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Amyloid-b Associated Cortical Thinning in
Clinically Normal Elderly
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Objective: Both amyloid-b (Ab) deposition and brain atrophy are associated with Alzheimer’s disease (AD) and the
disease process likely begins many years before symptoms appear. We sought to determine whether clinically
normal (CN) older individuals with Ab deposition revealed by positron emission tomography (PET) imaging using
Pittsburgh Compound B (PiB) also have evidence of both cortical thickness and hippocampal volume reductions in a
pattern similar to that seen in AD.
Methods: A total of 119 older individuals (87 CN subjects and 32 patients with mild AD) underwent PiB PET and
high-resolution structural magnetic resonance imaging (MRI). Regression models were used to relate PiB retention to
cortical thickness and hippocampal volume.
Results: We found that PiB retention in CN subjects was (1) age-related and (2) associated with cortical thickness
reductions, particularly in parietal and posterior cingulate regions extending into the precuneus, in a pattern similar
to that observed in mild AD. Hippocampal volume reduction was variably related to Ab deposition.
Interpretation: We conclude that Ab deposition is associated with a pattern of cortical thickness reduction
consistent with AD prior to the development of cognitive impairment.
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The possibility of disease-modifying therapies for Alz-

heimer’s disease (AD) has motivated the development

of biomarkers that reflect underlying pathologic proc-

esses. The sequence of pathologic events in AD likely

begins many years, perhaps decades, prior to the develop-

ment of symptoms.1,2 Amyloid-b (Ab) deposition

appears early in the disease, prior to symptoms, and then

plateaus as clinical dementia emerges.3–6 In contrast, neu-

rodegeneration, including loss of synapses, neurons, and

arborization, results in brain atrophy that worsens in par-

allel with cognitive decline.2,6,7 The principal early sites

of Ab deposition are neocortical, typically in the parietal

and frontal regions,4,8,9 whereas the sites of early atrophy

include the medial temporal regions.2,6,10,11 Here we

relate these 2 phenomena in vivo in clinically normal

(CN) older individuals and in clinically established AD

patients, in order to determine the correspondence

between levels of Ab deposition and of atrophy.

It is now possible to observe the relation between Ab
deposition and atrophy in vivo with positron emission to-

mography (PET) imaging using Pittsburgh Compound B

(PiB)9 and high-resolution volumetric magnetic resonance

imaging (MRI) data.2,6 PiB studies have confirmed what

was predicted by earlier postmortem studies,13–15 that a
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substantial fraction (25–50%) of CN older individuals ex-

hibit Ab deposition.16–21 While still in an early phase,

PET studies of Ab deposition in these otherwise normal

individuals suggest evidence of early brain dysfunction

including disrupted default network functional connectiv-

ity,19,21 aberrant default network activity during memory

encoding,18 and even subtle cognitive impairment22,23 that

is offset by cognitive reserve.23 Here we relate the presence

and pattern of Ab-related atrophy observed in AD patients

to the pattern seen in CN older individuals.

Atrophy can be quantified by automated measure-

ment of brain MRI images, which yields estimated thick-

ness measures of anatomically parcellated cortical regions

as well as subcortical volumes.24–27 Such measurements

have revealed a characteristic pattern of cortical thickness

reductions and subcortical volume loss in clinically diag-

nosed AD patients.25,27–29 The AD-like pattern of atro-

phy has also been reported in presymptomatic autosomal

dominant AD,28 and in those with mild cognitive

impairment who go on to develop the clinical diagnosis

of AD.30 More recently, Desikan and colleagues11 identi-

fied a pattern of atrophy in the supramarginal cortex,

entorhinal cortex, and hippocampus with which mild cog-

nitive impairment (MCI) and AD could be distinguished

from normal aging, and Davatsikos and colleagues31 iden-

tified a similar pattern of volume loss that related to cog-

nitive decline among MCI as well as normal control sub-

jects.32 However, these studies used control groups of

older individuals in which amyloid was likely present, but

the impact was not assessed. Studies directly relating struc-

tural data to Ab deposition in CN subjects have yielded

inconsistent results; while some have reported reduced hip-

pocampal volume33,34 or cortical thickness29,34 in CN sub-

jects with greater Ab deposition, others have found this only

among Ab-positive CN35 or in normal individuals with

subjective cognitive impairment.36 Similarly, the impact of

age on amyloid and atrophy has not been consistently con-

trolled. We sought to relate both hippocampal volume and

cortical thickness reductions to a continuous measure of Ab
deposition adjusting for age in a large sample of both Ab-
positive and Ab-negative CN subjects and in AD patients.

