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Autism spectrum disorder (ASD) is a neurodevelopmental condition with multiple causes, comorbid conditions, and a wide range in the
type and severity of symptoms expressed by different individuals. This makes the neuroanatomy of autism inherently difficult to
describe. Here, we demonstrate how a multiparameter classification approach can be used to characterize the complex and subtle
structural pattern of gray matter anatomy implicated in adults with ASD, and to reveal spatially distributed patterns of discriminating
regions for a variety of parameters describing brain anatomy. A set of five morphological parameters including volumetric and geometric
features at each spatial location on the cortical surface was used to discriminate between people with ASD and controls using a support
vector machine (SVM) analytic approach, and to find a spatially distributed pattern of regions with maximal classification weights. On the
basis of these patterns, SVM was able to identify individuals with ASD at a sensitivity and specificity of up to 90% and 80%, respectively.
However, the ability of individual cortical features to discriminate between groups was highly variable, and the discriminating patterns
of regions varied across parameters. The classification was specific to ASD rather than neurodevelopmental conditions in general (e.g.,
attention deficit hyperactivity disorder). Our results confirm the hypothesis that the neuroanatomy of autism is truly multidimensional,
and affects multiple and most likely independent cortical features. The spatial patterns detected using SVM may help further exploration
of the specific genetic and neuropathological underpinnings of ASD, and provide new insights into the most likely multifactorial etiology
of the condition.

Introduction
Autism spectrum disorder (ASD) is a highly heterogeneous neu-
rodevelopmental condition with multiple causes and courses, a
wide range in symptom severity, and several associated comorbid
disorders (Amaral et al., 2008). It has thus been suggested that
ASD should be thought of as “the autisms” rather than a single
autistic phenotype (Geschwind, 2007; Geschwind and Levitt,
2007). This makes the neuroanatomy of autism inherently diffi-
cult to describe.

Although several autistic “core” structures have repeatedly
been highlighted by previous studies, such as abnormalities in
frontal, parietal, and limbic regions, as well as the basal ganglia
and the cerebellum [e.g., McAlonan et al. (2002), Waiter et al.

(2004), McAlonan et al. (2005), and Rojas et al. (2006)], reports
of region-specific differences in ASD are highly variable [for re-
view, see Toal et al. (2005) and Amaral et al. (2008)]. Such vari-
able findings may simply be explained by confounds such as
clinical heterogeneity between studies, or analytical techniques.
Alternatively, variability in findings may indicate that differences
in brain anatomy in ASD are relatively subtle and spatially dis-
tributed, and are difficult to detect using mass-univariate (i.e.,
voxelwise) approaches. Last, given the multiple etiology of ASD,
it is likely that its neuroanatomy is not confined to a single mor-
phological parameter but affects multiple cortical features.

There is already evidence to suggest that several aspects of cere-
bral morphology are different in people with ASD—including both
volumetric (i.e., cortical thickness, regional area) and geometric (i.e.,
cortical shape) features (Levitt et al., 2003; Nordahl et al., 2007); and
that different morphological features may have different neuro-
pathological and genetic underpinnings (Panizzon et al., 2009). For
instance, cortical thickness is likely to reflect dendritic arborization
(Huttenlocher, 1990), while cortical surface area has been linked to
the number of minicolumns in the cortical layer (Rakic, 1988). Geo-
metric features such as cortical folding pattern, on the other hand,
may reflect an abnormal pattern of intrinsic as well as extrinsic con-
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nectivity (Van Essen, 1997). Thus, examining the relationship be-
tween such multiple cortical features could provide invaluable
insights into the multifactorial etiology of ASD.

