconstructed surface Thresholded scalar

Area-normalized bending energy EbðrÞn ¼
PS

i¼1
Vi :k1�Vi :k2ð Þ2Vi :APS

i¼1
Vi :A

8Vi : K > 1
r2

CP Reconstructed surface Thresholded scalar

Histogram-centroid fn ¼ b
R fh

nxi;
n yi

� � 8fn < 0 pxi;
p yi

� �8fn � 0 CP Reconstructed surface 2D planar intersect

The ‘‘Expression’’ column defines curvature measures. The ‘‘Reference’’ column provides literature references: [1] ‘‘IGAR’’ Rodriguez-Carranza et al. (2006); [2] ‘‘Convexity Ra-
tio’’ Batchelor et al. (2002); [3] do Carmo (1976); [4] Koenderink and van Doorn (1992); [5] Rieger et al. (2004); or CP to indicate a new contribution from the Curvature Pipeline.
The ‘‘Expression Data Source’’ denotes if the measure is derived from the segmented volume data, or from the reconstructed surface. The ‘‘Expression Type’’ indicates if the expres-
sion is evaluated as a spatial vector field, i.e. at each vertex, or if it is a single scalar value computed over the entire surface. Agc5 area of the cortical exterior; Agw5 area of the
gray/white interface. The ‘‘:’’ operator in the Vi : X expressions for Eb implies ‘‘containing’’, i.e. tessellated vertex Vi ‘‘containing’’ the curvature value ‘X’.

Figure 4. Effect of scaling on histograms. A histogram of K curva-

ture for two spheres such that r1 > r2 is shown. Although the shapes

are folded identically, the x-axis position of their histograms differs.
[Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]

yOf course, the reconstructed surface is faithful given the bounding constraints of
the data collection, the segmentation, and the reconstruction. Each process is distorted
by its own noise processes and error conditions.
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rationale is simply to measure the curvature of reconstructed surfa-

ces with as little postprocessing distortion as possible. Since we are

not in this study interested in curvature changes for specific brain

regions, we also do not need to coregister any of our subjects, such

a registration process too would result in inevitable distortions of

the surface and hence its curvature/folding properties.

Certainly, we acknowledge that from a pattern analysis/engi-

neering perspective, there is an argument to be made for attempting

to track at least some effects of scaling. Section III.D shows the

result of surface area to volume normalization using the WMF mea-

sure. In addition, we can leverage our knowledge of the reconstruc-

tion process to incorporate surface-specific information in the sur-

face curvatures. Consider that the reconstructed mesh area for a

given vertex is not constant. Moreover, the absolute number of ver-

tex points is also dependent on the absolute surface area; larger sur-

faces will have more mesh points. We refer the interested reader to

Appendix B for more information, as well as results, from an analy-

sis that explicitly attempts to incorporate mesh-local information in

the analysis. We note that the fundamental observations on the

results, viz. a peak in curvature measures at term followed by a

gradual decline remain largely unchanged.

Finally, from a biological perspective, and as a main component

of this article, we believe that growth of the cortex can be geometri-

cally flagged by the Gaussian curvature. Since the Gaussian curva-

ture is invariant under distance preserving changes, it only varies

when the underlying surface stretches or shears, areas that biologi-

cally should correspond to regions of growth. The Gaussian scale

filter of section II.H is our attempt to use the Gaussian curvature at

different scales to flag biologically significant areas and measure

the Willmore Bending Energy at these flagged locations.

III. RESULTS AND DISCUSSION

This section follows the same overall organization as the Methods

section, and in particular, Figure 1. The pertinent results of each

pipeline stage are presented and its input/output data discussed. The

emphasis here is on the overall curvature/folding measures gener-

ated by the pipeline. These outputs are generated by the final stages

of the pipeline and these stages are correspondingly examined in

more detail than the earlier stages. This section concludes with an

overview of measurement and reconstruction noise their effects on

the data, as well as touching on some of the inherent limitations of

the study.

As a more general discussion point, before considering specific

results, we would like to point out that section III.I also considers

our approach to comparative curvature studies across surfaces of

different size/area.

A. Stage 1: Data Collection. This stage collected the original

MRI DICOM volumetric data and converted to internal volumetric

forms, ready for manual segmentation.

B. Stage 2: Manual Segmentation. Manual segmentation pro-

ceeded in a coronal slice-by-slice manner with a trained technolo-

gist tracing closed shapes about the regions of interest, specifically

the cerebral cortex. In this manner, each brain was separated into a

cortical volume, Vg and a noncortical volume Vw. Ancillary struc-

tures such as the skull, cerebellum, and brain stem, were explicitly

not segmented.

C. Stage 3: Contrast Correction. The cortical regions defined

by Stage 2 were colored with contrast values and tagged with tissue

labels for processing by FreeSurfer.

D. Stage 4: Folding Analysis on Volumetric Data. Table II

presents measurements made on the raw MRI data directly. The sur-

face area of a shrink wrap about the ‘‘outer cortex,’’ i.e., the bound-

ary of the cortex and cerebral-spinal fluid without regard for the

intricate folding pattern is presented in the Agc column; the surface

area of the gray/white junction in the Agw column.

These surface areas are calculated in the methods described in

section II.D and compare well with published literature (Makris

et al., 2006; Nishida et al., 2006). The surface area of the gray-white

junction as calculated from the volume data increased rapidly from

30 weeks to term, appeared to stabilize over the first 6 years of life

and then experienced an increase by the time adulthood was

reached.

The Vg and Vw in Table II correspond to the cortical and subcort-

ical volumes respectively. Initially, noncortical tissue comprised a

larger proportion of brain volume than the cortical matter. At �38

weeks CGA these two volumes became equal and for all ages from

38 weeks CGA through adult, cortical volume dominated brain

Table II. Whole brain surface area and volume data determined from the ‘‘raw’’ volumetric scan data.

Subject Agc (10
3 mm2) Agw (103 mm2) Vw (ml) Vg (ml) % Non-cortex % Cortex GWI (L 1 R) WMF (L 1 R)

30.4 26.9 28.5 92.4 43.8 67.8 32.2 1.0606 1.3979

31.1 32.3 33.5 92.4 49.2 65.2 34.8 1.0350 1.6400

34.0 52.0 68.3 126.6 88.1 58.9 41.1 1.3119 2.7094

36.7 60.5 78.7 144.8 118.3 55.1 44.9 1.3012 2.8563

37.5 52.9 107.7 174.8 172.9 50.2 49.8 2.0352 3.4463

38.1 77.4 113.1 149.0 148.0 50.1 49.8 1.4619 4.0256

38.4 60.6 106.6 148.4 142.5 51.1 48.9 1.7577 3.8030

39.7 72.8 117.5 146.3 165.7 46.8 53.2 1.6145 4.2329

40.3 61.0 139.7 149.9 203.4 42.4 57.6 2.2882 4.9514

104 74.8 157.8 238.1 364.5 39.5 60.5 2.1081 4.1076

156 75.0 151.0 256.7 344.5 42.6 57.4 2.0116 3.7392

365 83.5 161.7 268.0 366.0 42.2 57.8 1.9358 3.8897

1734 164.5 312.1 620.0 767.4 44.7 55.3 1.8973 4.2926

1770 134.3 225.1 400.0 650.0 38.1 61.9 1.6768 4.1470

2054 166.4 281.2 631.3 925.8 40.5 59.5 1.6894 3.8212

Agc5 area of the cortical exterior; Agw5 area of the gray/white interface; Vw5 volume of the non-cortical (mostly white matter) interior; Vg5 volume of the cortical (mostly gray
matter) exterior. The percentage of total brain volume that is "white" and "gray" is given in the ‘% non-cortex’ and ‘% cortex’ columns respectively. Finally, the GWI and WMF val-
ues evaluated over the entire brain (left 1 right hemipheres) are given in the last two columns.
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volume. The L 1 R in the Table denotes that the measures pre-

sented are for the left and right hemispheres taken together.