We first determined the pattern of cortical thickness

reductions and hippocampal volume loss in mild AD

patients compared to CN subjects, and then investigated

whether a similar pattern of Ab-associated volume loss was

present in CN subjects. We also investigated the age-de-

pendence of Ab deposition and of Ab-associated thickness

reductions in both CN and AD, and quantified the extent

and anatomic specificity of Ab-related volume loss within

each group. We hypothesized that Ab deposition would be

associated with local cortical thickness reductions in regions

associated with the default network37 at early stages of the

pathophysiological process, prior to cognitive impairment.

Patients and Methods

Subjects
Participants were recruited from ongoing longitudinal studies in

aging and during screening for dementia clinical trials at the

Massachusetts General and Brigham and Women’s Hospitals,

and from several local referring tertiary memory clinics (S.S.,

G.M., and D.M.). All participants were studied using protocols

and informed consent procedures approved by the Partners

Human Research Committee. All subjects underwent at least 1

comprehensive medical and psychiatric interview, as well as a

neurological evaluation, to rule out any major medical or neu-

rological disorders that might contribute to cognitive dysfunc-

tion. None of the participants had any notable medical or neu-

rological illness, and none had a history of alcoholism, drug

abuse, or head trauma, or a family history of autosomal domi-

nant AD. None were clinically depressed (Geriatric Depression

Scale <11; Yesavage and colleagues38) or had other psychiatric

illnesses. Each participant was scored on the Mini-Mental State

Examination (MMSE),39 and also underwent a standard battery

of neuropsychological (NP) tests, as reported.23 The mean

(standard deviation [SD]) time between PET imaging and test-

ing was 0.90 (1.9) months.

Subjects were classified into 2 groups, CN (n ¼ 87) and

AD (n ¼ 32). All CN subjects had a Clinical Dementia Rating

(CDR) score of 0,40 MMSE > 27, and performance within 1.5

SD on age-and-education–adjusted norms on cognitive testing

as detailed.23 AD subjects were CDR ¼ 1 and satisfied criteria

for a clinical diagnosis of probable AD according to National

Institute of Neurological and Communication Disorders and

Stroke/Alzheimer’s Disease and Related Disorders Association

criteria.41 Of the 87 CN subjects, 60 had apolipoprotein E

(APOE) genotype data available: 47 were classified as e4-nega-
tive (no e4-alleles) and 13 as e4-positive (one or two e4-alleles).

PET Acquisition and Processing
Carbon-11 PiB PET was acquired and processed as described,

using the distribution volume ratio (DVR) with cerebellar cor-

tex as reference tissue.18,42 Detailed PET methods are discussed

in the Supporting Information.

MR Acquisition and Freesurfer Processing
High-resolution MRI images were acquired using magnetiza-

tion-prepared rapid gradient-echo (MP RAGE) and processed

with Freesurfer (FS) to measure cortical thickness and hippo-

campal volume, as described.18,19 The FS-generated cortical

parcellation defines a large precuneus region of interest (ROI)

that overlaps areas of the posterior cingulate, including Brod-

mann area 23 and 31 along the posterior midline43; we there-

fore denoted this cortical ROI as the posterior cingulate/precu-

neus (PCC) in the following. Further details of FS processing

are in the Supporting Information.

Choice of Proxy Region for Ab Deposition
As proxy ROI for Ab deposition, we chose the PCC because it

is a highly vulnerable, common site of early involvement. In
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addition, however, we evaluated 9 other ROIs that are also vul-

nerable to Ab deposition to determine whether Ab-associated
volume/thickness changes differed when the proxy measure of

PiB retention was from these alternative ROIs: rostral anterior

cingulate, medial orbitofrontal, rostral middle frontal, caudal

anterior cingulate, precuneus, superior frontal, pars opercularis,

caudal middle frontal, inferior parietal, lateral orbitofrontal, and

global.