So far, individual aspects of the cortex are generally explored
in isolation (i.e., in separate statistical models). Hence it is not yet
known (1) whether they equally contribute to differentiating in-
dividuals with ASD from controls; and (2) what the relationship
between such multiple cortical abnormalities in ASD is. In the
present study, we therefore used a multiparameter classification
approach using a support vector machine (SVM) [e.g., Mourão-
Miranda et al. (2005), Davatzikos et al. (2008), and Klöppel et al.
(2008)] to investigate brain anatomy in adults with ASD. Here, a
variety of morphological features, including both volumetric and
geometric parameters, were used simultaneously to classify con-
trol and ASD individuals, as well as a neurodevelopmental con-
trol group of individuals with attention deficit hyperactivity
disorder (ADHD). We aimed to demonstrate that the neuroana-
tomical patterns discriminating individuals with autism from
controls are truly multidimensional, comprising multiple and
most likely independent cortical features. If so, this may guide
further exploration of the specific genetic and neuropathological
underpinnings of ASD.

Materials and Methods
Participants. Twenty control adults were recruited locally by advertise-
ment and 20 adults with ASD were recruited through a clinical research
program at the Maudsley Hospital/Institute of Psychiatry (London). All
volunteers (see Table 1) gave informed consent (as approved by the
Institute of Psychiatry and Bethlem and Maudsley Hospital Trust re-
search ethics committee), and had a full-scale intelligence quotient
(FSIQ) �75 [WASI (Wechsler, 1999)]. All volunteers were right-handed
males, and were between 20 and 68 years of age. None had a history of
major psychiatric disorder or medical illness affecting brain function
(e.g., psychosis or epilepsy). All participants underwent a psychiatric
interview and physical examination. Blood tests were used to exclude
biochemical, hematological, or chromosomal abnormalities (including
fragile X syndrome). All participants with ASD were diagnosed with
autism according to ICD 10 research criteria (World Health Organiza-
tion, 1992) by a trained and qualified clinician in our Adult Autism
Specialist Clinic at the South London and Maudsley Hospital. The initial
clinical diagnosis was then confirmed using the Autism Diagnostic
Interview-Revised [ADI-R (Lord et al., 1994)] whenever possible (n �
17); that is, where parents agreed to take part. In three out of the 20
included cases, ADI scores could not be obtained due to informants
being unavailable. In these three cases, the clinical diagnosis was con-
firmed using the Autism Diagnostic Observation Schedule [ADOS (Lord
et al., 1989)]. Both ADI-R and ADOS scores were available for two par-
ticipants. All cases had to reach the ADOS or ADI algorithm cutoffs in the
three domains of impaired reciprocal social interaction, communication
and repetitive behaviors and stereotyped patterns, but we did allow fail-
ure to reach cutoff in one of the domains (by one point). Sixteen ASD
individuals did not have a delay in development of phrase speech at the

age of 36 months (and so may be subtyped by some as having the autistic
subtype of Asperger’s syndrome); the remaining four individuals had a
history of delayed phrase speech (and so may be subtyped by some as
having the autistic subtype of high functioning autism). However, due to
the small sample size it was not possible to reliably investigate putative
differences between people with high functioning autism and Asperger’s
syndrome, and all subjects were analyzed in a combined group of indi-
viduals with ASD.

Furthermore, we recruited a group of 19 individuals with ADHD from
the Adult ADHD services at the Maudsley Hospital, London. This group
served as a neurodevelopmental control group and was matched to the
ASD group in gender, age (mean � SD � 31 � 8.5), FSIQ (mean � SD �
107 � 16), and handedness. Of these, eight individuals fulfilled the cri-
teria for ADHD combined type and 11 for ADHD inattentive type. The
diagnosis of ADHD was made by a trained and qualified clinician based
on a structured clinical interview according to DSM-IV criteria. ADHD
symptoms were also assessed using Barkley Current and Childhood
Symptoms Scales (Barkley, 2006) and the Wender-Utah Rating Scale
[WURS-25 (Ward et al., 1993)].