Both the GWI and WMF increased rapidly from 30 weeks GA

to term, as shown in Figure 5. The young children and adults had

lower GWI and WMF than the term neonate. Changes over time

were more marked in WMF than GWI with fewer fluctuations

around the general trend. Again, it is likely that variation in the size

of sulcal CSF caused some fluctuations and apparent lower sensitiv-

ity of GWI for increased folding. The relatively large GWI for sub-

ject 37.5 is probably due to this subject’s sulcal banks being compa-

ratively ‘‘close enough’’ together that the ‘‘shrink wrap’’ surface

hardly penetrates deep into any sulcus, i.e., subject 37.5 happened

to have relatively less sulcal CSF. The neonates with CGA 30.4 and

31.1 have brains with minimal folding and WMF close to one. As

the surface folds more, the surface area increases disproportionately

to volume and values greater than one are obtained, indicating

increasing deviation from a spheroid as surface folding increases.

Given the relatively low number of samples that we were able to

process, the strongest conclusion from Figure 5 is that the GWI and

WMF values peak at term, with postterm decline evident at older

ages. This volumetric analysis was also performed to provide a

quick baseline of possible trends as comparison for analysis on the

reconstructed surfaces. We could have computed GWI and WMF

on surfaces, but specifically used the segmented volumes as a

source of data separate from the surfaces. Should folding/curvature

trends on the surfaces been obviously different to this volume-

derived data, this would have indicated some or other analysis

error.

Also, the WMF shows a somewhat simplistic overview of sur-

face area to volume changes. If the change in surface area was pri-

marily due to scaling factors alone, we would expect a more linear

plot across ages. Here, we clearly note a rise, peak, and drop off

effect indicating that folding effects are in fact dominant.folding.

E. Stage 5: Surface Reconstruction. The reconstructed gray/

white surfaces of the right hemisphere at different ages are shown

in Figure 6. The left image panes present the reconstructed gray/

Figure 5. Folding parameters as derived from the volumetric segmentation. On left, the GWI; on right the WMF. [Color figure can be viewed in

the online issue, which is available at www.interscience.wiley.com.]

Figure 6. The gray/white surface reconstructions of different aged

subjects (not shown to scale). From top to bottom, 31.1 weeks CGA,

term neonate at 39.7 weeks CGA, 7-year-old pediatric brain, adult
brain at 39 years. On left, is the smoothed right hemisphere gray-

white junction surface. On right, the inflated right hemisphere gray-

white junction surface which better illustrates the curvature values
‘‘buried’’ within sulci. The term brain appears more folded than the

adult brain. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]
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white surface, with each vertex shaded with the ‘‘average convex-

ity’’ or ‘‘sulc.’’ Imagine a surface between the gray/white junction

and the outer cortex such that the mean ‘‘height’’ of the surface is

zero. The ‘‘sulc’’ measure colors each vertex with the distance

from this zero-hull surface. Green denotes a ‘‘negative’’ displace-

ment, i.e., a green-colored vertex needs to move ‘‘downwards’’

(i.e., in a negative direction) to reach the zero mean hull; red

denotes a ‘‘positive’’ displacement [similarly a red vertex has

moved ‘‘upwards’’ in a positive direction to reach the zero mean

hull (in grayscale images, ‘‘red’’ is mapped to dark gray, ‘‘green’’

is mapped to light gray)]. Thus, green areas represent gyri and red

areas, sulci. The right pane of the surface reconstruction figures

presents the inflated gray/white surfaces and more easily reveal the

cortical surface that is often ‘‘hidden’’ within folding patterns. The

term brain is clearly more folded than the premature brain and

appears more folded than the adult brain. By visual assessment

alone, differences in the term and 7-year-old brain are more diffi-

cult to detect.

F. Stage 6: Curvature Functional Analysis. Having recon-

structed the gray/white surface topology, various functions of cur-

vature were evaluated at each vertex of the tessellated surface

representation.

The spatial appearance of k1 and k2 are shown in Figure 7 where

values are displayed on the inflated right hemisphere gray/white

surfaces of three sample subjects: our youngest neonate on the left

at 30.4 weeks CGA, a term neonate in the middle panel at 40.3

weeks CGA, and an adult subject on the right at 39.9 years. For the

purposes of illustration, the k2 curvatures have been contrast-

enhanced to better display their spatial properties.

By definition, k1 is always larger than k2. We observe that brain

folding tends to be ‘‘cylindrical’’ in as much as the pattern of fold-

ing manifests as a pattern of ridges and valleys. Although these

ridges and valleys are of very varied orientation, they are essentially

cylinders. We can therefore state that k1 will approximately

describe the curvature of the gyral/sulcal ‘‘banks’’ that are in gen-

eral perpendicular to the gyral/sulcal long axis. The positive k1

values represent inward curvatures of sulci, and negative k1 values
represent outward curvatures of the gyral crests.

The k1 and k2 maps in Figure 7 also reveal some qualitative fre-

quency information. The k1 map clearly has a spatial frequency

component that is directly related to the actual folding for sulci and

gyri. The k2 map might at first glance appear mostly noisy, but

when we consider that curvatures are inverse radii of osculating

circles, we determine that the small amplitude k2 signal implies

some very large inverse radii (osculating circles with typically

larger than 10 mm and much larger than attributed to noise). More-

over, close examination of the k2 projection shows that while the

signal is uniformly low amplitude, it has a much higher frequency

than the k1 signal. Note that the curvature map is well balanced in

local regions with areas of negative curvature bordered by areas of

positive curvature, resulting in a regular pattern of outward and

inward undulation that runs along the major axis of gyri and sulci.

The cause and significance of this pattern is unclear, but it remains

remarkably regular (equally balanced positive and negative) and

similar in spatial extent. Future studies of abnormal vs. normal pop-

ulations will help determine its significance and sensitivity to dis-

ease processes. A spatial harmonic analysis of the k1 and k2 func-

tions would yield interesting insights into the frequency compo-

nents of these signals.

The mean curvature—H shown in the top part of Figure 8—is

the average of k1 and k2. In this Figure, the left most panel shows H
as a function of spatial position for the 30.4-week CGA neonate;

the middle panel for the term 40.3 week CGA; and the right panel

for the 39-year-old adult subject. The mean curvature is an extrinsic

measure and because k1 is significantly larger than k2, k1 values

dominate the behavior of H. In the general case where k1 � k2, H
will track as one half of k1. Differences in the H and k1 function dis-
tributions will be apparent where k1 and k2 are similar and nonzero.

Just as H is dominated by the relatively large k1, Gaussian curva-
ture K tends to be dominated by the smaller k2. The Gaussian curva-

ture, however, is a measure intrinsic to the surface, unlike the other

curvatures analyzed by the pipeline—k1, k2, H, C, and S—which

are all extrinsic. The bottom part of Figure 8 shows the K curvature

as a function of spatial position for the 30.4 week CGA neonate on

Figure 7. Projections of principal curvature functions k1 (top) and k2 (bottom) across entire brain surfaces. On left, the youngest neonate at

30.4 weeks CGA. In middle, the term neonate at 40.3 weeks CGA. On right, an adult subject. The complexity of the topological pattern of k1
appears to peak around term and appears to represent the primarily cylindrical folds of the gyri/sulci. In contrast the topological variation of k2 is

at a higher frequency and appears to represent small local ‘‘bumps’’ or ‘‘dimples.’’ [Color figure can be viewed in the online issue, which is avail-

able at www. interscience.wiley.com.]
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left; the term 40.3 week CGA in the middle; and the 39 year old

adult subject in the right panel.

At birth, K is close to 0 everywhere, and the overall brain topol-

ogy is similar to a cylinder, which is an intrinsically flat surface. By

30 weeks CGA, major sulcal and gyral groups have started to

change the extrinsic geometry, but an examination of the Gaussian

shows that for the most part, intrinsically, the brain surface is still

largely flat. The small positive and negative undulations indicate

that for the most part the 30 week brain can be unfolded into a flat

sheet with very few wrinkles. As the brain develops more gyri,

small regions of higher K with alternating positive and negative val-

ues develop primarily along the gyral crests with negative values

dominating.

As shown in Figure 8, the overwhelming majority of gray/white

surface Gaussian curvature values were close to zero across all the

brain surfaces. This had the surprising implication that from neo-

nate, through the pediatric subjects, and into adulthood, the gray/

white junction surface, though extrinsically highly folded, is for the

most part an intrinsically flat surface. This is an encouraging finding

as this means that it is mathematically valid to flatten the brain for

brain mapping and individual distortions will be minimal. Although

seemingly spheroid in appearance, it is perhaps more accurate to

think of the gray white surface as generally cylindrical; moreover,

the dominant nature of folding on this surface also tends to be cylin-

drical—the gray/white surface can be thought of as largely a cylin-

der that creates cylinder-like folds.