Dichotomization of PiB Data
Like earlier studies,2,18,19,23,34 we chose a threshold of amyloid

positivity that is somewhat arbitrary, since a rigorous definition

will likely require longitudinal follow-up. As in a previous

report,18 we split the CN group based on partial-volume–

corrected (PVC) PCC PiB retention: subjects with PCC

DVR > 1.60 were classified as CNþ (PiB-positive CN), and

those with DVR � 1.60 as CN�. This is a conservative thresh-

old and classifies fewer CN as PiBþ relative to other criteria

(eg, Hedden and colleagues19). As described below, all analyses

were also performed without the use of a threshold.

Statistical Analyses
We evaluated the relation of hippocampal volume and cortical

thickness to PiB primarily by treating PiB DVR as a continu-

ous variable. Regression models were used to examine the rela-

tionship of hippocampal volume and cortical thickness to Ab
burden in CN and AD groups; regression coefficients for all

models were estimated by ordinary least squares. At each corti-

cal vertex thickness was taken as the dependent variable, and

PVC PCC PiB DVR and age were taken as independent varia-

bles. Clusters of vertices with thickness-DVR regression coeffi-

cient p-values exceeding a predetermined threshold (p ¼ 0.05)

were identified, and cluster-wise statistical significances were

calculated via 5000 instances of a Monte Carlo simulation,

based on the noise distribution of the baseline analysis.44 We

evaluated the relationship of hippocampal volume to PiB reten-

tion using similar regression models, with gender added as a

covariate.11,45–47 Hippocampal volumes (sum of volumes in left

and right hemisphere) were covariance adjusted for total intra-

cranial volume as measured by estimated total intracranial vol-

ume (eTIV) over the full sample prior to inclusion in the

regression equation as the dependent variable.48

Parallel analyses were performed with regional average corti-

cal thicknesses (average of left and right hemisphere thicknesses)

from a set of anatomically defined cortical ROI: global (average

over all cortical ROI), inferior parietal, PCC, parahippocampal,

and entorhinal.26 ROI thickness was taken as the dependent vari-

able, and PiB DVR and age as independent variables.

A hypothetical model of the relationship of cortical thick-

ness and PiB retention was assessed under the assumption that

both followed sigmoid curves, parameterized by a common

time-like parameter (Supporting Information).

The age dependence of cortical thickness or hippocampal

volume was investigated by regressing thickness on age, or volume

on age and gender, in both the CN and AD diagnostic groups.

Volume or thickness contrasts between diagnostic groups (CN and

AD, or CN� and CNþ) were assessed by analysis of covariance

(ANCOVA) implemented as a general linear model, with age and

gender covariates for volume, or age covariate for thickness.

In order to test whether age differences of cortical thick-

ness or PiB uptake depended on APOE carrier status in the CN

group, e4 status (positive if one or two e4-alleles, negative other-
wise) was added to the model as a factor and allowed to interact

with the regression term. Similarly, the differential effect of

APOE status on the relationship of cortical thickness and PiB

uptake in the CN group was assessed by including carrier status

as a factor interacting with the thickness-PiB regression term.

The capacity of regional cortical average thickness to dis-

criminate between the CN� and CNþ groups was assessed by

logistic regression followed by receiving operating characteristic

(ROC) curve analysis. Group membership probabilities pre-

dicted by the logistic regression model with thickness and age

regressors were used to construct a ROC curve, and the area

under the curve (AUC) and its statistical significance were com-

puted (Wilcoxon rank-sum test with continuity correction).

Results

Subject Characteristics
The AD and CN groups differed in MMSE scores and PCC

PiB retention, but not in age, gender, or education (Table 1).

Hippocampal volumes were slightly greater in men compared

to women even after residualization by intracranial volume

(data not shown). Gender was therefore included as a factor

in regression models involving hippocampal volume. Gender

effects were not detected in PiB or cortical thickness data.

Thickness/Volume Contrasts in AD vs CN
Reduced temporoparietal cortical thickness, controlling

for age, was seen in AD compared to CN (Supporting

Information Fig S1). Thickness decreases in AD relative

to CN ranged up to 0.40mm (first/second/third quartiles

¼ 0.20/0.26/0.30mm for vertices in the PCC). The ana-

tomic pattern included posterior cingulate extending into

the precuneus; inferior and superior parietal lobules;

superior, middle, and inferior temporal; fusiform; ento-

rhinal; parahippocampal, perirolandic, and posterior pre-

frontal regions. Anterior and medial prefrontal regions

were less involved (Supporting Information Fig S1). In

ROI contrasts, AD subjects had lower hippocampal vol-

ume (p < 1 � 10�5) and decreased entorhinal, parahip-

pocampal, PCC, inferior parietal, and global thickness

(p < 1 � 10�5), compared to the CN group (Support-

ing Information Fig S2).

