
Freesurfer on the GPU
Richard Edgar

http://www.csail.mit.edu/
http://www.csail.mit.edu/
http://www.csail.mit.edu/
http://www.csail.mit.edu/
http://www.csail.mit.edu/
http://www.csail.mit.edu/
http://www.csail.mit.edu/
http://www.csail.mit.edu/
http://www.csail.mit.edu/
http://www.csail.mit.edu/
http://www.csail.mit.edu/
http://www.csail.mit.edu/
http://www.csail.mit.edu/
http://www.csail.mit.edu/
http://www.csail.mit.edu/
http://www.csail.mit.edu/
http://www.csail.mit.edu/

Overview

What is Freesurfer?

The Need for Speed

Linear Registration

Non-Linear Registration

Future Needs & Directions

Conclusion

The Freesurfer Suite

Freesurfer

Set of tools for MRI brain image analysis
http://surfer.nmr.mgh.harvard.edu/

Automatic registration & segmentation of images

Around 1.3M lines of code

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu

Usage

Freesurfer used by thousands of researchers worldwide

Alzheimers

Aspergers

etc.

Used in tandem with other techniques

EEG, MEG etc.

Supported on multiple computing platforms

The Need for Speed

Key Driver

Clinicians would like to use Freesurfer

Could help their diagnostics

Need fast turnaround

Within an hour, or second visit required

Main Freesurfer pipeline takes 10 hours

3.2 GHz Intel W5580 (Gainestown/Nehalem)

Other Benefits

‘Quick’ registration while subject in MRI machine

Allows better targeting of fMRI/spectroscopy

Faster population studies

Linear Registration

Linear Registration

Task Outline

Take MRI image and precomputed atlas

Find affine transformation for best match

Why accelerate first?

Key task

20 minute runtime

Algorithm fairly simple

Basic Algorithm

Pick affine transformation, A

Evaluate total ‘energy’ for O(2000) atlas points

Repeat, seeking lower energy

E(A) =
�

i

f(yi)

yi = Axi

Multiscale Search

Generate A from a base transform T

Combine with small transforms {Uj}

Find the best A from this set

This becomes the new T

Generate new set of smaller Uj

Aj = TUj

Multiscale Search Example

Start with identity transform

Generate translations in range [-5,5]

Three in each direction

Evaluate energies

Select new T

T =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Multiscale Search Example

Start with identity transform

Generate translations in range [-5,5]

Three in each direction

Evaluate energies

Select new T

U0 =

1 0 0 −5
0 1 0 −5
0 0 1 −5
0 0 0 1

U1 =

1 0 0 0
0 1 0 −5
0 0 1 −5
0 0 0 1

...

U26 =

1 0 0 5
0 1 0 5
0 0 1 5
0 0 0 1

Multiscale Search Example

Start with identity transform

Generate translations in range [-5,5]

Three in each direction

Evaluate energies

Select new T

E0 = 500

E1 = 493
...

E26 = 619

Multiscale Search Example

Start with identity transform

Generate translations in range [-5,5]

Three in each direction

Evaluate energies

Select new T

T = U2 =

1 0 0 5
0 1 0 −5
0 0 1 −5
0 0 0 1

Multiscale Search

Search performed in two stages

Translation only

Translation, rotation and dilation

Each set Uj is a hypercube of possibilities

e.g. 5 possible translations in each direction etc.

First Acceleration Attempt

Energy evaluation smallest parallel part

Evaluate each atlas point energy by one thread

Store results in global memory

Reduction sum to get total energy

Transformation matrix sent from CPU

First Acceleration Attempt

Atlas and MRI never change

Load at start of program

Use texture for MRI

Free interpolation on co-ordinate transform

Create GPU classes

Use thrust library for reduction

First Acceleration Attempt

Results promising

Runtime reduced to 4 mins (5x) with C2050

Transform identical

However 2000 threads not much

Lots of performance still available

Increasing Parallelism

Energy evaluation for each Aj is independent

Each Uj easily computed

Combination of translations, rotations and dilations

Parameters set by location in hypercube

{Uj} = {Dν}⊗ {Rx
µ}⊗ {Ry

σ}⊗ {Rz
υ}⊗ {Sη}

Aj = TUj

Block Indexed Transforms

Matrix T sent from CPU

Compute transform set for Uj from block index

First warp computes Aj and stores in shared memory

Compute/reduce Ej in shared memory

Store to global array

Aj = TUj

{Uj} = {Dν}⊗ {Rx
µ}⊗ {Ry

σ}⊗ {Rz
υ}⊗ {Sη}

Block Indexed Transforms

Thrust selects minimum energy (and its index)