Figure 9 presents the curvedness C and sharpness of folding S
for three sample subjects: the 30.4-week CGA neonate on the left;

the 40.3-week CGA term subject in the middle, and the 39-year-old

adult on right. Structurally, C relates to the square-root of S which

has the general effect that C is a smoothed version of S with

reduced dynamic range. In color images, the C and S appear as a

pattern of red tendrils across the surface; in grayscale these traces

are visible as dark gray.

Curvedness C increases the bias to larger k1 values and increases

the ability to distinguish regions highly folded from those with mini-

mal folding. Similar to mean curvature, curvedness increases in gen-

eral with age until term, dropped across the three children, and then

dropped again across the adults. In general, C is not as ‘‘sharp’’ as

the S function and has a smaller range. It tends to trigger indiscrim-

inately on most curvatures while S triggers more selectively on areas

that are ‘‘sharply’’ folded by maximizing the square difference

between k1 and k2. Note that in the middle panel of older neonates in

Figure 9 we can clearly identify the primary gyral peaks as sharp

reds snaking across the surface. Note also the lighter pattern of

ridges that run either in parallel to the main ridges, or serve as

short cross links between these main ridges. These lighter patterns

contribute measurable additional curvatures to the global curvature

measures, and tend to denote furrows and bumps along sulcal

valleys. Note that these lighter patters are still evident in the pediat-

ric subjects shown, albeit faded, and are mostly absent from the

adult.

Figure 8. Projections of principal cur-
vature functions H (top) and K (bottom)

across entire brain surfaces. On left, the

youngest neonate at 30.4 weeks CGA. In

middle, the term neonate at 40.3 weeks
CGA. On right, an adult subject. [Color

figure can be viewed in the online issue,

which is available at www.interscience.

wiley.com.]

Figure 9. Projections of principal cur-

vature functions C (top) and S (bottom)

across entire brain surfaces. On left, the
youngest neonate at 30.4 weeks CGA. In

middle, the term neonate at 40.3 weeks

CGA. On right, an adult subject. [Color
figure can be viewed in the online issue,

which is available at www.interscience.

wiley.com.]
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Sharpness emphasizes regions where k1 and k2 are maximally

different and therefore where cylindrical folding dominates. Thus,

this parameter is maximal at the crests of gyri and depths of sulci.

The overall profile of the mean ‘‘curvedness’’ function, C, was quite
similar in shape to the ‘‘sharpness’’ function, both in overall shape

and in value. This is somewhat surprising since C is a line function

that is related to the square root of the S surface function. Although

showing a similar overall trend to mean C, the mean S showed more

noise. In fact, for S the deviation sharply tracked than the mean,

while for C, the deviation was mostly stable and much less than the

mean. This indicates that C is a more stable and less varying func-

tion. Nonetheless, S holds considerable appeal in that by highlight-

ing areas of high cylindrical folding, we can detect folds as soon as

they develop and conceivably track how they spread across the sur-

face. In this manner, S can provide a simple measure to exploring

the regional development of folding. A visual inspection of the S
function maps seemed to suggest that folding occurred medially and

from there spread anteriorly and posteriorly. A complete representa-

tion of S and C across all the subjects is shown in Appendix C.

A simple statistical analysis of the curvature functions we eval-

uated (k1, k2, H, C, S, and K) over the right hemispheres is shown in

Figure 10. Each graph has line plot graphs for the mean of the cur-

vature function over the entire hemisphere, ‘‘mean(x)’’; the mean of

the absolute curvatures ‘‘mean(|x|)’’; the standard deviation of the

curvatures ‘‘r(x)’’; and then the mean and deviation for only the

negative ‘‘mean(2x), r(2x)’’ and for only the positive ‘‘mean(1x),
r(1x)’’ curvatures. In the case of the C and S which are by defini-

tion positive, only the mean and standard deviation are provided.

Taken together, they provide an overview of how curvature values

in general develop across increasing subject ages and show that all

curvature functions peak around term.

In Figure 10, we note that all the curvature functions showed in

general a trend in which specific positive and negative curvature

measures increased with the age of the neonate subjects, and peaked

absolutely at term (39–40 weeks CGA). Postterm, a gradual decline

across the children and then through the adult subjects was

observed. Note also that this trend is only apparent when separating

each curvature measure into positive and negative components. The

overall curvature maps, indicated by the ‘‘mean(x)’’ in the plots,

showed little change (although the deviation r(x) of the overall

curvature maps did peak at term).

While the results presented here report primarily on the right

hemisphere, no significant deviations in overall trends and observa-

tions with the left hemisphere were found. The small data set used

here is to show that these measures can be performed and to iden-

tify overall trends. With larger data sets hemispheric and gender

differences are expected to emerge. In the wavelet analysis of Yu

et al. (2007), differential growth between the left and right hemi-

sphere was predicted by the fitted Gompertz model, but this was an

extrapolated prediction occurring at a younger age than our young-

est neonate in this study.

In particular, for the H, k1, and k2 curvature plots (right panel,

first row; both panels second row), the standard deviation of the cur-

vature values was higher than any of the mean curvatures. Given

that in the case of H and k1 the overall mean was negative; this sug-

gests that there was more variation in the curvatures of outward

bulges than inward indentations and that extrinsically the gray/

white surface had a majority outward ‘‘cylindrical’’ folding profile.

For the k2mean, however, which was mostly positive across the sub-

jects, we can speculate that smaller ‘‘spherical’’ folds dimpled

inwards in the surfaces.

Consider now the k1 and k2 plots of Figure 10. The mean posi-

tive curvatures and mean negative curvatures (as well as their re-

spective deviations), we see that all four trajectories peak close to

term (between 38 and 40 weeks CGA). This has the surprising

implication that the neonate brain at term has mean positive 1k1
and mean negative 2k1 curvature values that are in general higher

than the adult. This can be geometrically interpreted as deeper sul-

cal troughs and higher gyral peaks at term than adulthood—the neo-

nate is more sharply folded than the adult.

The average k1 (combining both positive and negative) stays

generally constant and slightly negative, but does have measurably

higher deviation at term than the child and adult subjects. The aver-

age k1 is also slightly negative indicating that the gyral crests are

more sharply curved (folded) and/or cover a larger area than sulcal

depths. However, since the mean k1 curvature remains mostly nega-

tive, we can deduce that for the term neonates the gyri, though con-

tributing less actual folding values, contribute much higher negative

curvatures than their sulci. Absolute values of k1 increase until term
with magnitude of the mean 2k1 always larger than the mean 1k1.
This indicates that gyri and sulci become more folded until term

with the degree of folding or surface area larger on the gyral crests

than the sulcal depths. There is less change in the sulcal curvature

(1k1 values) from term onwards. The gyral curvature (2k1) was
much smaller in the adults compared to the term neonates and chil-

dren. The standard deviation of negative 2k1 values is always

greater than 1k1 values from term onwards suggesting more vari-

ability in the curvature of gyral crests than sulci.

In contrast, consider k2 which is always smaller than k1 and can

therefore be thought of as describing the curvature of the less domi-

nant folding. This ‘‘smaller’’ curvature/folding will tend to run op-

posite to the k1 direction. Since the k1 direction runs down gyral

crests and up sulcal troughs, k2 will general describe curvatures that
run along the long axis of gyri/sulci. Note in Figure 10 that there is

a close balance of negative and positive k2 values while the mean

absolute value increased to term and decreased with age thereafter.

This indicates that the undulations running along gyral crests and

sulci are balanced positive and negative and are maximal in magni-

tude of curvature at around term. The balance of positive and nega-

tive k2 values can be seen in the plots of centroid movements

derived from histograms of positive and negative k2 values.

G. Stage 7: Histogram-Centroid Classifier. Consider now

the curvature measures and the manner in which they change across

different subjects. One simple technique of representing the curva-

ture distribution across a surface is with a histogram analysis of cur-

vatures values, as in Figure 11. The 30.4 week CGA is shown on

the left, with its k1 histogram at top, and its k2 histogram at bottom.