Ab-Associated Cortical Thickness/Volume
Reductions in AD and CN

CONTINUOUS Ab (VERTEX-LEVEL ANALYSES). Treat-

ing PCC PiB retention as a continuous measure and

Becker et al: Ab and Cortical Thinning in Normal Aging
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controlling for age, Ab-associated cortical thickness

reductions in both AD and CN subjects were seen in

the posterior cingulate, extending into the precuneus, in-

ferior parietal lobule, superior parietal, lateral temporal,

and lateral prefrontal (Fig 1). In contrast to the AD vs.

CN thickness contrast maps in Supporting Information

Figure S1, significant medial temporal cortical Ab-associ-
ated thickness reductions were not observed. No regions

exhibited significant cortical thickness increases with

increasing PiB retention.

In the CN group, cluster-wise statistical significance

of vertex-level regression coefficients was assessed by

Monte Carlo simulation to correct for capitalization on

multiple comparisons. We identified 7 clusters of vertices

as exhibiting significant thickness reductions with increas-

ing Ab at p < 0.05 (corrected): right posterior cingulate/

TABLE 1: Demographics

CN All CN2 CN1 AD All

CDR 0 0 0 1 0 or 1

n (%F) 86 (66) 68 (65) 18 (67) 32 (44) 118 (60)

Age, yr 75 6 8 (55–90) 73 6 8 (55–89) 79 6 5 (69–90)a 72 6 9 (57–84) 74 6 8 (55–90)

MMSE 29 6 1 (27–30) 29 6 1 (27–30) 29 6 1 (27–30) 22 6 4 (18–27)b 27 6 4 (18–30)

Education, yr 16 6 3 (12–24) 16 6 3 (12–24) 16 6 3 (12–20) 18 6 1 (16–20) 16 6 3 (12–24)

PCC DVR 1.39 6 0.31
(0.98–2.40)

1.25 6 0.13
(0.98–1.58)

1.91 6 0.25
(1.61–2.40)c

2.35 6 0.39
(1.36–2.97)d

1.65 6 0.54
(0.98–2.97)

Values are mean 6 SD (range), except for n, which is number of patients (percentage female).
aDiffers from CN� (p < 0.002).
bDiffers from CN� and CNþ (p < 1 � 10�5).
cDiffers from CN� (p < 1 � 10�5).
dDiffers from CN� and CNþ (p < 1 � 10�5).
AD ¼ Alzheimer’s disease; CDR ¼ clinical dementia rating; CN ¼ cognitively normal; CN� ¼ CN subjects with PCC PiB
DVR �1.60; CNþ ¼ CN subjects with PCC PiB DVR >1.60; DVR ¼ distribution volume ratio; F ¼ female; MMSE ¼
Mini-Mental State Examination; PCC ¼ posterior cingulate/precuneus; PiB ¼ Pittsburgh Compound B; SD ¼ standard deviation.

FIGURE 1: Ab-associated reduction in cortical thickness in CN subjects and AD patients. Regression coefficients expressing
reduction in thickness at each vertex per unit increase in PCC DVR controlling for age (bottom row), and corresponding
statistical significance as p value (top row) in CN or AD groups (left or right column, respectively). Only clusters of 3000 or
more contiguous vertices with regression coefficients exceeding 0.12mm/DVR are shown on the bottom row of surfaces.
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precuneus, left inferior parietal, left and right rostral

middle frontal, left and right supramarginal, and right

superior temporal (Table 2; Supporting Information

Fig S3). There were no areas of significant interaction

between APOE carrier status and age-adjusted Ab-associ-
ated thickness variation in the CN group (n ¼ 60; data

not shown), indicating that thickness-PiB regression slopes

did not differ according to carrier status. To confirm that

the observed significant inverse relation of Ab and thick-

ness was not an artifact of the PET partial volume correc-

tion, we substituted non-PVC PiB DVR for PVC DVR in

the vertex-based regressions. Statistical significance of coef-

ficients in the non-PVC analyses were lower in the CN

group, as expected due to contraction of PET DVR ranges,

but the pattern of the effects did not change (Supporting

Information Fig S4).

