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ABSTRACT

Longitudinal neuroimaging (LNI) studies are rapitlcoming more prevalent and
growing in size. Today, no standardized computalitwols exist for the analysis of LNI
data and widely used methods are sub-optimal types of data encountered in real-
life studies. Linear Mixed Effects (LME) modelingmature approach well known in the
statistics community, offers a powerful and vetedtamework for analyzing real-life
LNI data. This article presents the theory behiMBE.models, contrasts it with other
popular approaches in the context of LNI, and atanied with an array of
computational tools that will be made freely auvaligathrough FreeSurfer — a popular
Magnetic Resonance Image (MRI) analysis softwaokage.

Our core contribution is to provide a quantitaterapirical evaluation of the performance
of LME and competing alternatives popularly usegrior longitudinal structural MRI
studies, namely repeated measures ANOVA and tHgsismaf annualized longitudinal
change measures (e.g. atrophy rate). In our expatsnwe analyzed MRI-derived
longitudinal hippocampal volume and entorhinal errthickness measurements from a
public dataset consisting of Alzheimer’s patiestsyjects with mild cognitive
impairment and healthy controls. Our results sugtped the LME approach offers

superior statistical power in detecting longitudigeoup differences.
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1 INTRODUCTION

Longitudinal neuroimaging (LNI) studies have becanweasingly widespread over
the last decade, e.g. (Asami et al., 2011; Blod¢kad.e2011; Chetelat et al., 2005;
Davatzikos and Resnick, 2002; Desikan et al., 20tikscoll et al., 2011; Fjell et al.,
2009; Fotenos et al., 2005; Fouquet et al., 2068956 et al., 2011; Giedd et al., 1999;
Hedman et al., 2011; Ho et al., 2003; Holland gt24109; Holland et al., 2011; Hua et
al., 2010; Hua et al., 2009; Jack Jr et al., 20@8k Jr et al., 2008; Josephs et al., 2008;
Kaladjian et al., 2009; Kalkers et al., 2002; Menal., 2009; Pantelis et al., 2003;
Paviour et al., 2006; Resnick et al., 2010; Sabwtal., 2011; Schumann et al., 2010;
Sidtis et al., 2010; Sluimer et al., 2008; Sluiraeal., 2009; Sullivan et al., 2011;
Thambisetty et al., 2011; Thambisetty et al., 20kdsun et al., 2010; Whitwell et al.,
2011; Whitwell et al., 2007). Compared to the cresstional approach, the longitudinal
design can provide increased statistical powerbycing the confounding effect of
between-subject variability (Thompson et al., 20Mgreover, a serial assessment can
be the only way to unambiguously characterize tfeeeof interest in a randomized
experiment, such as a drug trial (Davis et al. 22@ckerson and Sperling, 2005; Ge et
al., 2000). Finally, longitudinal studies provideique insights into the temporal
dynamics of the underlying biological process (Jackt al., 2012; Sabuncu et al., 2011).

LNI studies have yielded novel discoveries, yeaeetul scrutiny of the literature
reveals that the statistical methods commonly faekurity and sophistication. We
believe that the underutilization of appropriatemoeology in LNI studies is mainly due
to two related reasons. Firstly, the relevant stigtl tools are not readily available in
user-friendly neuroimage analysis software envirents (such as SPM (Friston, 2007,
SPM), FSL (Smith et al., 2004), or FreeSurfer (Ris2012)). Secondly, the technical
intricacies of modeling longitudinal data are n@&ihunderstood and/or appreciated.

In this article, we advocate the use of Linear Mixdfects (LME) modeling, which
provides a flexible and powerful statistical franeelvfor the analysis of longitudinal
data (Fitzmaurice et al., 2011; Verbeke and Molegiee 2000). We discuss the
theoretical underpinnings of the LME framework aadtrast it with other methods

popular in LNI.



There are two alternative approaches most commnapplied to the analysis of prior
LNI data. These are (X@¢peated measures analysis of variafmewithin-subject
ANOVA) (Girden, 1992), e.g., (Asami et al., 2011p&kx et al., 2011; Bonne et al.,
2001; Fouquet et al., 2009; Giedd et al., 1999gHal., 2003; Kaladjian et al., 2009;
Mathalon et al., 2001; Pantelis et al., 2003; Resat al., 2010; Sidtis et al., 2010;
Sluimer et al., 2009), ; and (2)oss-sectional (General Linear Model —GLM- based)
analysis of summary measuremestsch as percent annualized difference, e.g. ikBes
et al., 2011, Fjell et al., 2009; Fotenos et 02 Fouquet et al., 2009; Frings et al.,
2011; Hedman et al., 2011; Holland et al., 2009 dual., 2010; Hua et al., 2009; Jack
Jr et al., 2009; Josephs et al., 2008; Kalker$ e2@02; Kasai et al., 2003; Paviour et al.,
2006; Sabuncu et al., 2011; Sluimer et al., 200B8it¥ell et al., 2007). However, these
methods are known to be sub-optimal for generallifedongitudinal data since they do
not model the covariance structure of serial meamants appropriately and cannot
handle imperfect timing and/or subject dropout (u@balanced data), in particular those
cases with only a single time-point (Fitzmauricalet2011).

Another related approach is the two-stage strafi@ggolving the hierarchical models
adopted in functional neuroimaging (Friston, 200/t these tools typically rely on
assumptions that are unrealistic for the LNI designconsider hefeFor example, in
LNI studies one usually has only a handful of sqagrssubject and not hundreds of time-
points. Furthermore, a pre-whitening step is umjike be suitable since LNI data are not
sampled at uniform time intervals and do not obstationary autoregressive structure.

The contributions of this article are multi-foldr$t, we present a thorough overview
of the LME approach in the context of longitudisaldies. Computational tools
implementing this approach will accompany thiscetas a part dfreeSurfera MRI
processing software, (Dale et al., 1999; Fisclall 2002; Fischl et al., 1999a; Fischl et
al., 1999b). We use a widely studied longitudinalcural MRI dataset (from the
Alzheimer’s Disease Neuroimaging Initiative, or ADNb illustrate how these tools can
be used for exploratory data visualization, mogekc#fication, model selection,

parameter estimation, hypothesis testing, andstitatl power analysis including sample

1 In the LNI design we consider in this manuscript, each participant is scanned at potentially several
time points and the imaging measurement of interest at each time point is a scalar, e.g., brain volume.



size estimation. We further perform a systematipieal validation of the specificity,
sensitivity and repeatability of the LME method aiérnative approaches. Our results
provide an objective quantification of the improwanhin statistical detection afforded by
the LME approach compared with competing methootslly, we assess the impact of
including subjects with a single time point in ttldE method.

The paper is organized as follows. Section 2.1igdesva discussion of the general
characteristics of longitudinal data. Section 2&spnts the LME method for the analysis
of longitudinal data. Section 2.3 includes a bdes$cription of alternative methods used
in prior LNI studies. Section 2.4 offers a des¢aptof the data used in the experiments.
In Section 3, we present experimental resultsitiugtrate the proposed approach and
compare it to benchmark methods. Finally, Secfigmovides a discussion of the main
experimental findings and Section 5 closes withctaoing remarks.