MRI data acquisition. MRI data were acquired using a 1.5 T GE Signa
Neuro-optimized System (General Electric Medical Systems) fitted with
40 mT/m high-speed gradients at the Maudsley Hospital, London.
Whole-brain spoiled gradient recalled acquisition in the steady-state T1-
weighted series were collected in the coronal plane with repetition time �
13.8 ms, echo time � 2.8 ms, yielding 124 contiguous 1.5 mm 2 axial slices
of 256 � 192 voxels with an in-plane resolution of 1 mm 2. Similar T1-
weighted MRI scans were acquired for the ADHD group on a 1.5 T GE
Signa Neuro-optimized System at the Maudsley Hospital, London, using
repetition time � 10.72 ms, echo time � 4.86 ms, yielding 146 contigu-
ous 1.1 mm 2 axial slices. A quadrature birdcage head coil was used for
radio-frequency transmission and reception. Foam padding and a fore-
head strap were used to limit head motion. All scans were visually in-
spected by a radiologist to assess (1) image contrast, (2) movement
artifacts, and (3) the existence of clinical abnormalities. Scans displaying
low image quality or clinical abnormalities were excluded from this
study.

Image processing. Cortical reconstruction and volumetric segmenta-
tion were performed with the Freesurfer image analysis suite, which is
documented and freely available for download online (http://surfer.nmr.
mgh.harvard.edu/). The technical details of these procedures are de-
scribed in prior publications (Dale et al., 1999; Fischl et al., 1999, 2002,
2004a,b; Fischl and Dale, 2000; Ségonne et al., 2004; Jovicich et al., 2006).
Briefly, this processing includes motion correction and averaging of mul-
tiple volumetric T1-weighted images (when more than one is available),
removal of nonbrain tissue using a hybrid watershed/surface deforma-
tion procedure (Ségonne et al., 2004), automated Talairach transforma-
tion, segmentation of the subcortical white matter and deep gray matter
volumetric structures (including hippocampus, amygdala, caudate, pu-
tamen, and ventricles) (Fischl et al., 2002, 2004b), intensity normaliza-
tion, tessellation of the gray matter white matter boundary, automated
topology correction (Fischl et al., 2001; Ségonne et al., 2007), and surface
deformation following intensity gradients to optimally place the gray/
white and gray/CSF borders at the location where the greatest shift in
intensity defines the transition to the other tissue class (Dale et al., 1999).
Once the cortical models are complete, a number of deformable proce-
dures were performed for further data processing and analysis, including
surface inflation (Dale et al., 1999), registration to a spherical atlas, which
used individual cortical folding patterns to match cortical geometry
across subjects (Fischl et al., 1999), parcellation of the cerebral cortex into
units based on gyral and sulcal structure (Fischl et al., 2004a; Desikan et
al., 2006), and creation of a variety of surface-based data, including maps
of curvature and sulcal depth (see below). This method uses both inten-
sity and continuity information from the entire three-dimensional MR
volume in segmentation and deformation procedures to produce repre-
sentations of cortical thickness, calculated as the closest distance from the
gray/white boundary to the gray/CSF boundary at each vertex on the
tessellated surface (Fischl and Dale, 2000). The maps are created using
spatial intensity gradients across tissue classes and are therefore not sim-
ply reliant on absolute signal intensity. The maps produced are not re-

Table 1. Subject demographics

ASD (n � 20) Controls (n � 20)

Age, years 33 � 11 (20 – 68) 36 � 9 (20 – 49)
Full-scale IQ 103 � 20 (76 –141) 110 � 13 (77–129)
Verbal IQ 102 � 17 (78 –133) 106 � 14 (71–131)
Performance IQ* 98 � 19 (77–138) 110 � 14 (84 –136)
ADI-R sociala 15 � 4 —
ADI-R communicationa 10 � 3 —
ADI-R repetitive behaviora 4 � 2 —
ADOS totalb 10 � 2 —