CONTINUOUS Ab (ROI-LEVEL ANALYSES). Data in

ROI were expressed as age-adjusted structural change per

unit change in PiB retention for hippocampal volume

(mm3/DVR) and cortical thickness (mm/DVR) (Fig 2).

Significant Ab-associated cortical thickness reduction (sig-

nificant negative regression coefficient expressing change

in thickness per unit increase in DVR) was confirmed in

PCC, inferior parietal, and global ROI, but entorhinal and

parahippocampal thickness and hippocampal volume var-

iations with Ab were not statistically significant.

CN GROUP DICHOTOMIZED INTO CN�/CNþ BY Ab

LEVEL. The vertex-level contrast of CN� vs CNþ
groups revealed age-adjusted thickness reduction in the

CNþ group prominently in posterior cingulate/precuneus,

lateral parietal, and prefrontal cortices (Supporting Infor-

mation Fig S5). Thickness decreases in CNþ relative to

CN� ranged up to 0.19mm (first/second/third quartiles

¼ 0.034/0.064/0.090mm for vertices in the PCC). In

ROI contrasts of CN� vs CNþ groups, lower ROI aver-

age thicknesses were observed in the CNþ group but the

differences did not reach statistical significance possibly

because of lower sensitivity (Supporting Information Fig

S2). Using PCC thickness to discriminate CN� and CNþ
subjects yielded a statistically significant (p < 0.05) logistic

regression model in which a 0.1mm decrease was associ-

ated with an odds ratio of 1.60. The corresponding AUC

¼ 0.70 (p < 0.01), holding age constant at its grand

mean. Other regions examined (parietal, frontal, or global

average) did not achieve a similar discriminative efficiency.

Thickness-Ab Sigmoid Modeling
While Ab-associated thinning was observed in CN sub-

jects as described above: (1) thinning was more anatomi-

cally extensive in the AD group; and (2) significantly

more thinning per unit DVR was observed in the AD

group (eg, 0.4mm/DVR in medial and lateral parietal

areas) than in the CN group (see Fig 1). A vertex-level

assessment of the difference revealed a significant interac-

tion of the thickness-vs-Ab coefficient and clinical status

factor (CN vs AD) in posterior midline and inferior pari-

etal regions (p < 1 � 10�4; data not shown). We related

these observations to candidate time courses along the

hypothetical CN–AD trajectory (see Supporting Informa-

tion), in which the data were evaluated using sigmoid

models to relate PCC cortical thickness and PiB reten-

tion. Assuming sigmoid time functions for PiB increase

and loss of cortical thickness, both with the same rate-of-

TABLE 2: Reduction of Vertex Cortical Thickness with Increasing PCC PiB Retention,
Controlling for Age in CN Subjects

Cortex Xa Y Z Max p Area (mm2)b CWP

Middle temporal, left �58 �12 �20 0.00002 1739 0.075

Inferior parietal, left �30 �65 40 0.00037 3617 0.0002

Supra marginal, left �42 �46 38 0.00032 3627 0.0002

Rostral middle frontal, left �41 35 19 0.0060 2850 0.0028

Posterior cingulate/precuneus, right 5 �57 22 0.000026 8256 0.00020

Supramarginal, right 42 �36 36 0.000013 2106 0.031

Rostral middle frontal, right 24 45 27 0.0019 3634 0.0012

Superior temporal, right 46 �36 8 0.0021 3146 0.0024

Vertex cluster-wise statistics determined by Monte Carlo simulation.
aTalairach coordinates (X, Y, Z) of vertex in cluster with maximum p value.
bSurface area of cluster in standardized cortical surface.
CN ¼ cognitively normal; CWP ¼ cluster-wise p value; DVR ¼ distribution volume ratio; PCC ¼ posterior cingulate/precuneus;
PiB ¼ Pittsburgh Compound B.
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change achieved at the midpoint of the S-shaped portion

of the curves, we calculated how far apart in time these

midpoints would have to be in order to achieve the best

fit to our data. In fitting this model to the age-adjusted

CN and AD group data (Fig 3; r2 ¼ 0.48; p < 1 �
10�4) we calculated this time lag parameter (see Supple-

mental Material) to be equal to 0.35 times the amyloid

saturation time (the time to go from zero to maximum

amyloid). For example, if a 10-year amyloid saturation

time were hypothesized, the time lag between the rapid

phases of PiB increase and cortical thinning would be

3.5 years.