2MATERIAL AND METHODS
2.1 The Characteristics of Longitudinal Data

In a longitudinal study, outcome variables are raesrepeatedly on the same
cohort of individuals at multiple time-points. Then is to characterize changes in the
individuals' measurements over time and their agson with clinical, experimental or
biological factors. Unlike cross-sectional studigbere the measurement is obtained at a
single occasion, longitudinal studies allow dirassessment of within-subject changes
across different time points, free of any betwegbjexct variability. Changes in the mean
measurement over time can then be estimated wetgr precision and without
confounding cohort effects (Fitzmaurice et al., POFurthermore, more accurate
predictions about an individual’'s measurement ttajyy might be possible by pooling
data across the population. This can be usefulpn&tance, to assess the effect of a drug
in a specific individual in a pharmacological study

In general, longitudinal data exhibit several distive characteristics. (1)
Longitudinal measurements are ordered in timegcéfig the temporal trajectory of an
underlying non-stationary continuous process. Thike major difference between
vectors of repeated measures obtained in longiidindies and vectors of multivariate

measurements from cross-sectional studies, whegéesneasurements of multiple but



distinct variables are taken simultaneously. (2)i¢glly, serial measurements obtained
for a single subject are positively correlated.sI¢orrelation is due to the smooth
trajectory of the underlying biological processgkmeral, we expect pairs of repeated
measures that are close in time to be more highielated than pairs of repeated
measures further separated in time. (3) Betweejesubariance is not usually constant
over the duration of the study; instead, it migitéxample increase as a function of time
due to the diverging trajectories of individualglaor groups. (4) Finally, missing data
and non-uniform timing is extremely common, pattely for longitudinal studies of
larger duration.

2.2 Linear Mixed Effects Modeling for Longitudinal Data

There are two aspects of longitudinal data thatireqcareful modeling: the mean
measurement trajectory over time and the correlaioucture among serial
measurements. The models for the mean and covaraeinterdependenbecause the
vector of residuals (i.e., the observed minusditieeasurements) depends on the
specification of the model for the mean.

LME models use the linear regression paradigm (lglamiery et al., 2007) to
parsimoniously describe the average measuremerntsar@poral trajectory. In this
approach, the mean measurement is expressedresmadombination of a set of
independent variables. The temporal trajectoripés tdetermined by the contribution of
time and/or time-varying variables. A major advaetaf this approach is that the
subjects in the study are not required to havenanoon set of measurement times (i.e.,
the data can be unbalanced).

Like any other statistical method, the selectiomdependent variables that models
the mean measurement has to be made based ontsubjéer grounds. On the other
hand, without any additional knowledge, a usefidtsgy to model the mean trajectory is
to simply assume it is linear in time. This is thefault implementation in our toolkit. A
justification for this strategy is due to the lisdtduration of studies, which typically can
expose local and simple trends. More complexdtajees can be captured via piece-
wise linear models or higher order (e.g. quadmaticubic) polynomials. These models
can be chosen by the user based on a graphicalratqly analysis of the data, such as

by inspecting an illustration of smoothed measurgmee.g., albwess” plot (Cleveland,



1979). Then, as it is common in the linear regmsparadigm, complex models can be
compared to reduced models to determine whethgffiththe data significantly better.
For example, a quadratic model for the mean respowesr time can be compared to a
linear model by testing the null hypothesis that qnadratic coefficient is zero.

There are generally three potential sources oatdity influencing the correlation
structure in longitudinal data: (1) between-subjegriation, (2) inherent within-subject
biological change, and (3) measurement error (Fatmice et al., 2011). The first source
of variability reflects natural variation in thedividual's measurement trajectory. Some
individuals’ measurements are consistently highantthe population average, while
others’ are consistently lower. The inherent witlndividual biological variation is a
consequence of some subject-specific biologicatgss that progresses gradually over
time. Hence, random departures from an individumbsleled measurement trajectory are
likely to be more similar when measurements arainbt close together in time. Finally,
measurement error variance has a direct influenagd@amount of correlation between
serial measurements.

The LME method imposes structure on the covaridmarigh the introduction of
random effects. This approach provides both flexdrid parsimonious models for the
covariance and is particularly well suited to hamgllongitudinal data that are irregularly
timed. A unique feature of these models is thay theplicitly distinguish and allow the
analysis of the between-subject and within-sulgectces of variability. The following
section provides the theoretical details of the LiveEnework.

2.2.1 Linear Mixed EffectsModels. The Theory
Let us formally introduce the LME model for longiinal data:
Y, = X,B+Zb +e, (2.1)

whereY; is then, x1 vector of serial measurements for subj2¢.g. longitudinal MRI-
derived thickness or volume measuremer n;)is the subject-specific number of serial
measurementsX, is the n, x p subject design matrix for the fixed effects (iraihg

variables such as gender, education, clinical grogpnotype and scan time),

L= (,q,ﬁz,...,ﬂp)T is a p %1 vector of unknown fixed effects regression coéfits, Z; is

the n xqg,g<p design matrix for the random effects (e.g. scameji



b = il,blz,...,blq)T is a qx1 vector of random effects are = éil,qz,...,emi)T is a
n, X1 vector of measurement errors. Hefelinks the vector of random effech, to Y,
and its columns are a subset of the columi X;ofThat is, any component ' 5 can be
allowed to vary randomly by simply including ther@sponding column ¢ X; inZ,.
For example, in a model with only a randomly vagyinterceptZ, is a n, X1 vector
composed of 1's. Note that all random effects othan the intercept need to be time
varying, so thatZ, is not singular (In fact the measurement timdfiisausually a random
effect). The following common distributional assurps are made:

b ~N(0,D),
q~N@fH}

where N(0,%) denotes a zero mean multivariate Gaussian withriznee matrixZ, L,

denotes thn, x n,identity matrix, ancb,...,b,,€,...,€, are independent wilm being
the number of subjects in the study. The componaf b;; reflect how the subset of
regression parameters for 1i™ subject deviate from those of the population. The
components o€, represent random sampling or measurement errors.

The LME model provides an important distinction viee¢n the conditional and
marginal means cY;. The conditional or subject-specific mea Y, fgivenb,, is

E(Y, |b)=X,8+Zb,
while the marginal or population-averaged meaY,ak
E(Y)= X5

Thus, in the LME model, the vector of regressiomapeeters 5 (the fixed effects), is
assumed to be the same for all individuals and Ipayeilation-averaged interpretations,
for example in terms of population mean trajectdry.contrast, the vectcb, (when
summed with the corresponding fixed effects) malps subject-specific regression
coefficients, which describe the mean trajectortheli™ individual.