Data are expressed as mean � SD (range). There were no significant differences between subject groups in age and
full-scale IQ on p � 0.05 two-tailed. aInformation was unavailable for 3 out of 20 ASD subjects. bInformation was
available for five ASD subjects; two cases had both ADOS and ADI. *Significant on p � 0.05.
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stricted to the voxel resolution of the original
data thus are capable of detecting submillime-
ter differences between groups. Procedures for
the measurement of cortical thickness have
been validated against histological analysis
(Rosas et al., 2002) and manual measurements
(Kuperberg et al., 2003; Salat et al., 2004). Free-
surfer morphometric procedures have been
demonstrated to show good test–retest reliabil-
ity across scanner manufacturers and across
field strengths (Han et al., 2006). All recon-
structed surfaces were visually inspected for
gross-anatomical topological defects. Brains
that did not reconstruct or showed geometric
inaccuracies were excluded from the study.

A set of five morphometric parameters per
vertex were used as input to the multimodal
classifier. Three parameters [1–3: average con-
vexity or concavity, mean (radial) curvature, and
metric distortion] accounted for geometric fea-
tures at each cerebral vertex and two parameters
(4, 5: cortical thickness and surface area, respec-
tively) measured volumetric features.

(1) The average convexity or concavity (C)
was used for quantifying the primary folding
pattern of a surface. C captures large-scale geo-
metric features and is insensitive to noise in the
form of small wrinkles in a surface (Fischl et al.,
1999). At each vertex, C indicates the depth/
height above the average surface and measures
sulcal depth or gyral height, respectively. Differences in sulcal depth have
previously been investigated as one important aspect of the cerebral ge-
ometry implicated in ASD (Nordahl et al., 2007), and have been sug-
gested to reflect abnormal pattern of cortical connectivity.

(2) Mean (radial) curvature was used to assess folding of the small
secondary and tertiary folds in the surface. The selection of this feature
was motivated by early findings of polymicrogyria (i.e., excessive number
of small convolutions on the surface of the brain) in autism (Piven et al.,
1990). These would not be captured by the average convexity measure
reflecting large-scale geometric features only.

(3) Metric distortion (i.e., Jacobian) indicating the degree of cortical
folding was calculated as degree of displacement and convolution of the
cortical surface relative to the average template (Fischl et al., 1999; Wisco
et al., 2007). While sulcal depth and radial curvature measure specific
aspects of the cortical geometry, metric distortion is a wider measure of
the overall degree of cortical folding, and thus captures geometric distor-
tions otherwise not specified. There is a large body of evidence to suggest
that individuals with ASD display abnormal patterns of cortical gyrifica-
tion reflecting cerebral development and connectivity [e.g., Levitt et al.
(2003) and Hardan et al. (2004)].

(4) Cortical thickness (see above) and (5) pial area (i.e., the area of a
vertex on the gray matter surface, calculated as the average of the area of
the triangles touching that vertex) were used to quantify volumetric dif-
ferences. Although these two features are generally combined to measure
regional brain volume, a recent study has shown that cortical thickness
and surface are influenced by distinct genetic mechanism (Panizzon et
al., 2009), and we hence added as separate features into the model. A
summary of the set of parameters is displayed in Figure 1.

Group differences in intracranial volume, total brain volume, and gray
matter volume as estimated by FreeSurfer were assessed using t tests for
independent samples before classification. There were no significant dif-
ferences between groups in any of these parameters at a level of p � 0.05
(see Table 2). There were also no significant differences in total brain
volume between controls and individuals with ADHD, nor between ASD
and ADHD group on p � 0.05. Bartlett’s test for homogeneity of vari-
ances was used to examine parameter variability across homolog regions
in different hemispheres using a threshold of p � 0.0014 (corrected for
multiple comparisons).