Age Dependence of Thickness/Volume and of
PiB Retention in CN and AD
Vertex-level analyses revealed that greater age was associ-

ated with reduced thickness among CN subjects in peri-

rolandic, lateral and inferior temporal, superior parietal,

posterior cingulate, and precuneus cortices (p < 0.0001,

uncorrected for multiple comparisons; see Supporting In-

formation Fig S6). The vertex-based findings were con-

firmed in cortical ROI, where age-related reductions were

also seen in parahippocampal, inferior parietal and global

cortical thickness, and marginally in entorhinal thickness in

the CN group. Age-associated hippocampal volume reduc-

tion was also significant in the CN group. In the AD

group, greater age was associated with decreased volume in

hippocampus and reduced thickness prominently in para-

hippocampal cortex (Supporting Information Fig S6).

Analyses of PiB data derived either from vertices or

from confirmatory ROI revealed that while higher PiB

retention in precuneus/posterior cingulate, anterior cin-

gulate, and prefrontal regions was associated with greater

age in the CN group, the inverse relation was seen in the

AD group (Supporting Information Fig S7). For example,

age was associated with increased PCC ROI PiB retention

in the CN group (p < 0.001), but with decreased PCC

retention in the AD group (p < 0.005). This corre-

sponded to a significant difference in the regression line

slopes between the 2 groups (p < 1 � 10�4). Prominently

FIGURE 2: Ab-associated hippocampal volume and regional
thickness changes in CN and AD groups. Regression
coefficients expressing change in hippocampal volume or
regional average thickness per unit increase in PCC DVR
controlling for age (age and gender for hippocampal
volume), and corresponding 95% confidence intervals and
statistical significances (right).

FIGURE 3: Modeling of PCC thickness as a function of PiB
retention in CN and AD groups. Least squares fit (solid
curve) of thickness-PiB functional relationship based on
sigmoid time courses, with the maximum rate of thickness
decline later in time than the maximum rate of PiB increase;
compare solid (thickness) and dotted (PiB) sigmoids (inset
graph). Dashed curves correspond to shorter time lags,
long-dashed curves correspond to one-half the best-fit time
lag, and short-dashed curves correspond to no lag. The
inset shows the underlying sigmoid time courses for PiB
(dotted) and thickness at the 2 time lags. As the time lag
between thickness and PiB increases, the curvature of the
thickness-PiB curve increases. Binding potential (which is
equal to DVR 2 1) was used as the PiB measure in the
modeling since we assumed that PiB BP asymptotes to zero
prior to disease onset.
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reduced Ab deposition as a function of age was observed

in medial occipital regions in AD (Supporting Information

Fig S7). When non-PVC data were used, the age associa-

tions were similar but less robust possibly due to the nar-

rower ranges of uncorrected DVR (data not shown).

There were no areas of significant interaction

between APOE carrier status and variation with age of

cortical thickness or PiB retention in the CN group (n ¼
60; data not shown).

Differential Impact of Age and Ab Deposition
on Hippocampal Volume and Cortical Thickness
Maps of cortical thickness for the age regression coefficient

were computed with the Ab deposition term also included

in the model. These were nearly identical to the maps of

the simple age-dependence (Supporting Information Fig S6),

indicating that the age was inversely related to thickness in-

dependent of Ab deposition (data not shown).

Using ROI data we evaluated a regression model

that included age, gender, and PCC PiB retention as pre-

dictors of PCC ROI thickness or hippocampal ROI vol-

ume. PCC thickness was independently associated with

both age (p < 1 � 10�3) and Ab deposition (p <

0.004). In contrast, hippocampal volume was associated

with age (p < 1 � 10�5) but not with Ab deposition

(p ¼ 0.38). Gender was not related to either hippocampal

volume (preadjusted for eTIV; p < 0.07) or PCC thickness

(p < 0.45). When added to the models, the age-by-Ab
interaction term was not significant in either case. Thus,

covarying Ab deposition, greater age was associated with

reduced hippocampal volume and PCC thickness; however,

covarying age, Ab deposition was associated with reduced

PCC thickness but not with reduced hippocampal volume.