We can also distinguish between the conditionahdance

Cov(Y|b)=Cov(g)= 02Ini ,

and the marginal covariance Y;,



Cov(Y)=Cov(zb)+Cov(g)=2,DZ  + I, ,
which isnot a diagonal matrix.

Thus by introducing random effects, correlation®©agithe components Y, can be
modeled. One can see that the model allows foetipéicit analysis of between-subject

(D) and within-subjec (02) sources of variation. Importantly, the marginalaance of

Y; is expressed as a function of the time-varyingdoam effects, which commonly
includes measurement time itself.

Consider the following simple LME model, which hmsandomly varying intercept
and slope:

Yij =(B8+b)+ (B +b21)tij € , (2.2)

where'; is the j™ measurement from subjeii t; is the time of measurement, and
j=1,...,n,. The model of (2.2) allows each individual's maaseents to have his or her
own unique linear mean trajectory.
2.2.2 Parameter Estimation

In this section we consider the problem of estintathe unknown coefficier sand
model parameterog and D. Given the distributional assumptions that havenbenade,

the vector of measurements are distributed as
= N(Xi,B, 2Dz +d%, } 2.3)

For given estimate D and 0 , we have a closed-form solution for the maximum

likelihood (ML) estimate o £:

B= [ixfiﬁxij > XI5y, (2.4

i=1 i=1

where ii = zif)zf +&2Ini andy, is the realization of the random vecY;r

An unbiased estimate f1Jf) and 0 can be obtained via maximizing the following
restricted likelihood function (ReML procedure) (deke and Molenberghs, 2000):

| eme = %z|09|2i_1| _%Z(yi - Xi:é)Tzi_l(yi - Xilé) _%Ioﬁ XiTZi_lxiE
i=1 i=1 Ly

L @.5)

wherey =Z DziT + 02 0



There is no closed-form solution to the optimizatad (2.5) and numerical iterative
solvers need to be used. We have implemented tickdy used optimization methods:
The Expectation Maximization (EM) algorithm (Laiet al., 1987) and two Newton-
Raphson based procedures using either the Hesstha expected information matrix of
the restricted log-likelihood. The forms for thesfiand second partial derivatives of
lremt €an be found in (Lindstrom and Bates, 1988). WHhen expected information
matrix is used in the optimization procedure thgoathm is commonly referred to as the
Fisher's scoring scheme. Formulas for the expeteamation matrix can be found in
(Kenward and Roger, 1997). Finally, we note thatdeenot impose any structure D,
other than it needs to be positive definite. Toi@ah this constraint, we parameterize it

via its Cholesky decomposition.

2.2.3 Selection of Random Effects

In the LME approach, given a model for the meaa,dbvariance structure is
determined by the choice of random effects. Onelgb@tegy to identify the appropriate
set of random effects is via the likelihood ratistf where the likelihood of nested
models can be compared.

Here, one can start with a “basic model”, which {daanly include the bias as a
random effect. Once the model parameters and caafts are estimated for the basic
model, the corresponding restricted maximum likadith value can be computed. One
would then proceed to add random effects to theelmagdel. For example, time-varying
variables can be added to the basic model as additrtandom effects one by one in a
greedy fashion, where the variable that producesithest increase in the restricted
likelihood function will be added, only if this irgase is statistically significant. The
significance of a likelihood increase in nested eiedan be assessed based on a chi-
square mixture statistic (Fitzmaurice et al., 2011)

2.2.4 Hypothesis Testing
In conducting hypothesis tests, we will t ,ZEeand its estimated asymptotic covariance

matrix

A i ) -1
CavasymptOtiC(ﬂ)z (Z szi‘lxij ;

10



where ii is the ReML estimator (2, .
In general, for a given contrast maL xthe two competing hypotheses are
H,: LS=0 and H,: LB#O.
Under the null hypothesis, it can be shown thatdlewing F-distribution holds:

F: (L) (LCOVeaymcELT )l L |

rank(L)

(2.6)

However, determining the degrees of freedom astmatiwith the above F-test is
challenging and several approximations have beepgsed, e.g. (Satterthwaite, 1946).
In particular, we have implemented a Satterthwlaeised approximation for the
following scaled F-statistic:

o (Lb)T (Lc:c“)vKR (8)] )l L3

rank(L) '

2.7)

where Cov,, (,8) is a small-sample bias corrected estimate of thartance matrix o 5 .

This procedure allows the covariance among the ReMiariance parameter estimates
to be taken into account when estimating the affectegrees of freedom of the F-test

and thus different contrasts will exhibit differetggrees of freedom. Details on the

computation o K, COv,, (,23) and the effective degrees of freedom can be faund

(Kenward and Roger, 1997).

2.2.5 Sample Size Estimation and Statistical Power Analysis
Sample size and power calculations are more coniplelongitudinal designs than

for the simpler cross-sectional setting. The majumllenge is missing data, which has a
direct effect on power. In our toolbox, we have lempented two approximate methods
for performing power calculations. The first methedntended for the planning phase,
i.e., before data are collected, and can be usaibt@in approximate estimates of the
required sample size or the power to detect aqueati effect size for a given sample
size. The second method has a different purposeelyato provide an estimate of the
power of a realized study, i.e., after the dateehasen collected.

11



The first method is based on a simple extensiorthef sample size and power
formulae for a cross-sectional study with a una@imeasurement (Fitzmaurice et al.,

2011). In a two-group study, the approximate saraje N per group is:
3 2
N = (2(1—0/2) + Z(l—y)) 2¢
= 7
where1-y is the power of the tesq is the significance levez,_,,,, Z,.,denote the

,(2.8)

(1-a/2)x100% and (1-y) x10(% percentiles of a standard normal distributi s
the effect of interest, which for example can bg alement of the vect 5 considered

as a mixed effect (e.qg., intercept or slope) ¢*ds the corresponding diagonal element
of the following covariance matrix

c=0?(z]z,) +D,
with Z_ denoting the subject-level common random effeesgh matrix for the subjects
in the study (i.e., assuming a balanced study).

Equation (2.8) can be re-arranged to determingtweer of the planned study given
a sample size:

2
Zo-y = N 2%}2 ~Zyary)- (2.9)

Finally, a conservative approach for adjustinggossible missing data is to inflate
the required sample sizN in each group to account for the expected proporof
subjects who will drop out before the completiortled study. E.g. if the rate of attrition
is expected to be 10% in each group, the sampdeirsigach group should N/0.S.

The second method for power calculations allowsoeenprecise approximation of the
power of a realized (retrospective) experiment githe actual unbalanced data over
time with the missing data pattern). It is basedaomon-central F-approximation to the
distribution of the F-statistic in equation (2.8)der the alternative hypothesis (Helms,

1992). The degrees of freedom of the non-centralisfibution are ¢ =rank(L)

ancv, = ini -rank([xZ), withx = [X/x]...x]]" and Z=Diag([Z,Z,.....Z,])

i=1

12



being the full fixed and random effects design ma#f of the study. The non-centrality
parameter is given tnc= (L,[?)T (LC masymptotiC(B)LT )_1 L.