The x-axis of the histogram shows actual curvature values, and the

y-axis indicates the (normalized) occurrences of these values. In

this manner, the histogram illustrates a curvature distribution map

of either k1 or k2 for a single subject. For the purposes of this article,
we performed a global histogram analysis on the entire recon-

structed surface that was not biased to any specific brain region.

Of the studied curvature functions, the k1 curvature showed the

most marked and noticeable evolution across subjects. In terms of

shape, it comprised two peaks, one negative, one positive. The

notch near zero can be understood since k1 curvatures are almost by

definition rarely zero (unless the surface is completely flat at that

point). For the youngest subject, the negative peak was higher than

the positive; however, with increasing age, this discrepancy van-

ished, until post 34 weeks the positive peak was larger, with an
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increasing trend until term. Post term and through the child sub-

jects, the positive peak eroded again slightly with a similar, but

decreased positive gain in the adult subjects. The k1 histograms

show a shift from primarily negative to positive with increasing

age. This implies that the premature brain is primarily an outward

curving surface whereas in the term and post term brains the sulcal

area increases, shifting the bulk of curvatures to the positive. The k2
histogram appears to show little change in distribution.

Figure 10. Statistical plots of the main curvature functions across right hemisphere of subjects (subject age is shown above the legend in
each plot). Within each plot are several trajectories denoting the mean and deviation of curvature values. These values are taken across the

entire reconstructed surface and denoted x. For each x � 0 positive values only are denoted by 1x; and the x < 0 negative values only by 2x.

[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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One simple and intuitive way to analyze these curvature histo-

grams and extract descriptive features is by performing a

‘‘centroid’’ analysis as described in section II.G. For a curvature

function, the positive and negative values are processed separately,

providing two centroids. This set of ordered pairs for a given curva-

ture function across all the subjects can be plotted, showing a trajec-

tory that is implicitly time evolved (each successive point is the

centroid of an increasingly older subject), as shown in Figure 12 for

the right hemisphere and Figure 13 for the left hemisphere. The left

and right halves of each plot correspond to the centroids of the

Figure 11. Normalized histogram plots of k1 (top) and k2 (bottom) curvatures across entire brain surfaces. On left, the youngest neonate at

30.4 weeks CGA. In middle, the term neonate at 40.3 weeks CGA. On right, an adult subject. The x-axis of each plot shows curvature values,

and the y-axis the occurrences of these curvature values across the entire brain of a particular subject. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

Figure 12. Centroid analysis derived from the normalized histograms of all the subjects’ k1 (on left) and k2 (on right) curvatures. The negative

and positive halves of each principle curve are considered separately on the left and right halves of each plot. Each point in the plot corresponds

to a specific subject, labeled as shown. The neonates are represented by the circles, the children by the squares, and the adults by the triangles.

The x-axis represents the centroid of an entire k1 distribution for a subject (on left) and an entire k2 distribution (on right). The y-axis represents
the centroid of the number of occurrences of each k1 value (on left) and k2 value (on right). [Color figure can be viewed in the online issue, which

is available at www.interscience.wiley.com.]
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negative and positive curvatures. Neonates are represented by

circles, the children by squares, and the adults by triangles. Note

how the different groups of subjects cluster together, particularly on

the positive k1 centroid side. Also note that the temporal evolution

of both positive and negative centroids for k1 and k2 tends to show

increasing curvature (x value) with fewer points with the same cur-

vature (y-axis) to term. After term, curvature tends to decrease

again with more points on the surface having the same curvature.

The centroid plots show the same general evolution: the young-

est subjects are higher and closer to the plot center (the x zero cent-

roid), and with increasing age progress ‘‘downwards’’ and ‘‘out-

wards.’’ This motion can be intuitively understood geometrically:

initially the curvature values are small (i.e., close to the x zero cent-

roid), and most of the curvatures are of this nature (i.e., relatively

high on the y centroid axis). With time, however, progressively

more and more higher valued curvatures are added to the surface.

The preponderance of these higher valued curvatures tend to pull

the centroid ‘‘outwards’’ (i.e., away from the low curvature values

close to the x zero centroid), and ‘‘downwards’’ (higher valued cur-

vatures add to the ‘‘wings’’ of the histogram plots). The longer the

wings, the more the centroid moves ‘‘down.’’

Despite the low sampling resolution, we can make several im-

portant observations. If we disregard the two youngest neonates, we

can readily discern three spatially separate groups of clusters: the

neonates from 34 weeks to term, the pediatric cases, and the adults.

This is interesting since there is no age axis in the plot; nonetheless,

the three major age groups cluster together spatially. It is interesting

to speculate where subjects with pathological cortical development

might cluster in such an analysis.

Note that we are not proposing that the histogram-centroid

approach is a primary classifier designed to discriminate between

different subjects’ curvature based on age. Rather, we make the spe-

cific observation that the histogram-centroid shows some interesting

properties that cluster certain age-based subjects together. Future

work will explore the utility of using histogram-centroids as feature

vectors, in particular between normal and abnormal populations of

the same age.

Regarding the neonates specifically, the two youngest subjects

in both the k1 and k2 plots are spatially noticeably removed from

the post 34 week CGA subjects. This would indicate that as a group

the youngest neonates prior to 34 weeks are topologically quite dif-

ferent from the post 34 week subjects, and that by extension most

folding occurs prior to 34 weeks. Furthermore, the bulk of k1 curva-
tures across the older neonates are positive (sulcal folding), while

the adults have most of their k1 curvatures negative (gyral folding).

H. Stage 8: Scale Factor Filtering and Analysis. The final

pipeline component is a Gaussian-curvature-based variable-radius

filter. As we discussed in section II.H, we believe that separating

the contribution to curvature from scaling and folding in a biologi-
cally significant manner is quite complex. We propose, therefore, to

use the Gaussian curvature K as a filter to flag parts of the surface

that are biologically interesting. These are areas where the surface

has sheared/stretched, and thus have intrinsic curvature changes

that K is ideally suited to measure. Such areas denote, we believe,

regions where the surface starts to fold and deviate away from an

essentially flat hull to form gyri and sulci.

Biologically, the overall shape of the brain curves at a consider-

ably larger radius than the curvature of gyri and sulci. In fact, the

radius of curvature for sulci and gyri across all ages is only really

interesting for radii smaller than about 10 mm. As folding develops,

folds start with small radii that increase with growth and additional

folding. Thus, for a given radius, we wish to flag all areas that might

show shearing at that radius and lower. Since K is proportional to

the inverse squared radius, for a given radius of interest, we use K
5 1/r2 as a lower threshold and flag all K > 1/r2. Conceptually, we
propose to parameterize K with r in a manner analogous to the t pa-
rameter of scale-space representation. In scale-space, smaller and

smaller values of t allow more and more of the original image to be

represented; similarly smaller values of K allow more of the recon-

structed surface to be flagged.

By using the K curvature map for a given surface, we performed

a scale-factor filtering operation on the bending energy calculated

across each subject’s gray/white surface. The thresholded bending

Figure 13. Left hemisphere centroid analysis derived from the normalized histograms of all the subjects’ k1 (on left) and k2 (on right) curvatures.

The negative and positive halves of each principle curve are considered separately on the left and right halves of each plot. Each point in the plot

corresponds to a specific subject, labeled as shown. The neonates are represented by the circles, the children by the squares, and the adults by
the triangles. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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energy per unit surface area for the right hemisphere is presented in

Table III. The table elements present for a given subject and a given

threshold 1/r2 the bending energy across unit surfaces such that 1/r2

< K � 1.5.{ This is a first-order attempt to localize the bending

energy function such that we operate at the scale of the gyri and

sulci, and not the entire surface. In parentheses after the energy

value is the percentage of surface area that satisfied the threshold.

As the threshold radius is increased, more of the surface contributes

to the energy value; when the threshold is removed, however, the

entire surface is considered. Since large tracks of the surface along

sulcal banks curve only very slightly, including these regions will

tend to decrease the overall normalized energy.

The first four rows present information pertaining to the surface

area of a spherical cap and arc length across a single 1 3 1 mm

voxel face for different radii of osculating spheres. The radius of

curvature is given the first row as r, while the actual thresholds for

the absolute Gaussian curvatures are defined by 1/r2 (second row).