Recover transform parameters from index

Use same routines as GPU

Return to main program

Increasing Parallelism

Now have hundreds of thread blocks

5 translations in each direction gives 125 blocks

Much better for the GPU

Runtime 30s (40x) on C2050

Amdahl’s Law now limiting factor

Analysing Results

Speed up good, but results can differ

Consider computation of Aj

First version computed on CPU and sent to GPU

Faster version computes Aj on GPU

This gives slightly different results

Aj = TUj

Computation of Aj

Actually use Aj-1, not Aj

First version inverts on CPU and sends that

Faster version

Inverts T on CPU, sends to GPU

Trivially inverts components of Uj on GPU

Composes Aj
-1 on GPU

{U−1
j } = {Sη}−1 ⊗ {Rz

υ}−1 ⊗ {Ry
σ}−1 ⊗ {Rx

µ}−1 ⊗ {Dν}−1

Computation of Aj

Differences lead to different minimum

Occurs on subvoxel-sized transforms

End up with different final transform

Assessing how to minimise differences

Non-Linear Registration

Motivation

Linear registration insufficient

Diagnostics require detailed analysis of structures

Differences from atlas most interesting

Require non-linear registration

Each voxel has own displacement

Non-Linear Registration

Basic search algorithm similar

Pick a set of displacement vectors

Evaluate energy of configuration

Dimensionality is millions

Runtime over two hours

3.2 GHz Intel W5580 (Gainestown/Nehalem)

Energy Evaluation

Energy split into multiple terms

Each energy term follows same pattern

Evaluate expression for each voxel

Sum together

General CUDA approach

Kernel to evaluate energies

Thrust for reduction sum

Etot =
�

i

λiEi

Transform Update

Splits into multiple terms

Terms match energies

Same pattern for evaluation

Each voxel produces new displacement vector

CUDA acceleration follows same pattern

Converting to CUDA

Basic prescription worked well

Most voxel evaluations independent

Some floating point and precision issues

Able to keep within acceptable limits

Datastructures were the main problem

Datastructure Conversion

CPU code uses arrays of structures

Pointers to pointers

3D volumes use both xyz and zyx ordering

None of this good for the GPU

Not so great for the CPU either

typedef struct {
 int width, height, depth;
 GCA_MORPH_NODE ***nodes;
 //
} GCA_MORPH;

typedef struct {
 double origx, origy, origz;
 //
 GCA* gc;
 // Total size 254 bytes
} GCA_MORPH_NODE;

Datastructure Conversion

GPU required structure of arrays

Created templated ‘volume’ class to help

Transfers between host and GPU very slow

1.Allocate contiguous host arrays

2.Pack data into these arrays (may have to reorder)

3.Send across PCIe bus

Need for a Pipeline

Datastructure conversion a significant bottleneck

CPU computation takes 200ms

GPU computation takes 20ms

Transfer back and forth takes 1s (round trip)

Have to get entire computation on the GPU

Current Status

All energy computations now pipelined on GPU

Runtime now around 90 minutes (C2050)

Still working on the transform update

One major stage remaining

Datastructures even more interesting

Runtime <60 minutes looks possible

Future Needs & Directions

The Future is Hybrid

Future machines will be hybrids

DARPA Exascale Computing Study

Need programming paradigms to reflect this

Datastructures

Rethinking of datastructures essential

Repacking stage kills performance

Books teach arrays of structures

Nice way to think about things

Performance requires structures of arrays

How can we reconcile the two?

Datastructures

Densely accessed structures are easy

Create a class which

Holds separate arrays internally

Supplies operator() to construct individual instance

Vector volume is an easy example

Datastructure Example

class VectorVolume {
public:
 float3 operator()(const unsigned int ix,
 const unsigned int iy,
 const unsigned int iz) const {
 float3 res;
 res.x = this->x[ix + this->nx*(iy + this->ny*iz)];
 // etc.
 return(res);
 }

private:
 float *x, *y, *z;
 unsigned int nx, ny, nz;
};

Datastructures

Sparsely accessed structures more difficult

Only want to access required components

Loading full structure will hurt performance

Compiler optimisations may help

Risky to rely on these typedef struct {
 double origx, origy, origz;
 //
 GCA* gc;
 // Total size 254 bytes
} GCA_MORPH_NODE;

Datastructure Management

Mentioned templated ‘volume’ class

Actually two classes

‘Management’ class for the CPU

‘Mutator’ class for the GPU

Data Management Example

template<typename T>
class VolumeArgGPU {
public:
 const dim3 dims;

 __device__
 T operator()(const int ix,
 const int iy,
 const int iz) const;
 // etc.

private:
 void* const pitchedPtr;
 const size_t dataPitch;
};

template<typename T>
class VolumeGPU {
public:
 operator VolumeArgGPU<T>(void) const;

 void Allocate(const dim3 myDims);
 void Release(void);

 void SendBuffer(const T* const h_buffer);
 void RecvBuffer(T* const h_buffer) const;
 // etc.

protected:
 dim3 dims;
 cudaPitchedPtr d_data;
};

Datastructure Management

Useful wrapping of functionality on GPU

Encourage on CPU too?

Separate management and computation

Could define templated interface classes

CPU version could use same backend for both

Heterogeneous Computing

Currently CPU and GPU structures separate

Contain common metadata

e.g. Size of volume

Can datastructures reflect this?

Currently have trouble keeping both updated

A Recipe for Heterogeneity

Abstract base class defines

Metadata

Methods

class Image {
public:
 virtual void Allocate(const dim2 size) = 0;
 virtual void Release(void) = 0;
 // etc.
protected:
 dim2 imgSize;
};

A Recipe for Heterogeneity

Subclass for specific hardware

Implement methods

Contain pointer to data

class ImageCPU : public Image {
public:
 // Implementations....
private:
 float* data;
};

class ImageGPU : public Image {
public:
 // Implementations....
private:
 float* d_data;
};

A Recipe for Heterogeneity

Same with algorithms

Base class defines operation

Subclasses implement for hardware
class Convolve {
public:
 virtual void Convolve(const Image* src,
 Image* dst,
 const vector<float> kernel,
 const char direction) const = 0;
};

Heterogeneous Computing

Main program only deals with base classes

Supply conversion and assignment operators

Freely mix code on different hardware

Conclusions

Conclusions

Freesurfer can benefit greatly from GPUs

Linear registration as much as 40x

Non-linear registration now half an hour faster

Need to consider structuring of future programs

Abstract implementation details

Provide high level interface to domain scientists

Acknowledgements

Bruce Fischl

Nick Schmansky

Thomas Witzel

Doug Greve

Krish Subramaniam