This non-central F-distribution can be used to grenf power computations for tests

of fixed effect hypotheses. The approximate power i
1-y=1-F(cv;c,v,nc), (2.10)
where F(cv;c,ve,nc) is the cumulative distribution function of the roentral F-

distribution evaluated at the critical val cv = F‘l(l—a;c,ve), which is the inverse of

the cumulative distribution function of the centfaldistribution with c,v, degrees of

freedom evaluated 1-a.

2.3 Alternative Methods for Analyzing L ongitudinal Neuroimaging Data

Barring notable exceptions that use appropriate Lividdels, e.g. (Davatzikos and
Resnick, 2002; Driscoll et al., 2011; Lau et aD0&; Lerch et al., 2005; Shaw et al.,
2008; Thambisetty et al., 2010; Tosun et al., 20/@jtwell et al., 2011), there are two
alternative methods that have been widely usechadyae LNI data in a large number of
prior studies. The first approach is repeated nreas(or within-subject) ANOVA, e.g.
(Asami et al., 2011; Blockx et al., 2011; Bonnealkt 2001; Giedd et al., 1999; Ho et al.,
2003; Kaladjian et al., 2009; Mathalon et al., 20Bantelis et al., 2003; Resnick et al.,
2010; Sidtis et al., 2010; Sluimer et al., 200%jclk can be shown to be equivalent to a
linear model with at most a single random effe¢iere, measurement occasions are
treated as levels of a within-subject factor andetiis not modeled as a continuous
variable. Hence the method is only well suitedidalanced longitudinal data with a small
number of serial measurements. Furthermore, therelation among repeated
measurements, if modeled, is supposed to arise frmmadditive contribution of an
individual-specific random effect, namely a randonercept. This imposes a particular

covariance structure known as compound symmetry:

Var(Yij )= g+ 0a;

Corr(Yij !Yik): Oﬁiioz (| =1,.., N), (], k=1,..., n),j z Kk

13



where g’ and g’ are the variance of the random effect and the umeasent error
respectively. This structure for the covariance $@se justification in certain designs.
For example, in an fMRI experiment where the withirbject factor is randomly
allocated to subjects, compound symmetry can htdavever, the constraint on the
correlation among repeated measurements is novapgie for longitudinal data, where
the correlations are expected to decay with inangaseparation in time. Also, the
assumption of constant variance across time is afteealistic.

Another common approach to the analysis of LNI dathuces the sequence of
repeated measures for each individual to summdunesde.g. the annualized difference
between two measures, the slope of a regressiendimdeformation tensors), e.g.
(Desikan et al., 2011; Fotenos et al., 2005; Fougual., 2009; Frings et al., 2011,
Hedman et al., 2011; Holland et al., 2009; Hud.e2810; Hua et al., 2009; Jack Jr et
al., 2009; Josephs et al., 2008; Kalkers et aD22&asai et al., 2003; Paviour et al.,
2006; Sabuncu et al., 2011; Sluimer et al., 200BitWéll et al., 2007). These summary
measures are then submitted to standard pararoetnan-parametric statistical methods
for cross-sectional analysis. Such an approachtigppropriate when the data are
unbalanced over time, since summary measures @tilb@ drawn from the same
distribution (e.g. will have different variance)plating a fundamental assumption made
by standard statistical methods. In addition, aseaperiments demonstrate there can be
a significant loss in statistical power due to igng the correlation among the repeated

measures and omitting subjects with a single timietp

2.4 Longitudinal ADNI Data

In our experiments presented in the following settive analyzed longitudinal brain
MRI data (T1-weighted, 1.5 Tesla) from the Alzherrésease Neuroimaging Initiative
(ADNI). The data were processed with FreeSurfersjoa 5.1.0,
http://surfer.nmr.mgh.harvard.edu) and its new itinal processing pipeline
(http://surfer.nmr.mgh.harvard.edu/fswiki/LongitodlProcessing) (Reuter and Fischl,
2011; Reuter et al., 2010; Reuter et al., 2012¢ FiteeSurfer processing pipeline is fully
automatic and includes steps to compute a repras@mbf the cortical surface between
white and gray matter, a representation of thequdace, a segmentation of white matter

14



from the rest of the brain; to perform skull stiipg bias field correction, nonlinear
registration of the cortical surface of an indivadlwith a stereotaxic atlas, labeling of
regions of the cortical surface, and labeling df-sortical brain structures. Furthermore,
for each MRI scan, FreeSurf@atomaticallycomputes subject-specific thickness
measurements across the entire cortical mantlevithth anatomically defined cortical
regions of interest (ROIs) such as the entorhingkes, volume estimates of a wide range
of sub-cortical structures such as the hippocamgnus estimates of the intra-cranial
volume (ICV). In all subsequent analyses, we sumthed/olumes of the two
hippocampi to obtain the total hippocampal volumé averaged thickness
measurements from the bilateral entorhinal cort&sRo compute the mean thickness
within the entorhinal cortex.

The longitudinal stream in FreeSurfer (Reuter gt2812) utilizes an unbiased
subject-specific template (Reuter and Fischl, 20Whjch is created by co-registering
scans from each time-point using a robust and geveonsistent registration algorithm
(Reuter et al., 2010). Several steps in the prawgss the serial MRI scans (e.qg., skull
stripping, atlas registration, etc.) are then alited with common information from the
subject-specific template. This strategy has béemwa to lead to increased statistical
power and better separation of groups based ophatmates (Reuter et al., 2012). Note
that the publicly distributed version of FreeSudédongitudinal stream does not handle
subjects with a single MRI scan (i.e., single Yjsithich traditionally have been
processed using cross-sectional tools. Since thesectional image processing steps
are different from the longitudinal stream, inctusiof single time point measurements in
subsequent statistical analysis can introducess Beademonstrated in our supplementary
analysis. See also (Reuter et al., 2012) wherm#asibias was quantified by processing
the first time point cross-sectionally and the setlmngitudinally (initializing it with
results from the first) in a test-retest study withexpected structural change. To address
this issue we modified FreeSurfer's longitudinahiework to process subjects with a
single time point in the following manner: we cesha pose normalized (upright) version
of the input images by symmetrically registeringith its left-right reversed image into
a mid-space (Reuter et al., 2010), we then prodasss the subject-specific template

and used it for the initialization of subsequenaga processing steps, such as skull
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stripping. This ensures the input image from aectthjith a single scan undergoes the
same processing and interpolation steps as seréges in the longitudinal stream and
thus makes results comparable (see Supplementagyri&ian

Tables 1 and 2 provide descriptive statistics efdhalyzed sample. We subdivided
the subjects into five clinical groups. (1) Stabéalthy control (HC): those who were
clinically healthy throughout the follow-up period@) Converter HC (cHC): those who
were clinically healthy at baseline but converted/ild Cognitive Impairment (MCI, a
transitional phase between healthy and dementia)tftger et al., 2006) or dementia
stage of Alzheimer’s disease (AD) within the follap period. (3): Stable MCI (sMCI):
those who were categorized MCI at baseline andiredaso throughout the study. (4)
Converter MCI (cMCI): those who were MCI at baseland progressed to the dementia
phase of AD during follow-up. (5) AD patients: tikosho were diagnosed with dementia
of the Alzheimer type at baseline.