The length of an arc across a voxel face is given by l (third row)

and the surface area of the spherical cap as a percentage of the ideal

circle inscribed in the voxel face is given by 4A/p (fourth row). The

arc length, l is defined by Eq. (13), and the surface area of the appli-

cable spherical cap A by Eq. (14). The table shows A divided by the

ideal circle area in a voxel face, p/4. This fraction indicates how

close to the hypothetical ideal ‘‘flat’’ surface area we are for

increasing r. As the sphere increases in size, its cap across a single

voxel becomes increasingly flat while the cap arc length, l
approaches 1.00 mm, and the surface area fraction 4A/p approaches

unity.

Plots of the mean and area normalized bending energies, as well

as percentage vertices and percentage area at each threshold level

are shown in Figure 14.

We expect that curvature radii on the scale of between 3 to 9

mm would capture primarily the curvatures of the folds for all our

subjects, while ignoring the underlying curvature of the baseline

brain shape, as well the smooth gyral/sulcal banks. In the table, the

bending energy function taken across the entire surface is given in

the final column, along with the percentage of the surface area that

was evaluated. Note that there was an implicit low pass filtering K
� 1.5 mm22 on each table to clean away any Gaussian curvatures

that are unstable and due to reconstruction noise—these curvatures

typically occur at a subvoxel radius and have very high values,

appearing as high valued spiked outliers in a histogram analysis.

The un-thresholded bending energy (the lowest plot in the left

panel of Figure 14) showed a well established trend, viz. that the

values peak around term and decline post term. Also, since the un-

thresholded surface has proportionately large tracts of surface area

with low K curvatures, the final normalized bending energy value

for the un-thresholded surface will be lower than the energy calcu-

lated across thresholded surfaces. In fact, we note as expected that

as our threshold admits more and more of the surface, the bending

energy declines due to the increasing lower valued K contribution.

The percentage of surface area contributing to the energy func-

tion at each threshold level is shown on the right panel of Figure

14. As the threshold radius is increased, the percentage surface con-

tribution increased. Note that across the thresholds considered

where r 5 {3,4,5,6,7} mm, the term neonate again had the most

normalized surface area contributing to the bending energy

function.

Finally, consider Figure 15, which illustrates for all the subjects

the energy contribution normalized over the contributing area. This

relation is described by

EÂ ¼ EbðrÞ
AðrÞ ð18Þ

where Eb(r) corresponds to the left panel of Figure 14 and A(r) the
right panel. This relation gives an indication of how much relative

bending energy is contributed by the parts of the thresholded sur-

face that are folding. In Figure 15, note that for the relatively small

amount of normalized surface that is bending, a disproportionately

high bending energy is contributed by the folding of the young neo-

nates pre 36 weeks CGA, possibly reflecting the high energy

required to start and expand the cortical folding process. In fact, the

Table III. The unit-area bending energy of each reconstructed surface is thresholded by curvature radius r (shown along the top row).

r (mm) 4.00 5.00 6.00 7.00 1
1/r2 (mm22) 0.06 0.04 0.03 0.02

l (mm) 0.98 0.99 0.99 0.99 1.00

4A/p 0.96 0.97 0.98 0.99 1.00

30.4 2.84 (03.26%) 1.87 (05.94%) 1.38 (09.11%) 1.07 (12.77%) 0.21 (99.96%)

31.1 2.62 (02.80%) 1.75 (05.40%) 1.28 (08.90%) 0.99 (13.14%) 0.23 (99.98%)

34.0 3.49 (04.72%) 2.36 (09.18%) 1.76 (14.94%) 1.42 (21.35%) 0.49 (99.97%)

36.7 1.87 (18.75%) 1.43 (28.74%) 1.18 (38.28%) 1.03 (46.82%) 0.58 (99.79%)

37.5 1.90 (18.61%) 1.41 (29.13%) 1.16 (38.84%) 1.01 (47.12%) 0.57 (99.77%)

38.1 2.67 (16.87%) 2.03 (26.52%) 1.67 (35.63%) 1.46 (43.76%) 0.79 (99.85%)

38.4 2.68 (19.14%) 2.06 (29.52%) 1.72 (38.83%) 1.51 (47.10%) 0.86 (99.84%)

39.7 2.89 (19.51%) 2.22 (29.64%) 1.85 (38.93%) 1.63 (47.04%) 0.91 (99.79%)

40.3 2.48 (23.22%) 1.93 (33.67%) 1.62 (43.10%) 1.43 (51.13%) 0.84 (99.67%)

104.0 1.93 (18.76%) 1.46 (27.34%) 1.19 (35.44%) 1.03 (42.94%) 0.50 (99.51%)

156.0 1.96 (18.02%) 1.47 (26.88%) 1.19 (35.45%) 1.02 (43.29%) 0.51 (99.63%)

365.0 1.73 (18.16%) 1.30 (27.20%) 1.07 (35.76%) 0.92 (43.57%) 0.47 (99.68%)

1734.0 0.97 (11.87%) 0.70 (19.47%) 0.56 (27.26%) 0.47 (34.62%) 0.21 (99.86%)

1770.0 1.15 (12.71%) 0.83 (20.25%) 0.66 (28.20%) 0.55 (35.67%) 0.24 (99.82%)

2054.0 0.77 (12.35%) 0.58 (19.81%) 0.47 (27.43%) 0.40 (34.75%) 0.18 (99.88%)

The table itself presents, for each subject’s right hemisphere and for each 1/r2 threshold, the percentage area on the gray/white surface such that 1/r2 < K � 1.5 and the area
normalized bending energy for these vertices. The final column is the area normalized bending energy over the enter surface where K � 1.5.

{The 1.5 upper cutoff is discussed in Section III.I.
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r 5 3 mm threshold, which filters the sharpest folding parts of the

surface, contributes a notably high energy.

I. Limitations. With any methodological study that also reports

on some of the findings resulting from such a method, it is impor-

tant to understand any limitations—be they with the technique

itself, or with the underlying data itself that is processed. As far as

this particular article is concerned, possible limitations can be

grouped into three general categories, viz.: number of subjects and

statistical power; measurement noise and its effects; reconstruction

noise and its effects. Note that the noise effects discussed here are

concerned with simple geometry effects and not with physical scan-

ner parameter and image sequencing parameters, i.e., we do not

consider image acquisition signal-to-noise and contrast-to-noise

effects, magnetic field distortions etc. For the most part, we assume

that the resultant noise is manifest in geometric ambiguities result-

ing from resolution and segmentation effects.

On first consideration, the actual number of subjects processed

appears problematic. Nine neonate cases, three pediatric, and three

adults is from a purely statistical perspective not very meaningful.

Given this limitation, our emphasis here is not on the particulars of

any one subject at a specific age; rather we are interested in any

generally measurable trends across all our subjects. Viewed from

this vantage point, we are reporting on 15 subjects. Moreover, we

have clustered our neonates so that they span a period of known

marked folding changes. Given the expected wide changes and

deviation in curvature and folding across the 30- to 40-week period,

statistical analyses might themselves be problematic by definition

(consider that registering subjects—the first step for a statistically

meaningful longitudinal study—with such marked deviations in

folding is in itself a nontrivial problem, and can in fact introduce

such distortions as to damage the data itself). Note also that particu-

lar attention was paid to the segmentation of the neonates—all were

manually segmented using well documented techniques. Nonethe-

less, we simply do not have the number of subjects to fully explore

gender differences and hemispherical asymmetries.

To provide at least some meaningful results, we carefully chose

to test our methodology with subjects that we know a priori to have

significant folding differences, and broadly used representatives

from three samples: neonates, children, and adults. Also, to address

the lack of subject numbers, we chose to use a well documented

and rigorous manual segmentation process. In this manner, we

hoped to address at least part of the lack of statistical power: viz

high accuracy using low sample points. Current state of the art

Figure 15. The energy contribution at different threshold levels nor-

malized to the surface of the right hemisphere. For each threshold,

starting with the blue r 5 3 mm and extending to the un-thresholded
r 51, the normalized bending energy across the thresholded surface

area for each subject is shown. [Color figure can be viewed in the

online issue, which is available at www. interscience.wiley.com.]