Classification and support vector machine. A linear SVM was used to
classify between patient and control group on the basis of their brain
morphology. SVM has previously been applied to MRI data (Mourão-
Miranda et al., 2005; Davatzikos et al., 2008; Klöppel et al., 2008), and a
detailed description was given by Burges (1998) and Schoelkopf and
Smola (2002). Briefly, SVM is a supervised multivariate classification
method that treats each image as a point in a high dimensional space. If
SVM is applied to images coming from different modalities, as in the
current study, the number of dimensions equals the number of voxels/
vertices per image multiplied by the number of modalities. Input data
were then classified into two classes (e.g., individuals with ASD and con-
trols) by identifying a separating hyperplane or decision boundary. The
algorithm is initially trained on a subset of the data �x, c� to find a hyper-
plane that best separates the input space according to the class labels c
(e.g., �1 for patients, �1 for controls). Here, x represents the input data
(i.e., feature vector). The feature vector was generated by concatenating
the five image modalities for each subject. Once the decision function is
learned from the training data, it can be used to predict the class of a new
test example. SVM (Vapnik, 1995) is a maximum margin classifier,
which identifies the optimal hyperplane by finding the hyperplane with
the maximum margin (i.e., maximal separation between classes). The
margin is the distance from the separating hyperplane to the closest
training examples. The training examples that lie on the margin are called
support vectors. The hyperplane is defined by a weight vector and an
offset. The weight vector is a linear combination of the support vectors
and is normal to the hyperplane. The linear kernel SVM used in the
present study allows direct extraction of the weight vector as an image

Figure 1. Summary of the five morphometric parameters measured at each cerebral vertex. These included average convexity
(A), cortical thickness (B), pial area (C), metric distortion (Jacobian) (D), and mean (radial) curvature (E).

Table 2. Between-group differences in overall brain volume and gray matter
volume

ASD Control t(38) p

ICV 1.67 � 0.18 � 10 6 1.64 � 0.21 � 10 6 �0.63 �0.60
Total brain volume 9.74 � 1.14 � 10 5 9.69 � 0.76 � 10 5 �0.14 �0.90
Total gm volume 4.89 � 0.56 � 10 5 4.81 � 0.41 � 10 5 �0.58 �0.60
gm volume right 2.45 � 0.28 � 10 5 2.41 � 0.20 � 10 5 �0.53 �0.60
gm volume left 2.44 � 0.28 � 10 5 2.39 � 0.21 � 10 5 �0.62 �0.60

Data are expressed as mean � SD. ICV, Total intracranial volume; gm, gray matter; all measures are in cubic
millimeters.

10614 • J. Neurosci., August 11, 2010 • 30(32):10612–10623 Eckera et al. • Multiparameter SVM in Autism



(i.e., the SVM discrimination map). A parameter C, which controls
the trade-off between having zero training errors and allowing mis-
classifications, was fixed at C � 1 for all cases (default value). The
LIBSVM toolbox for Matlab was used to perform the classifications
(http://www.csie.ntu.edu.tw/�cjlin/libsvm/).

Discrimination maps. The weight vector has the same dimension as the
feature vector and is normal to the hyperplane. It can be thought of as a
spatial representation of the decision boundary, and thus represents a
map of the most discriminating regions. Here, the feature vector had n �
m dimensions, where n equals the number of vertices and m denotes the
number of modalities (i.e., five). Given two groups (ASD vs controls),

with the labels �1 and �1, respectively, a positive value in the discrimi-
nation map (red/yellow color scale) indicates relatively higher parameter
values in patients than in controls with respect to the hyperplane, and a
negative weight (blue/cyan color scale) means relatively higher parame-
ter values in controls than in patients with respect to the hyperplane.
Because the classifier is multivariate by nature, the combination of all
voxels as a whole is identified as a global spatial pattern by which the
groups differ (i.e., the discriminating pattern). To enable visualization of
the discriminating pattern for each image modality, the weight vector
was cut into its constituent parts, which were then mapped back onto the
average white matter surface. In the present study, we colored all voxels
that have values higher than 30% of the maximum value of the discrimina-
tion map (Mourão-Miranda et al., 2005, 2006). This threshold, although
ultimately arbitrary, eliminates noise components predominantly (�30%),
thus enabling a better visualization of the most discriminating regions
(31–100%).