In our experiments, we only focused on two biomeskeamely mean thickness
within the entorhinal cortex (averaged across hph@ses; ECT) and total hippocampal
volume (HV), since these are two classical MRI-dgedli markers that are known to be
strongly associated with early AD (Dickerson et 2001; Jack Jr et al., 1997). These

measurements were automatically computed usingSkrésr.

ADNI is a multi-site study, where the MRI data weddlected using a range of
scanner types. Although a significant amount abréfivas put into matching the imaging
protocol and quality across sites (via phantomsrigject scans), there is still a chance
that the coil type has an effect on the analysis.ddhducted a supplementary analysis to
assess this effect. Our results indicate that tivere two colil types that had a significant
influence on the measurement of hippocampal vol(see Supplementary Table S3), but
our general conclusions about longitudinal chamga® not altered. Since there was a
significant number of subjects for which coil tyipdormation were not provided (and
therefore these subjects were omitted from the lsapgntary analysis), we decided to

drop coll type information from all our subsequanalyses in order to boost sample size.

16



Unless specified otherwise, all analyses incluthedfollowing independent variables
as fixed effects: time from baseline, clinical gpanembership (HC was the reference
group and there were indicator variables for atiaing groups. E.g., for the sMCI
indicator, the value was one if the subject wasicdilly categorized as sMCI and zero
otherwise), the interaction between clinical gringicators and time from baseline,
baseline age, sex, APOE genotype status (onedaeter and zero if not), the interaction
between APOE genotype status and time (of scan) baseline (note that this variable
was included based on the evidence that e4 actedeattophy during the prodromal
phases of AD (Jack Jr et al., 2008)), and educdtioyears). Furthermore an estimate of
intra-cranial volume (ICV) (Buckner et al., 2004asvincluded as a fixed effect for the
analysis of HV, but not ECT since there was noifitant association with the latter.
Random effects were determined via a likelihootbrst as explained above. In all
analysedothintercept and time were included in the final maerandom effects. This
suggests that compound symmetry did not hold foradd ECT in the longitudinal
ADNI.

In general, longitudinal studies are conductedsgeas group differences between the
trajectories of variables of interest. Therefore,s@nstrained our analysis to the
association between the group-time interaction, @eup-specific atrophy rate) for the
two biomarkers: HV and ECT.

3RESULTS
3.1 Comparingratesof atrophy acrossfour clinical groups

In our first experiment, we excluded converter HBjscts, since this is the smallest
group (N=17) and little has been reported on thisg in prior work. Our goal here is to
illustrate the LME methodology for characterizinglisknown differences between four
well-studied clinical groups: HC, stable MCI, conee MCI and AD patients (see Tables
1 and 2 and previous section). Figure 1 showsatlvessplots for the two biomarkers
(HV and ECT) in these four clinical groups. Thes#s reveal that a linear model is
likely to be sufficient to capture follow-up trendad there is no need for including

higher order terms for time.
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---- Figure 1 about here ----

The hypotheses we tested and the inference régultalue, degrees of freedom —DF-
, and uncorrected p-value) are as follows. Noteshemewhat unusually, the DF depends
on the contrast, because of the Satterthwaite-b@geaximation we use (see Equation
2.7). We include exact expressions for these hygsath in the Supplementary Material.

H1) Is there any difference in the rate of change antbadour groups (HC, sMCI,
cMCI, and AD)?
HV: F value =43.7, DF =[3645.3],p=0
ECT: Fvalue =40.4, DF =[3632.9],p=0
H2) Is there any difference in the rate of change betwdC and sMCI?
HV: F value = 13.8, DF =[1 552.9], p = 2.3e-4
ECT: F value = 14.6, DF = [1 526.7], p = 1.5e-4
H3) Is there any difference in the rate of change betwsMCI and cMCI?
HV: F value = 28.3, DF =[1 578.3], p = 1.5e-7
ECT: F value = 30.3, DF = [1 554.3], p = 5.5e-8
H4) Is there any difference in the rate of change betweMCI and AD?
HV: F value = 5.1, DF = [1 798.8], p = 0.02
ECT: F value = 1.4, DF =[1 830.6], p = 0.22
Figure 2 shows the retrospective power (Equati8y fdr comparing the rates of
atrophy between sMCIl and cMCI using the ADNI d&&T provides slightly more
power than HV in detecting longitudinal group difaces. Table 3 provides sample size
estimates (based on Equation 2.9) for prospectiwdies that compare atrophy rates
between sMCI versus cMCI and AD versus HC. Effe#sand dropout rates were

computed based on the ADNI sample.

---- Figure 2 and Table 3 about here ----

3.2 Comparing rates of atrophy between HC and converter HC

Our second experiment focused on the converterdfiC) subjects (N=17), who
were clinically healthy at baseline yet progresseMCI or AD over the course of the
study. Mean time for conversion was 2.6 years fb@seline (with a standard deviation
of 1.1 years). We compared HV and ECT atrophy ragdween cHC and HC subjects.
Figure 3 shows the corresponding lowess plotseRtorhinal cortex, the lowess plot
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suggests that cHC subjects exhibit a nonlineaedtayy, which can be captured with the

following piecewise linear model:
B+6t+ B(t-1.2),, (3.1)
wheret is time (in years) from baseline, a(x), is only nonzero and equal xif X is

positive and zero otherwise. We note that the te2rin Equation (3.1) comes from the
visual inspection of Figure 3b that reveals a bpe#aht in the trajectory of ECT around
1.2 years. For the hippocampus, we adopted a siimplar model as we did in the

previous experiment.
---- Figure 3 about here ----

The hypotheses we tested and the inference reseltss follows.

H5) Is there any difference between the trajectoriesH and HC?
HV: F value = 8.8, DF = [1 218.0], p = 0.0034
ECT* F value = 4.3, DF = [2 392.7], p = 1.5e-4
H6) Is there any difference between the first and sgsbopes of the piecewise linear
model in cHC subjects?
ECT: F value = 4.5, DF =[1 622.3], p = 0.034
H7) Is there any difference in the first slopes of H@ aHC subjects?
ECT: F value = 0.0, DF = [1 685.4], p = 0.97
H8) Is there any difference in the second slopes obHE sHC subjects?
ECT: F value = 7.6, DF =[1 514.2], p = 0.006

Figure 4 shows the retrospective power (Equati@é0)Xor comparing the rates of
atrophy between HC and cHC using the ADNI dataeHEV provides slightly more

power than ECT in detecting longitudinal group eliénces.
---- Figure 4 about here ----
3.3 Comparison of LME to alter native methods

In the third experiment, our goal was to provideoarective comparison of the LME
approach with the two widely-used alternative mdthamamely repeated measures

2 Note that the inference involves two parametergsesmponding to the two slopes in the piecewise model
of (3.1).
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ANOVA (rm-ANOVA) and cross-sectional analysis oétklope (x-slope), i.e.

annualized rate of atrophy estimated for each iddad. We implemented rm-ANOVA

via a LME model with a single random effect for theercept. As we discuss above, this
imposes a compound symmetry structure on the cvegibetween repeated measures —
a model that is unlikely to be appropriate for tgdiLNI data. For the second benchmark,
we estimated each subject’s slope using the biElatdi(in the least square sense) to its
longitudinal measurements. Then we conducted aatdrieast-square regression (GLM)
with the same independent variables as the othentethods.