Figure 14. Plots of the right hemisphere bending energy profiles at different thresholds. On the left, the per unit area bending energy across all
the subjects at different thresholds. As the threshold is increased, increased surface with lower curvature is considered. This tends to decrease

the normalized bending energy and successive threshold’s plots are ‘‘lower.’’ On the right, the corresponding percentage of the surface that was

considered at each threshold. Here successive threshold’s plots are ‘‘higher’’ as more of the surface contributes. [Color figure can be viewed in

the online issue, which is available at www.interscience.wiley.com.]
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automatic segmentation algorithms are still inferior to expertly

manually segmented surfaces. With automatic processing, large

data sets need to be batch processed to increase overall accuracy.

We achieve high accuracy without needing many samples. Of

course, this does not address the problem of how representative

each specific subject is of a given age class, particularly in the case

of the neonates. Nonetheless, given the lack of available neonate

data in the field, we reasoned that our preliminary results, though

lacking in number, might be useful.

Our primary purpose with this work, as mentioned in the intro-

duction, is the presentation of a methodology for analyzing cortical

folding from a curvature analysis approach. We are not presenting a

detailed analysis of the approach on a large dataset. Nonetheless, as

a validation for the method, we carefully selected a sample popula-

tion spanning a wide range of folding patterns. If our analysis can

present trends and identify a dispersion on such a small data set, it

does suggest our approach holds some merit; moreover, it also

suggests that with more data points our approach should reveal

additional insights.

Of course, we would not assert that careful selection of subjects

or preparation of data addresses all concerns. Measurement noise

on the original MRI data, and consequently on the manually seg-

mented slices must also be understood and bounded. The most

obvious case of such noise would be single voxel errors on tissue

boundaries—a single voxel white matter being segmented as gray,

for example. We can visualize such an error as a cubic ‘‘bump’’ on

a smooth plane, which would result in a ‘‘brimless hat’’ or protrud-

ing dimple in a straightforward surface reconstruction. In the sim-

plest sense, this ‘‘hat’’ would have curvature on its sides, leading

to a sharply curved hemispherical apex. This apex marks the

highest curvature for this segmentation noise, and would be

described by an osculating sphere with radius of one-half voxel di-

agonal, i.e., 1
2

ffiffiffi
2

p
voxel. Because curvature is the inverse of this ra-

dius, in a 1 3 1 mm isotropic space, this would be a curvature of
2ffiffi
2

p ¼ ffiffiffi
2

p
mm�1 ’ 1:5mm�1. Note that our in-plane scanning reso-

lution was often slightly less than 1 3 1 mm, so this ‘‘curvature

noise’’ figure of 1.5 mm21 is in fact conservative—the actual curva-

ture noise resulting from single voxel misclassification should in

fact need to be up-scaled and is greater than 1.5 mm21.

Aside from possible measurement noise, we also need to con-

sider reconstruction noise. During FreeSurfer reconstruction, some

manual topological fixing is required. These errors can result from

surface inconsistencies between a series a slices in an anatomical

plane. Even when a topology has been ‘‘fixed,’’ localized areas of

extremely high curvature (akin to rose ‘‘thorns’’ jutting from the

surface) might result. Since the surfaces stem from an underlying

tessellated mesh with typically more than 120,000 vertices, the

apparent ‘‘resolution’’ of the surface is in practice much higher than

the resolution of the original image. So too, the resolution of these

‘‘thorns’’ is often being sub-sub voxel resolution. In fact, careful

manual examination of the surfaces to identify any ‘‘thorns’’ shows

that the apparent resolution is an order of magnitude higher than the

data itself, with curvatures easily greater than 10 mm21 (often

higher than 100 mm21), implying radii of curvature much greater

than 0.1 mm. In fact, a radius of 0.1 mm is already 10 times higher

than a 1 3 1 mm sampling resolution, and unrealistic to measure. If

we assume that at a 1 3 1 mm in-plane resolution we can still

unambiguously resolve radii of curvature of 0.5 mm, it would place

a curvature boundary at 1
0:5 ¼ 2 mm�1. Any line curvatures above 2

mm21 should be viewed as increasingly unreliable. Similarly, any

surfaces that have a Gaussian of 1
r2 ¼ 1

0:52
¼ 4mm�2 are probably

too sharp to be justifiably supported by our original data.

IV. CONCLUSION

This article presented a methodology for characterizing human cort-

ical folding based on an analysis of functions of principal curvature.

A technique for extending FreeSurfer to process semiautomatically

segmented brains was presented. An MRI volumetric processing

pipeline was used to validate surface measures obtained from sur-

face reconstructions. This multistage pipeline is inherently based

around FreeSurfer, and offers several extensions that allow for

processing semiautomated segmented volume data (from any age

group), as well as offering a wide variety of curvature functions

derived from reconstructed surfaces. Our initial data analysis on a

small subset of meticulously segmented data suggests that our

measures can detect differences in gyral folding.

Nine neonates (aged 30.4 weeks CGA to 40.3 weeks CGA),

three pediatric subjects (aged 2, 3, and 7 years), and three adults

(aged 33, 37, and 39 years) were imaged, and the resultant MRI

data processed by the curvature pipeline. The initial data analysis

showed that across all our subjects, curvature measures for the most

part peaked at term, and then decreased through subsequent child-

hood, with a gradual decline into adulthood. We believe that the

general behavior of our measures track more than simple changes

that can be attributed to growth/scaling alone, but measure also

some fundamental properties of changes in curvature and hence

folding at the gyral/sulcal scale.

A histogram-centroid analysis showed that the principal curva-

tures of different age populations (neonate, pediatric, and adult) in

fact cluster differently, particularly if the pre-34 week CGA neo-

nates are not considered. By considering the behavior of the nega-

tive and positive components of curvature separately, the centroid

plots demonstrated how curvature measures travel ‘‘downwards’’

and ‘‘outwards’’ (i.e., become more folded with higher curvature)

as neonates approach term, and then this trend is reversed through

the children and adult subjects.

By filtering an integrative bending energy function based on

thresholding K values, we also noted that the surface energies peak

at term. Moreover, we noted that though the younger neonates had

lower thresholded bending energy in their surfaces, the per-unit

area bending energy contribution was higher than the term neo-

nates. In fact, it would appear that the youngest neonates had the

most energy dense surfaces in areas where gyral folding starts to

occur. This energy density declines through to term, and continues

a gradual decline post term through to adulthood. Comparatively

speaking, the adults had proportionately the least per-vertex and

per-unit area energy in the parts of the gray/white surface that was

folded at the gyral level.

Having established with this study the general architecture and

behavior of the curvature-analysis pipeline, we hope in future to

augment the pipeline with additional curvature map functions.

Since this work presents the baseline curvature results on ‘‘raw’’

(i.e., spatially ‘‘un-normalized’’ data), future versions of the

pipeline can provide various data normalization capabilities that

can be meaningfully contrasted with this baseline. In a related

vein, the K-based filtering developed in the context of the bending

energy analysis can be extended to centroid-histogram classifier

as well.

Additional future work will examine more closely the time

period where folding seems to increase quickest, i.e., between
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30 weeks and 34 weeks CGA. This current work considered the

gray/white surface exclusively. We hope to also similarly analyze

the outer pial surface, which we postulate that due to the differential

growth profiles of the cerebral cortex will be more ‘‘stretched’’

topologically than the gray/white and might have an intrinsically

different topology than the gray/white surface.

We also hope to compare our results of our analysis to surfaces

that are reconstructed using more automated (and thus faster) meth-

ods, using our highly accurate but time-intensive manually seg-

mented surfaces and measures as a reference standard.

Finally, we hope to also examine the curvature profiles of gray/

white surfaces of pathological developmental cases. It is our belief

that the folding/curvature properties of the human brain might be a

more sensitive marker tracking its development than simple analy-

sis of volume measures, and should this be the case, might allow for

more meaningful and earlier therapeutic intervention if developed

within a clinical setting.
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APPENDIX A: PRINCIPAL CURVATURES OVERVIEW

The study of surfaces and their properties is a fundamental branch

of mathematics (do Carmo, 1976). FreeSurfer uses aspects of the

differential geometry of surfaces to reconstruct 3D surface models,

which are tessellated structures that represent a ‘‘wire-frame.’’