Choice of Proxy for PiB Retention
We tested the hypothesis that results using alternative,

non-PCC regions would differ from those in which the

PCC was used as the proxy for Ab deposition. We found

that using as proxy the rostral anterior cingulate, rostral

middle frontal, or inferior parietal cortices all yielded simi-

lar patterns of Ab-associated cortical thinning, which was

not surprising given the high correlation of PiB retention

in these regions with PiB retention in the PCC (Pearson

correlations ranged from 0.80 to 0.89) In contrast, hippo-

campus PiB retention was not significantly related to thin-

ning in any cortical region (data not shown).

Discussion

The major finding of this study is that significant Ab-
associated cortical thinning occurs among CN older indi-

viduals in a pattern consistent with early AD. While this

finding supports the possibility that Ab deposition in

normal individuals represents preclinical AD, direct ob-

servation with longitudinal data will be required to evalu-

ate the strength and timing of this link. Our data suggest

that Ab-associated neurodegeneration manifests as corti-

cal thinning in regions vulnerable to early Ab deposition,

including association cortices along the posterior medial

wall and lateral parietal cortex. In particular, we observed

thinning in the inferior parietal lobule and the posterior

cingulate extending into the precuneus, which are regions

that form nodes of a large-scale cortical system known as

the default network.37,49,50 This system has been impli-

cated in both memory-related function and in amyloid-

related and AD-related memory dysfunction.18,37,50–53

Our findings are consistent with a pathophysiologic link

between Ab deposition and neurodegeneration in this

network, which may anticipate memory failure and pro-

gression to clinical dementia.18,19,21,37,54

Along the posterior midline, the posterior cingulate

and retrosplenial cortex are anatomically connected to

medial temporal structures, and we found that while the

hippocampus and medial temporal lobe (MTL) cortices

demonstrated significant age-associated atrophy, the asso-

ciation of MTL atrophy with Ab deposition was variable

in these asymptomatic older individuals. While our

results are consistent with the hypothesis that MTL atro-

phy coincides with the emergence of manifest cognitive

impairment,2,55,56 we did not observe a significant differ-

ence between MTL and cortical atrophy, and thus cannot

order the relative timing of effects with the present data.

While macroscopically-visible cortical atrophy is associ-

ated with dementia, it is not generally observed in non-

demented individuals at postmortem,57 perhaps because

of an inability to differentiate it from normal age-associ-

ated atrophy. Our data suggest that the Ab deposition

commonly detected in normal older individuals is associ-

ated with subtle posterior cingulate and parietal neurode-

generation that occurs prior to, and may be a harbinger

of, clinically significant impairment.29 It is possible that

further investigation will reveal evidence of subtle cogni-

tive alterations related to cortical thinning even within

CN individuals, particularly when the level of cognitive

reserve is considered.23

More broadly, our findings should be considered in

the context of a putative sequence of events in AD

pathology that can be observed with biomarkers. Using a

largely biphasic model of disease sequence, Ab deposition

has been hypothesized to occur early in the sequence of

AD pathology and to be followed later by neurodegener-

ation, which is then related to the symptomatic phases of

the disease, cognitive decline and dementia.58–60 Our

present findings and those of earlier studies29,33,34 that
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suggest PiB retention is correlated with cortical thinning

in normal individuals raise the possibility that the

hypothesized lag period between Ab deposition and neu-

rodegeneration may be shorter than previously thought.

A precise mechanism by which Ab deposition could be

linked to neurodegeneration has not been firmly estab-

lished. It is possible that toxic effects of Ab oligomeric

assemblies that surround fibrillar forms could be exerted

locally early in the process and result directly in synapse

and cell loss.61,62 Such a mechanism entails a direct rela-

tionship between the presence of Ab and neurodegenera-

tion, which could potentially be observed with sensitive

biomarkers. However, while the sensitivity of Ab imaging

may be improved in the future and permit better detec-

tion, individuals with predominantly prefibrillar or poly-

morphic forms of Ab that are refractory to PiB would

not be detectable with PiB or likely with other thioflavin

or Congo-red derivatives.63–65

We found that Ab and PCC thickness were more

strongly correlated in AD than in CN (see Fig 1) and we

evaluated these data according to a recently proposed

model59 in which Ab deposition and cortical thickness

follow sigmoid-shaped curves in time. We simultaneously

fit sigmoid models to PCC PiB and age-adjusted thick-

ness data for the combined CN and AD groups, and

determined the temporal lag between the dynamic phases

of amyloid accumulation and cortical thinning to be

approximately 35% of the total time required for amy-

loid to rise from its baseline to maximum. It should be

emphasized that the model in its particularities as pre-

sented here is tentative, and should be considered as a

schematic rather than definitive treatment of the prob-

lem. Such modeling will remain speculative as to accurate

parameters of the underlying sigmoid curves until longi-

tudinal data are available.