We were interested in assessing the specificitysiieity and reliability of the three
methods in a realistic longitudinal design. To aghkithis, we conducted two-group
comparison analyses on the rates of HV loss in tlfjests and AD patients, using an
empirical strategy inspired by (Thirion et al., Z00There were two main reasons for our
particular choice of biomarker and groups. Firdtlgm prior work we were confident
that there is a significant difference betweenHieatrophy rates of HC and AD groups
(Jack Jr et al., 2010). Secondly, our sample stienates (see Table 3) indicated that
with a relatively small number of subjects, we lagbod chance of detecting the
difference in atrophy rates. Hence, we could draelatively large number of pseudo-
independent subsamples (with say N = 10-30 subjemts each group) from the entire
ADNI sample to conduct our analyses.

For each sample size value (e.g. N = 15 per group)yandomly selected two sets of
independent AD+HC samples, (i.e., two independamtpdes of 2N) from the eligible
portion of the ADNI sample (all ADNI HC and AD swajts). There was no overlap
between the two independent samples and each saomikined the same number of
AD and HC subjects. We repeated this procedurgig®$s to obtain 200 random pairs of
independent AD+HC samples of a certain size ($at@0 random AD+HC samples in
total).

For each sample, we used the three methods (LMBNRQVA and x-slope) to
compute parametric p-values for the difference keetwthe rates of atrophy of the two
clinical groups (AD vs. HC). Next, we conductedeaputation test (Good, 2000;

Nichols and Holmes, 2002) for each sample by simgffihe clinical group memberships

and repeating the inference (2000 permutationsjoparametric p-value was
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computed for each sample and each method baséu oartking (with respect to the
2000 permutations) of the corresponding paramptkialues. The permutation approach
relies on assumptions that are weaker than thagereel for the parametric p-values and
is known to yield an accurate assessment of thieghibty of false positive (type 1 error,
p-value, or equivalently specificity) when the nuanbf permutations is large (Nichols
and Holmes, 2002).

Thus, we considered the agreement between the paramnd non-parametric p-
values as a measurement of the accuracy of thenptnia p-values, or the specificity of
the parametric model. Figure 5 shows the mean dgeer across the 400 random
AD+HC samples) absolute difference between thempanac and non-parametric p-
values for different sample sizes and differenthods. These results revealed that both
LME and x-slope provided significantly higher sgety than rm-ANOVA for modest

sample sizes (2N less than 50).

---- Figure 5 about here ----

To assess sensitivity, we computed the detectrae iositive) rate across the 400
samples (200 pairs) for a range of p-value (alpiw@sholds and 2N=20 (see Figure 6).
Here we assumed that the underlying ground truthtivat there is a difference between
hippocampal atrophy rates of HC versus AD subjdottances where the p-value was
less than an alpha threshold were considered actieh” and remaining cases were
treated as a false negative. The true positive(oatsensitivity) was quantified as the
fraction of detections. Our results indicate thtH yields significantly higher sensitivity
than the two alternative approaches. Note thasgethesults indicate we have about 70%
power with the threshold (alpha) set to 0.05 and=220. This is in agreement with the

approximate sample size estimate computed for 80&ep(Table 3).

---- Figure 6 about here ----

Finally, we were interested in quantifying repedih by comparing results between

the two independent samples obtained at each raddam (200 pairs). Figure 7 shows
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the rate at which each method was able to detedifference irbothsamples for a
range of p-value thresholds (alpha values). Theselts suggest that LME vyields

longitudinal findings that are more likely to bgeatable in an independent sample.

---- Figure 7 about here ----

3.4 Assessing the effect of including subjects with a single time point

In this final experiment, our goal was to quanttig effect of including subjects with a
single time-point into the LME-based analysis afddudinal data. The theoretical
expectation is that data from subjects with a it may contain valuable information
about between-subject variability, which can imtunprove our inference on the
remaining longitudinal measurements. In practicestnstudies choose to exclude these
subjects in their analyses, because their methanisat handle these cases and/or they
are cautious of introducing a bias into the analysince there might be inter-group
differences in dropout rates. However, the LME apph recommends to include all
scans from all time-points into the analysis (Figmmce et al., 2011).

As an objective assessment, we conducted the fimigpexperiment. We first
established a sample of 50HC+50AD subjects fromAfDBIl data, in which each subject
has four repeated measurements (MRI-derived hipppabvolume). We call this the
“full sample.” We then performed 1000 simulatiohmseach simulation we randomly
selected 20 subjects from the AD group (20% offtiflesample) to remove their last
three repeated measures from the data (therefavantgonly their baseline HV
measurements). Thus, for each simulation we hadduted sample,” which consisted of
a group of 50HC+30AD completers (i.e., they hadallr repeated measures) and 20 AD
subjects with a single measurement (“dropouts”).tiéém fit two LME models with the
same independent variables as above: one moddlasasl on the reduced sample
excluding the dropouts (i.e., only 50HC+30AD contgts). The second model was
computed based on the entire reduced sample, witkided the 20 AD dropouts. We
then compared these model fits with that obtainethe full sample. Figure 8 shows the
difference between the fixed effect coefficienirastes obtained on the reduced sample

(with and without the dropouts) and full samplee$é results suggest that including
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subjects with a single time-point (dropouts) insesathe accuracy of the model fit, and
would thus lead to improved inference.

---- Figure 8 about here ----

4 DISCUSSION

Linear Mixed Effects (LME) models offer a more paW and versatile framework
for the analysis of longitudinal data than manyeoghopular methods (Fitzmaurice et al.,
2011). The LME approach elegantly handles unbathdeg¢a (with variable missing rates
across time-points and imperfect timing), makesaisibjects with a single time-point
to characterize inter-subject variation, and presid parsimonious way to represent the
group mean trajectory and covariance structure éatvgerial measurements. Yet, its use
in neuroimaging seems to be limited to a small nemnab studies, which represent a
minority in the rapidly growing LNI literature. Wleund that many prior LNI studies
used sub-optimal approaches that at best offeiceztipower to detect effects and at
worst can lead to incorrect inferences. Our goahis work was to advocate the use of
LME models for LNI data analysis by providing tieoretical background and the
implementation of an array of computational tobksttouild on the LME framework. We
intended to illustrate the proper use of thesestasing a well studied, real-life
longitudinal dataset. Finally and most importantli provided a validation of our tools
and an objective comparison with two popular aliie methods via analyses on these
data.