Consider Figure 16, which shows a hypothetical tessellated ‘‘py-

ramidal’’ structure. A central vertex, A, is surrounded by five neigh-

bors (BCDEF). This wire-frame pyramid underpins a smooth sur-

face that is the best fit to the entire tessellated structure as a whole.

At node A, the average curvature between the node and the curves

connecting it to each of its neighbors is recorded, as is the distance

between the node and each of its neighbors.

A qualitative description of curvature is presented in Figure 17,

which shows several ‘‘sulci’’ and ‘‘gyri.’’ Simply stated, for a plane

curve, the curvature at a given point is proportional to the reciprocal

of the radius of an osculating circle and has units of inverse length

(Wikipedia, 2007). While more mathematical descriptions are cer-

tainly important, the concept of curvature is neatly conveyed by

osculating circles. In Figure 17, we note two general cases: (1) on

the left where a sulcus becomes narrower, and (2) on the right

where ‘‘bumps’’ occur on the gyral crowns. If we extend the gyral/

sulcal metaphor of the figure, osculating circles that are on the

‘‘inside’’ are colored green (light gray in grayscale), and those on

the ‘‘outside’’ are red (dark gray in grayscale). The intensity of the

coloring is proportional to the size of the radius.

Parts [A] and [B] of Figure 17 illustrate the effect of a ‘‘nar-

rowing’’ sulcal trough. This might represent an increase in lateral

extent of a gyrus as it grows outwards. We note that the osculating

circles for the narrower part [B] are smaller than corresponding

circles in part [A]. The curvature of a shape such as [B] is thus

higher than [A].

In parts [C] and [D] of Figure 17, more complex ‘‘buckling’’ of

an otherwise smooth surface introduces additional osculating

circles, and correspondingly the overall curvature of the structure

shown increases. It is important to note that separating ‘‘positive’’

and ‘‘negative’’ curvatures from each other allows us a more accu-

rate measure of the total curvature of the shape. A simple numerical

mean of the curvatures found by summing the inverse radii of the

osculating circles might mask the additional buckling that has

occurred.

In addition to this average curvature data, FreeSurfer calculates,

based on a mathematical description of the entire surface covering

this pyramid, the mean and Gaussian curvatures. The mean curva-

ture H of a surface p is a measure of curvature that comes from dif-

ferential geometry and that locally describes the curvature of an

embedded surface in some ambient space, e.g., Euclidean space.

For example, let the surface p denote the surface fitted to the

tessellated structure in Figure 16. If we consider all curves Ci with

curvature values Ki passing through the vertex A, we should find

one maximal and one minimal valued curvature, k1 and k2, respec-
tively. These are called the principal curvatures. The mean curva-

ture H is the average of the principal curvatures, and the Gaussian

curvature K is their product,

Figure 16. A representation of a FreeSurfer node (A) and surround-

ing neighbors (BCDEF). A tessellated ‘‘pyramid’’ connects all these
vertices together. Edges AE, AB, and AC are highlighted. [Color figure

can be viewed in the online issue, which is available at

www.interscience.wiley.com.]

Figure 17. A conceptual illustration of curvature. The measure of
‘‘curvature’’ of a curve can be understood by taking a series of circles

that just smoothly ‘‘touch’’ each of the undulations of the curve. The

curvature of the curve is proportional to the sum of the inverse radii of

each circle. [A] and [B], effect on curvature by ‘‘compressing’’ sulcal
extent; [C] and [D], effect of higher order ‘‘bumps’’ on overall curva-

ture. [Color figure can be viewed in the online issue, which is available

at www.interscience.wiley.com.]
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H ¼ 1

2
ðk1 þ k2Þ ð19Þ

K ¼ k1k2 ð20Þ

The Gaussian curvature is an intrinsic property of the topology of a

surface. Intrinsic curvature should not be confused with extrinsic

curvature. A classic example of ‘‘intrinsic’’ curvature is that of an

ant tied to a fixed point P on a surface with a string of length r. The

ant then walks around the fixed point while keeping the string com-

pletely taut. After one complete revolution about P the ant measures

the distance l traveled. On a completely flat surface, this distance

will be exactly l 5 2pr, i.e., the circumference of a circle. On

intrinsically curved surfaces, l will deviate from a perfect circle

according to the shape of the surface (Wikipedia, 2007).

Simply stated, a flat square sheet remains intrinsically a flat

sheet no matter how it is extrinsically folded, provided it is neither

stretched nor torn. Consider that such a sheet has zero Gaussian cur-

vature when spread flat, and still has zero curvature when folded

into a cylinder; obviously its extrinsic appearance is quite different

in these two cases. Of course, a flat square sheet cannot be folded

into a sphere; this would require stretching and shearing; conse-

quently the Gaussian curvature of a sphere is different to that of a

cylinder.

Consider also that although the Gaussian curvature is preserved

and intrinsic, it is the product of a maximal and a minimal component

k1 ¼ argmaxKi
i

ð21Þ

k2 ¼ argmaxKi
i

ð22Þ

and is thus inherently nonlinear and discontinuous. In particular, it

is meaningful to consider functions that are independent of the par-

ticular arg{min,max}functional assignment. Ideally speaking, such

candidate functions should be instances of basis functions that span

the domain of a generalized two variable functional.

In general, for a function space of two functions, f1(x) and f2(y),
a functional basis encompasses a linear combination of the summa-

tion and product of the two functions

g1
X

ððf1ðxÞ; f2ðyÞÞ
� �

þ g2
Y

ðf1ðxÞ; f2ðyÞÞ
� �

ð23Þ

One such functional could be ax1 by1 cxy 1 dx2 1 ey2. With ref-

erence to Eq. (21), the square difference of the two principles is an

instance of the generalized functional:

S ¼ ðk1 � k2Þ2 ð24Þ

¼ k21 � 2k1k2 þ k22 ð25Þ

and has the desirable trait of being positive definite and independent

of the particular assignment of k1 or k2. Note that of course we

should express the curvatures as k1. (s) and k2. (s) to emphasize that

these curvatures are functions of a spatial variable s. For ease of

readability we shall drop this explicit convention in this discussion.

Let us now consider some qualitative implications of the above

equations. First, the Gaussian curvature itself, with reference to the

folding of a developing brain, can give an indication of the extent

and type of folding. Consider Figure 18, which shows a flat sheet

initially deformed by two cylinders. Intrinsically, the sheet has not

changed its topology globally or locally and its Gaussian curvature

remains zero.

While still extrinsically ‘‘flat,’’ at each point on the sheet the

curvature in all directions is zero; the product thus of k1k2 5 0 3 0

5 0. In the ‘‘folded’’ regions, a curvature develops in one direction,

k̂1 but remains flat along the axis of the cylinder, and the product

remains zero. We could thus speculate that on a developing cortex,

Figure 18. ‘‘Cylindrical’’ folding. A flat sheet
is deformed beneath two cylinders. Although

the sheet develops a curvature along the k̂1
direction, its curvature along k̂2 remains

zero. [Color figure can be viewed in the

online issue, which is available at www.

interscience.wiley.com.]
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as the initial folds develop, should they be ‘‘cylindrical’’ in nature,

i.e., curve primarily along one direction while remaining flat along

another, we should expect to see a Gaussian curvature that is locally

zero, or close to zero.

As the folds become more complex, however, they develop a

local curvature along both the maximum and minimum directions.

In the most extreme case, this results in a spherical deformation as

shown in Figure 19. Here the flat sheet has experienced an intrinsic

folding modification. With reference to cortical development, we

could speculate that as the cortex begins to fold in more than one

direction, we should expect to see a general increase in overall

Gaussian curvature compared with earlier stages.

Empirically, we can consider Eq. (24) to glean additional

insights into folding development. This equation has the conceptual

effect of emphasizing the difference between k1 and k2. Where k1 is
large and k1 � k2, the square difference will tend towards k1

2.

Where k1 ^ k2 the square difference will tend towards zero. Thus,

areas with large relative k1 curvature will be amplified, and those

areas with little relative curvature difference will be attenuated. The

extent of this amplification and attenuation is directly related to the

relative difference, and this square difference can be thought of as a

nonlinear point spread function.