Intraregional morphometric profiles. To identify the relative contribu-
tion of specific parameters in discriminating between groups at different
locations on the cortical surface, we displayed so called intraregional
morphometric profiles. These profiles were derived by calculating the

average weights of vertices within regions of
interest (ROIs) for the five different parame-
ters. ROIs were based on contiguous weight
clusters from the overall discrimination maps.
The choice of the ROIs, although ultimately
arbitrary, was motivated by (1) the relevance of
a region to the current literature [e.g., sulcal
depth differences in intraparietal sulcus (Nor-
dahl et al., 2007)], and (2) generally high pa-
rameter weights for a specific morphometric
feature (e.g., high weights for cortical thickness
in medial temporal sulcus). The ROI analysis
aimed to illustrate that different regions can
display distinct differences in one or more pa-
rameters, rather than displaying the same pat-
tern of feature weights. As all weights were
scaled, means and SDs are directly comparable
across regions and parameters.

Cross-validation and permutation testing.
The performance of the classifier was validated
using the commonly used leave-two-out cross-
validation approach. This validation approach
provides robust parameter estimates particu-
larly for smaller samples. In each trial observa-
tions from all but one subject from each group
were used to train the classifier. Subsequently,
the class assignment of the test subjects was
calculated during the test phase. This proce-
dure was repeated S � 20 times (where S is the
number of subjects per group), each time leav-
ing observations from a different subject from
each group out. The accuracy of the classifier
was measured by the proportion of observa-
tions that were correctly classified into patient
or control group. We also quantified the sensi-
tivity and specificity of the classifier defined as
Sensitivity � TP/(TP � FN) and Specificity �
TN/(TN � FP), where TP is the number of true
positives, i.e., the number of patient images

correctly classified; TN is the number of true negatives, i.e., number of
control images correctly classified; FP is the number of false positives, i.e.,
number of controls images classified as patients; and FN is the number of
false negatives, i.e., number of patients images classified as controls.

Classifications were made first, by including all five morphological
modalities into the feature vector, and, second, on the basis of each
individual parameter. Different classifiers were trained for each hemi-
sphere. This enabled us to assess the overall classification accuracies for
individual parameters and hemispheres. Classifier performance was eval-
uated using basic receiver operating characteristics (ROC) graphs as well

Figure 2. A, B, ROC graphs for the six discrete classifiers in the left hemisphere (A) and in the right hemisphere (B). Individual
points on the graph depict classifiers on the basis of all parameters (A), cortical thickness (B), metric distortion/Jacobian (C),
average convexity (D), pial area (E), and mean (radial) curvature (F). C, D, The classification plots for the left (C) and right (D)
hemispheres.

Table 3. Results of SVM classification between ASD and control group using
different brain morphometric features in the left and right hemispheres

Morphometric feature Correctly classified (%) Sensitivity (%) Specificity (%) p

Left hemisphere
All parameters 85 90 80 0*
Cortical thickness 90 90 90 0*
Radial curvature 72.5 65 80 �0.001
Average convexity 70 75 65 �0.004
Metric distortion 80 80 80 0*
Pial area 77.5 70 85 0*

Right hemisphere
All parameters 65 60 70 �0.03
Cortical thickness 60 65 55 �0.01
Radial curvature 52.5 50 55 �0.30
Average convexity 50 40 60 �0.40
Metric distortion 57.5 45 70 �0.06
Pial area 45 45 45 �0.60

Correctly identified ASD cases were considered true positive. *p values of zero indicate that not a single one of the
1000 permutations provided a better classification.
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as permutation testing. Permutation testing can be used to evaluate the
probability of getting specificity and sensitivity values higher than the
ones obtained during the cross-validation procedure by chance. We per-
muted the labels 1000 times without replacement, each time randomly
assigning patient and control labels to each image and repeated the cross-
validation procedure. We then counted the number of times the speci-
ficity and sensitivity for the permuted labels were higher than the ones
obtained for the real labels. Dividing this number by 1000 we derived a p
value for the classification.