In the first experiment, we applied the LME modehtwell-known pair of AD
biomarkers (hippocampal volume —HV- and entorhaumatex thickness —ECT-) and
obtained results that were in agreement with prork. The lowess plots revealed that a
linear model was suitable to characterize the kmadgnal trajectories in the follow-up
period. Our inferences indicated that there wagrfgant difference between the HV
and ECT atrophy rates across HC, sMCI, and cMCjesta This difference diminished
(and became statistically insignificant for ECT)emhcomparing cMCI subjects and AD
patients.

In the second experiment, we compared atrophy betiveeen HC subjects and

converter HC subjects, who were clinically healéthypaseline but progressed to MCI or
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clinical AD at follow-up. The lowess plots revealad intriguing, nonlinear trajectory of
entorhinal cortex thickness in the cHC group, whiohld be captured via a piece-wise
linear model with a knot at 1.2 years. Our LME-lzhsderence further confirmed that
this was an appropriate model, since the two slopése piece-wise linear model were
statistically significantly different. Intriguinglythe knot (or elbow) of the piece-wise
linear model (at around 1.2 years) was on averhgatdl.4 years prior to the event of
clinical conversion, suggesting that atrophy rateselerate prior to the beginning of
clinical symptoms. Furthermore, our inferences toréd that in the cHC group both HV
and ECT exhibited an overall longitudinal trajegttitat was statistically significantly
different from the controls. For ECT this differenwas driven by the apparently sudden
acceleration of atrophy in the cHC subjects at adaihe end of the first year of the
study. For HV, there was no such nonlinearity thas discernible in the group
trajectories.

In the third experiment, our goal was to provideoljective assessment of the three
competing methods widely used to analyze longitaidiata. We focused on HV, a well-
established marker of AD, which also has a reltilarge effect size. This enabled us to
interrogate a large number of random sub-sampleslatively small size, where the
effect of interest was detectable and average athese random experiments. The
ADNI data, with its variable missing data pattamperfect follow-up timing, and multi-
site nature, provided a perfect example of a realisN| study, in which we can
objectively quantify the performance of the differenethods. Our results supplied
evidence supporting our theoretical expectatidms1tME approach provides more
sensitivity in a realistic LNI setting than repehtaeasures ANOVA or the analysis of
summary metrics such as annualized atrophy ratéds geod control on specificity.
Furthermore, the resulting findings are more likielyoe replicated in an independent
study.

Finally, in a fourth experiment, we aimed to qugntine improvement in model fit
afforded by the LME method by including subjectshva single time-point. To achieve
this, we first established a full dataset with 90 and 50 HC subijects, all of which had
four scans. Then we simulated 1000 random subsétsscsample, where 20 AD patients

dropped out after the first visit. Our results, @magain, were in line with the theoretical
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expectations: including subjects with a single tpo@nt can dramatically improve the
accuracy of the model fit in the LME approach.

The present study focused on the univariate arsalygiere the correction for
“multiple comparisons” is not an issue. In futureriy, we intend to extend the LME
framework and our computational tools to the massariate setting, where one
interrogates effects across a large number of wakels. This will be the topic of an

upcoming follow-up paper.

5 CONCLUSIONS

The Linear Mixed Effects (LME) approach providegaaverful and flexible framework
for the analysis of LNI data. We have implemented @alidated these computational
tools, which will be made freely available withineéSurfer to complement its

longitudinal image-processing pipeline.

Acknowledgements

Data collection and sharing for this project wasded by the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) and the National titates of Health (NIH) (grant U01
AG024904). The ADNI is funded by the National Ihste on Aging (NIA), the National
Institute of Biomedical Imaging and Bioengineeriagd through generous contributions
from the following: Abbott Laboratories, AstraZeae&B, Bayer Schering Pharma AG,
Bristol-Myers Squibb, Eisai Global Clinical Developnt, Elan Corporation Plc,
Genentech Inc, GE Healthcare, GlaxoSmithKline, gereetics, Johnson and Johnson
Services Inc, Eli Lilly and Company, Medpace Ineiek and Co Inc, Novartis
International AG, Pfizer Inc, F. Hoffman-La RochtlLSchering-Plough Corporation,
CCBR-SYNARC Inc, and Wyeth Pharmaceuticals, as aglhonprofit partners the
Alzheimer’s Association and Alzheimer’s Drug Diseoy Foundation, with participation
from the US Food and Drug Administration. Privagetsr contributions to the ADNI are
facilitated by the Foundation for the NIH. The gesnorganization is the Northern
California Institute for Research and Education brad the study is coordinated by the

Alzheimer’s Disease Cooperative Study at the Umsitgiof California, San Diego. The

25



ADNI data are disseminated by the Laboratory foufdémaging at the University of
California, Los Angeles.

Support for this research was provided in partigyNational Center for Research
Resources (P41-RR14075), the National Institutd8fomedical Imaging and
Bioengineering (RO1EB006758), the National Insétah Aging (AG022381), the
National Center for Alternative Medicine (RC1 ATO@B-01), the National Institute for
Neurological Disorders and Stroke (RO1 NS0525851®R21NS072652-01,
1RO1NS070963, 2RO1NS042861-06A1, 5PO1NS058793H¥8N\ational Institute of
Child Health and Human Development (RO1-HDO71664) was made possible by the
resources provided by Shared Instrumentation GESIORR023401, 1S10RR019307,
and 1S10RR023043. Additional support was provided e Autism & Dyslexia Project
funded by the Ellison Medical Foundation, and by iH Blueprint for Neuroscience
Research (5U01-MH093765), part of the multi-ingitnal Human Connectome Project.
Dr. Sabuncu received support from a KL2 Medicaldesh Investigator Training
(MeRIT) grant awarded via Harvard Catalyst, Theuwdad Clinical and Translational
Science Center (NIH grant #1KL2RR025757-01 andnfome contributions from
Harvard University and its affiliated academic hle@lare centers), and an NIH K25 grant
(NIBIB 1K25EB013649-01).

Finally, the authors would like to thank Nick Schmeky and Louis Vinke for their
efforts in downloading and processing the ADNI MiRans.

26



TABLES

Table 1. Longitudinal ADNIsample characteristics

Variable Stable Converter Stable Converter AD value
HC HC MCI MCI P
Number of
Baseline 759 +5 76.7 5.1 748 +7.7 4.7+ 7.1 75.2+75 0.3464
age [60-90] [63-84] [55-90] [55-89] [55-91]
Female % 48.1 47.1 33.48 38.6 47.3 <d.01
APOE<4
Carriers %  25.7 41.2 43.2 67.5 66  <0.000f
] 16.1+2.8 16.1+28 15.6 +3.1 15.7+2.9 14.7 +3.2
Education <0.001
[6-20] [12-20] [4-20] [6-20] [4-20]

Baseline age (in years) and education values aneegn + standard deviation; Ranges are listed in
square brackets; p-values indicate effects achesgroups
Key: Converter MCI, mild cognitive impairment subje who convert to Alzheimer's disease;
Converter HC, healthy controls who convert to eiti€1 or Alzheimer’s disease.