Within the topological literature, some oft used descriptions of

‘‘curvature’’ are the shape index and the curvedness. The shape

index (SI) and curvedness (C) are defined as

SI ¼ 2

p
arctan

k1 þ k2
k2 � k1

� �
ð26Þ

and

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

2

r
ð27Þ

This article did not explicitly consider the shape index, mostly

because for regions of interest, k1 � k2, and the SI converges to

20.5. For other regions, particularly noisy ones where k1 ’ k2, the
denominator tends to a value just negative of zero and the expres-

sion as a whole saturates at 21.0; thus, the SI function for the corti-

cal surfaces in this article has a very limited dynamic range.

The square principle difference, S, is in fact proportional to the

square of the curvedness function, C

S ¼ ðk1 � k2Þ2
¼ k21 þ k22 � 2k1k2

¼ 2ðC2 � k1k2Þ
ð28Þ

Both C and S provide subtly different views on the same underlying

curvature data. The square principle difference tends to emphasize

regions with relatively large differences between the principle

curves, and is thus well suited to reveal the large primary folds of

the developing cortex. The curvedness function on the other hand

has a more diffuse focus, returning information on less ‘‘sharp’’

folding. This lower discriminatory function can reveal smaller

bumps and ridges, but is also more noise sensitive.

We believe that S to be the better measure for the surfaces ana-

lyzed in this article because of its enhanced signal-to-noise ratio

over C. By tending to highlight only areas where k1 � k2, the prin-
ciple square difference tracks the development of folding across the

cortex in an easily visualized manner. This folding is illustrated in

Figure 23, where the three youngest neonates clearly show primary

folding spreading from the 30.4 weeks anteriorly and posteriorly. In

fact, by 34 weeks, the folding has spread across the entire cortical

surface, and subsequent development is mostly secondary and terti-

ary folding based around these primary folds. This observation is

strengthened by the centroid analysis of the k1 curvature, which

clearly shows the three youngest neonates clustering together, while

the remaining subjects (including older neonates, pediatric subjects,

and adults) forming a separate cluster.

APPENDIX B: A FRACTIONAL AREA NORMALIZATION
OF CURVATURE FUNCTIONS

As discussed in section II.H, scale and folding effects on curvature

are difficult to separate. On a practical level, however, we can weigh

curvature values with localized surface reconstruction specific in-

formation. Consider that in a FreeSurfer reconstruction, the number

of vertices on a surface is roughly proportional to the size of the sur-

face: larger surfaces will have more vertices. Also, at a specific ver-

tex, the area of the local triangles comprising the vertex area is vari-

able and related to the curvature of the surface at that vertex.

A given surface will have area A. For a vertex index i on this

surface with area ai and curvature function value fi, we can normal-

ize the curvature function value with the fractional area:

fn ¼ k
fi

ai=A

¼ kfi
A

ai

ð29Þ

where k is a fixed scalar factor that might be necessary to reduce the

size of the normalization. The curvature fn therefore incorporates

information on the local vertex area over which it is defined, as

well as the size of the whole surface.

In fact, in the general case, we can parameterize an operation on

surface vertex curvatures so that the curvature varies by parameter

a between the original and the fractional area value:

f̂i ¼ fi þ aðfn � fiÞ ð30Þ
with a [ [0. . .1]. In this appendix, we limit ourselves to the case a
5 1. Consider the sphere illustrated by Figure 4. In a fractional area

Figure 19. ‘‘Spherical’’ folding. To create a spherical bubble or

depression in a flat surface, the surface needs to be stretched and
sheared so that curvature develops along both the k̂1 and k̂2 direc-

tions. [Color figure can be viewed in the online issue, which is avail-

able at www.interscience.wiley.com.]
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approach, for the large sphere the A/ai weight will be proportion-

ately larger than the fractional area for the small sphere. This will

tend to reduce the x-axis scale difference between the plots, thus

mitigating the scale factor difference between the shapes. Of

course, this approach will not completely address scale issues;

nonetheless, it represents one mechanism to scale point curvatures

with information both local to the vertex and global to the whole

surface.

Figure 20. Statistical plots of the main curvature functions normalized by vertex fractional area across the right hemisphere of subjects (sub-

ject age is shown above the legend in each plot). Within each plot are several trajectories denoting the mean and deviation of curvature values.
These values are taken across the entire reconstructed surface and denoted x. For each x positive values only are denoted by 1x; and the nega-

tive values only by2x. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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Figure 20 plots the statistical results across the subjects for vari-

ous curvature functions that have been normalized by the fractional

vertex area. The general observation of curvature function peaking

at term and declining postterm through childhood and across adults

is still apparent.

Centroid plots for the right hemisphere data for the right hemi-

sphere k1 and k2 principle curvature functions across the gray/white
surface are shown in Figure 21.

APPENDIX C: SHARPNESS S AND CURVEDNESS C
FUNCTION ACROSS NEONATE SUBJECTS

Of the curvatures measures considered in this article, perhaps the

most interesting from a regional variation perspective is the princi-

ple square difference, or sharpness function. As mentioned earlier,

this function tends to emphasize curvatures that have a relatively

large k1 k2 differential (i.e., as one would find on a ‘‘cylinder’’) and

attenuate curvatures where this differential is low (i.e., where the

Figure 21. Right hemisphere centroid analysis using fractional-area normalized curvatures for all the subjects’ k1 (on left) and k2 (on right) cur-

vatures. The negative and positive halves of each principle curve are considered separately on the left and right halves of each plot. Each point

in the plot corresponds to a specific subject, labeled as shown. The neonates are represented by the circles, the children by the squares, and

the adults by the triangles. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 22. Comparative projections of

the curvedness C and sharpness S func-

tions. On left and center column panels,

we have C and S shown on the inflated
white matter surfaces. On the right panel,

S is shown on the noninflated white mat-

ter surface. From the top, the 30.4 week

CGA subject, the 31.1 week CGA sub-
ject, the 40.3 week CGA subject, and an

adult subject. Note that the relative size

difference of brains in this figure is not to
scale. [Color figure can be viewed in the

online issue, which is available at

www.interscience.wiley.com.]
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surface is flat or ‘‘spherical’’). This property makes the principle

square difference an excellent candidate for ‘‘ridge detection.’’ In

this context, a ‘‘ridge’’ can be found at a gyral peak, or deep in a

sulcal trough.

Consider Figure 22, which shows comparative projections of

principle square difference curvature S, and the curvedness C for

different subjects. The sharpness, S is shown on the inflated white

matter surface, as well as on the un-inflated white matter surface.

At top of the figure is the youngest neonate at 30.4 weeks CGA,

progressing down through the 31.1 week CGA, the 40.3 week CGA

subject, and finally an adult.

Several observations can be made from Figure 22. Firstly, one

notes that the principle square difference function clearly highlights

the sharp ridges on the white matter surface (comparing the left and

right panels for each subject). These ridges can be either the sharp

crowns on gyral peaks, or furrowed troughs burrowing along the

sulcal floor. Immediately evident is the strong regional variation in

highly ridged patterns as a function of age. In the youngest neo-

nates, folding occurs sharpest in the medial and temporal lobes, and

spreads posteriorly and anteriorly from these regions.

This regional spread is further emphasized in Figure 23, which

shows the square difference curvature on a series of increasingly

older inflated brains. The first two rows in the figure show neonate

subjects and the last row pediatric and adult. In the first row, from

left to right, we have in weeks CGA: 30.4, 31.1, and 34.0; followed

in the second row by (in weeks CGA) 36.7, 38.1, and 40.3. In the

third row are the three pediatric subjects aged 2 years, 3 years, and

7 years; the final row shows the three adults.

Folding clearly spreads anteriorly and posteriorly during the

early period between 30 weeks and 34 weeks. Indeed, by 36 weeks,

the overall white matter folding pattern is largely fixed, indicating

that primary folding is largely completed by this time. Through the

remaining period until term note the lighter pattern of ridges that

run either in parallel to the main ridges, or serve as short cross links

between these main ridges. These lighter colored ridges tend to

denote furrows and bumps along sulcal valleys. While still evident

in the pediatric brains, these lighter ridges are fading and are mostly

absent from the adults.
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