Last, the established classifier was used to
predict group membership of individuals with
ADHD. To achieve this, the classifier was first
retrained using all ASD– control pairs to pro-
vide the best possible prediction model for dis-
criminating the two groups. This trained
classifier was then applied to the multiparam-
eter data from the ADHD group and predic-
tions for group membership for these subjects
were derived.

To validate the binary classification of the
subject groups on a quantitative level, and to
identify the degree to which the classification is
driven by autistic symptoms rather than con-
founds unrelated to autism, the test margin for
each subject coming from the all included clas-
sifier was correlated with the level of symptom
severity measured by the ADI subscales. A sim-
ilar approach has previously been employed by
Ecker et al. (2010).

Results
Overall classifier performance
Classification accuracies as well as sensitivity and specificity for
each classifier are listed in Table 3. On the whole, strong hemi-
spheric asymmetry was observed with regards to the overall clas-
sification accuracy. The left hemisphere provided consistently
higher and above chance prediction accuracies across all mor-
phometric parameters. Here, individuals with ASD were cor-
rectly assigned to the appropriate diagnostic category in 85.0% of
all cases when all parameters were considered simultaneously
(Fig. 2C). The sensitivity of the multiparameter classification in
the left hemisphere was 90.0%; i.e., if a volunteer had a clinical
diagnosis of ASD, the probability that this participant was cor-
rectly assigned to the ASD category was 0.9. The specificity was
80.0%—meaning that 80.0% of the controls subjects were cor-
rectly classified as controls. High classification accuracies were
also obtained when individual morphological parameters were
considered. Figure 2A shows the receiver operator characteristics
or ROC graph for the six classifiers in the left hemisphere. In
general, one point in ROC space is better than another if it is to
the northwest (TP rate is high, FP rate is low, or both) with the
point (0, 1) representing perfect classification. Classifiers appear-
ing on the left-hand side of the ROC graph, near the x-axis, may
be considered “conservative” (i.e., make positive classifications
only with strong evidence but often have low TP rates), whereas
classifiers on the upper right-hand side of the graph may be
thought of as “liberal” (i.e., make positive classifications with
weak evidence so they classify nearly all positives correctly but
often have high FPs). The diagonal line y � x represents the
strategy of randomly guessing a class. Best discrimination was ob-
tained when cortical thickness measures were used to classify be-
tween groups with sensitivity and specificity values as high as
90.0%, followed by a classification on the basis of the metric
distortion parameter (sensitivity 80.0%, specificity 80.0%). The
average convexity, pial area, and mean curvature displayed accu-

racies in the range of 70.0 – 80.0%. The classification p value re-
sulting from the permutation test was very low across, as well as
within, modalities (�0.004). The probability of obtaining speci-
ficity and sensitivity values higher than the ones obtained during
cross-validation procedure by chance is thus extremely low.

A very similar profile of parameter importance was observed
in the right hemisphere— despite it having generally lower clas-
sification accuracies. Here, individuals with ASD were correctly
assigned to the appropriate diagnostic category in 65.0% of all
cases (sensitivity 60.0%, specificity 70.0%, p � 0.03) when all
parameters were considered simultaneously (see Fig. 2B,D). As
in the left hemisphere, cortical thickness as well as metric distor-
tion displayed the best classification performance—although
only cortical thickness measures reached statistical significance
( p � 0.01). The discrepancy in overall classification accuracy
between the two hemispheres was not due to differences in pa-
rameter variability, as there were no significant differences in
parameter variance between homolog regions in different hemi-
spheres (calculated across the whole sample) (see supplemental
Fig. 1, available at www.jneurosci.org as supplemental material).

Thus, while all parameters provided statistically significant
predictions in the left hemisphere, only the full model and corti-
cal thickness displayed significant predictions in the right hemi-
sphere. Highest classification accuracy (90.0%) might thus be
obtained by using cortical thickness measures exclusively in the
left hemispheres.