#Using Fisher's exact test; ANOVA-derived p-valuesrgvused in the other cases.
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Table 2. Number and timing of scans per time point by chhigroup (Stable HC, N=210;
Converter HC, N=17; Stable MCI, N=227; Converter M8=166; AD, N=188).

Stable Converter Stable Converter

Time point He He MCI MCI AD Time from baseline
baseline 210 17 227 166 188 0
year 0.5

(month ) 17 17 194 161 166  0.58 +0.07 [0.21-0.94]
year 1 183 17 177 153 150  1.08 +0.07 [0.68-1.38]
year 1.5 0 0 153 136 0 1.59+ 0.08 [1.26-1.92]
year 2 129 14 108 106 96  2.09+0.10[1.58-2.88]
year 3 115 6 68 70 0 3.09 + 0.09 [2.52-3.45]
year 4 11 0 3 10 0 4.12 +0.09 [3.98-4.38]
Total 845 71 930 802 600

Time from baseline (in years) is in mean * standiation; Ranges are listed in square brackets.
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Table 3. Conservative estimates of total sample size (2Nere/tN is the number of
subjects in each group) for two prospective lordjital studies (two-year studies with 5
serial scans obtained every six months from baseltomparing Alzheimer patients
(AD) vs healthy controls (HC) and stable MCI (sM@$) converter MCI (cMCI) groups,
respectively. The power is set to 80% and the effiee (rate of change per year) is set to
the slope regression coefficient estimated by trayais of the ADNI data. Sample size
estimates werénflated by a factor of 1.84 based on the drop out ratemiesl in the
ADNI data (45.5% of subjects dropped out at the @@l years).

Prospective longitudinal studiesEffect size (per year)  Total sample size

AD vs HC / HV -131.94 mm 30
ADvs HC/ ECT -0.1 mm 32
cMCI vs SMCI / HV -62.99 mrh 162
cMCI vs sMCI/ ECT -0.05 mm 146

Key: HV, total hippocampal volume; ECT, averageoeninal cortical thickness
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FIGURES

Figure 1. Locally weighted smoothed mean measurement trajedtmvess plot) for

each of the four clinical groups. This method prEiia smooth curve by centering a

window of fixed size at each time-point and fittiagtraight line to the data within that

window. The lowess estimate of the mean at a tioiatps simply the predicted values at

that time-point from the fitted regression line this plot, the fraction of the total number

of data points included in the sliding window was$ t® 0.7. HC: healthy control; sSMCI:

stable MCI; cMCI: converter MCI; AD: Alzheimer patits. (A) Hippocampal volume
(HV). (B) Entorhinal cortex thickness (ECT).
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Figure 2. Statistical power versus alpha (false positive)reta@liscriminate the atrophy

rates of stable and converter MQ/: hippocampal volume. ECT: entorhinal cortex

thickness.
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Figure 3. Locally weighted smoothed mean measurement trajefitmwess plot) for two
groups. This method produces a smooth curve bydagta window of fixed size at
each time-point and fitting a straight line to ttega within that window. The lowess
estimate of the mean at a time-point is simplyghrezlicted values at that time-point from
the fitted regression line. In this plot, the fiantof the total number of data points
included in the sliding window was set to 0.7. Hi@althy controls who remained so
throughout the study; and cHC: converter HCs, wikoavhealthy at baseline but
progressed to MCI or AD during follow-up. Mean tinweprogression was 2.6 years from

baseline. (A) Hippocampal volume (HV). (B) Entordlicortex thickness (ECT).

Smoothed Mean Measurement Trajectories

e, — O

63001 N ====cHC
S
‘N
o
6200 oo
S
§~~
6100 oo
S
.,
~~
6000 . . , . . ) . . .
0.5 1 1.5 2 25 3 3.5 4 4.5
Time from baseline (years)

Smoothed Mean Measurement Trajectories

3867

3.55F

351

3.451

£
= 34f
O
w
\‘ — O
335 [ ‘\ -——— HC
[
\\\
N,
33 AN
.,
>,
..
“
3250 .

30 . . . . . . . . )
0 0.5 1 1.5 2 25 3 35 4 45
Time from baseline (years)

(B)

33



Figure 4. Statistical power versus alpha (false positive)ret@liscriminate the atrophy

rates of stable and converter healthy controls (HY) hippocampal volume. ECT:

entorhinal cortex thickness.
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Figure 5. The mean absolute difference between non-paranagtdgarametric p-values
for three statistical methods in comparing hippogahvolume loss rates between
healthy controls (HC) and Alzheimer patients (AExperiment 3) as a function of total
sample size. LME: Linear Mixed Effects model wigdtndom intercept and slope. Rm-
ANOVA: random effects ANOVA. X-Slope: GLM-based sgsectional analysis of

annualized rate of atrophy (slope).
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Figure 6. Detection rate (the frequency of true positivesjifferentiating hippocampal
volume loss rates between healthy controls and Afizpts (Experiment 3), as a function
of alpha (p-value threshold) with 2N=20 subject8lH: Linear Mixed Effects model

with random intercept and slope. Rm-ANOVA: randdifie@s ANOVA. X-Slope:

GLM-based cross-sectional analysis of annualizeglabatrophy (slope).
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Figure 7. Repeatability (the frequency at which a methodedéhtiates hippocampal
volume loss rates between healthy controls and Afizpts intwo independendamples
of 2N= 20) versus alpha (p-value threshold) (Expent 3). LME: Linear Mixed Effects
model with random intercept and slope. Rm-ANOVAdam effects ANOVA. X-Slope:
GLM-based cross-sectional analysis of annualizeglahatrophy (slope).
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Figure 8. The influence of including subjects with a singtad-point on LME-based
inference results. MRI-derived total hippocampdlwee was the dependent variable.
The full sample contained 50 HC and 50 AD subjeaitsyith 4 visits (scans). We had
1000 random simulations, in which a reduced dataastgenerated, by treating 20
random AD subjects as dropouts and discarding tasiithree scans. The y-axis shows
the averagéifferencebetween the coefficient estimates obtained omdbaced sample
by including (black bars) or discarding (white Batse 20 dropout AD patients, and the
coefficients from the full sample. The error baln®w the standard deviations across
1000 random simulations. These results suggesiritlatding the subjects with a single
time-point increases the accuracy of the modeirfd introduces minimal bias.
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HIGHLIGHTS
We discuss Linear Mixed Effects (LME) models in tumtext of longitudinal
imaging
We contrast LME with widely used methods in londihal imaging
We illustrate, validate and benchmark LME-based matational tools

These tools will be freely available in FreeSurfer
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