Whereas AD neurodegeneration is well established

to occur prominently in the MTL55,56,66 and to be corre-

lated with neurofibrillary pathology,67 our findings are

consistent with emerging evidence that thinning in poste-

rior association cortices is also a prominent feature of

MCI and AD.11,28,29,37,48,68 While the measured amount

of age-adjusted thickness reduction per unit of PiB reten-

tion (DVR) was approximately the same in the posterior

cingulate/precuneus and in MTL structures, the standard

errors were larger in the MTL (see Fig 1) and the regres-

sion coefficients did not reach significance. Future work

with a larger data sample will be required to order the rel-

ative emergence of effects between posterior cingulate and

MTL structures. Neurofibrillary tangle pathology may par-

tially explain this observation of greater variability in the

MTL, since it is common in MTL but rarely widespread

in cortex of CN subjects.57,58,67,69 Our data are not con-

sistent with previous observations that Ab deposition is

only seen after significant neurofibrillary tangle deposition

and MTL atrophy,69 but instead suggest that the patho-

logic sequence of events in preclinical AD is one in which

Ab deposition is related to neurodegeneration in posterior

cingulate and distributed regions of association neocortex

that occurs along with or possibly even prior to hippocam-

pal and entorhinal neurodegeneration.

Previous reports of the relation of PiB retention and

hippocampal volume in CN subjects have been inconsis-

tent. Some reported an inverse relation (ie, decreased vol-

ume with increased PiB retention) in CN subjects,33,34

while others found such a relation only among the Ab-
positive CN group35 or only in CN subjects with subjec-

tive cognitive impairment.36 These studies have differed in

their treatment of the potentially confounding effect of

age on both Ab level and atrophy. We evaluated hippo-

campal volume, cortical thickness, and PiB retention for

evidence of age-dependence and found evidence for an age

effect in all domains. The age-dependence of volume/

thickness across a broad age range has been previously

reported,70 and although some investigators have not

found a significant impact of age within a more restricted

older age range,29 others have applied an age-adjustment

to thickness/volume data.11 The strong age-dependence of

Ab deposition we observed in CN subjects is consistent

with neuropathological studies that inferred from cross-

sectional data that Ab gradually accumulates with age.68

Several PiB studies9,16,71 did not report evidence of a sig-

nificant relationship with age, perhaps due to the small

sample sizes with limited age ranges, although a recent

study did demonstrate an age association.72 Morris and

colleagues73 found that the age-dependence of PiB data

was largely accounted for by the strong age association

with PiB retention among carriers of the APOE4 allele,34

likely a reflection of the sample enrichment for younger

CN subjects with positive family histories. We did not

find an interaction of the age-Ab relationship with

APOEe4 carrier status among the subset of subjects on

whom genotypes were available (data not shown).

Interestingly, the age-dependence of Ab deposition

among CN subjects was reversed in AD patients, such

that greater age was associated with lower levels of Ab
deposition. The reversal of the Ab-age coefficient in the

AD group compared to the CN group could be due to a

survivor effect, such that older subjects with greater

amounts of Ab were too impaired (eg, MMSE < 18) to

have been included in our study. Other potential factors,

including an age-related change in PiB binding sites or

affinity or a change in the production or clearance of
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Ab,74,75 will require further study. Moreover, longitudi-

nal observation over long intervals may be required to

determine whether individual AD patients’ levels of Ab
decline over time, which has not been observed in longi-

tudinal PiB data that has spanned 1 to 2 years.2,5,76

In summary, our findings provide support for the

hypothesis that Ab is associated with local neurodegenera-

tion in key nodes of a distributed network supporting mem-

ory processes, and that this process begins prior to clinically-

evident cognitive impairment, but continues into the stage

of clinical dementia. Longitudinal follow-up of these CN

older individuals is ongoing to determine if the combination

of Ab burden and volumetric loss is predictive of incipient

cognitive decline, and progression to AD dementia.
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