Correlation coefficients between ADI-R subscales and the test
margin coming from the combined model are listed in Table 4.
The test margin in the left hemisphere was positively correlated
with the ADI scores for individuals with ASD in the social (r �
0.414, p � 0.05) and communication domain (r � 0.62, p �
0.01). Therefore, individuals with higher values on these ADI
subdomains are located on the extreme right relative on the
hyperplane while the individuals with a lower level of impair-
ment are mostly located in close proximity to the hyperplane
overall.

Figure 3. Classification plots showing group allocation of individuals with ADHD (red squares) in the left (A) and right (B)
hemispheres using the ASD classifier.

Table 4. Correlation coefficients between ADI diagnostic criteria and weight vector
for the model combining all parameters

Diagnostic test (n � 17)

Left hemisphere Right hemisphere

r p r p

ADI-R social 0.414* �0.04 �0.152 �0.28
ADI-R communication 0.620** �0.01 �0.074 �0.38
ADI-R repetitive behavior 0.161 �0.26 �0.198 �0.22

* denotes significant correlation on p � 0.05 (1-tailed); ** denotes significant correlation on p � 0.01 (1-tailed).
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Classification of individuals with ADHD using the
established ASD classifier
To establish the degree of clinical specificity of the discrimination
algorithm to ASD, rather than to neurodevelopmental disorders
in general, the established classifier was used to predict group
membership of individuals with ADHD. To predict group mem-
bership, the model including all parameters was chosen as it pro-
vided best classification accuracy in the right hemisphere, and
high accuracy in the left hemisphere. On the basis of the neuro-
anatomical information available for the left hemisphere, 15 out
of the 19 individuals with ADHD were allocated to the control
group (78.9%), and 4 individuals with ADHD were allocated to
the ASD group (21%). Using the right hemisphere, the classifier
allocated cases with ADHD with approximately equal frequencies
(47% allocated to the ASD category; 52% allocated to the control
category). The classification plots for individuals with ADHD are
shown in Figure 3 for both hemispheres.

Discrimination maps of ASD-specific abnormalities
The spatial maps of brain regions identified as outlined above are
shown in Figure 4 and a summary description can be found in
Table 5. Each of these maps is a spatial representation of the SVM
weight vector, and while they do not directly quantify the infor-

mation content of each region, each map forms a spatially dis-
tributed pattern showing the relative contribution of each voxel
to the decision function. Although “knock-out” techniques may
be used to directly quantify the information content of particular
regions, this approach may be hampered by substantial informa-
tion redundancy across brain regions. Nonetheless, the spatial
distribution of the weight vector does provide information about
which brain regions contributed to classification and in this case
is suggestive of a distributed pattern of relative deficit or excess in
ASD with respect to controls. We emphasize that due to the mul-
tivariate character of SVM (i.e., it considers interregional corre-
lations), each region in the discrimination maps should be
interpreted in the context of the entire discriminating pattern and
should not be considered in isolation. Further, individual regions
may display high classification weights for several reasons, e.g.,
there is a large difference in volume between groups in that re-
gion, or the region is highly intercorrelated with other compo-
nents of the network (i.e., pattern). This is of particular relevance
to ASD, as individuals with the disorder most likely have abnor-
malities in the development of neural systems, in addition to
differences in isolated regions. Thus, it is important to highlight
that individual network components are not necessarily different

Figure 4. Discrimination maps for the five different morphometric features in the left (L) and right (R) hemispheres. Color maps represent the weight vector on the basis of the five modality
classification for cortical thickness (A), average convexity (B), metric distortion (C), and pial area (D). Weights for the mean (radial) curvature did not exceed the set threshold. Positive weights (i.e.,
overall excess patters in ASD relative to controls) are displayed in red, and negative weights (i.e., overall deficit patterns in ASD relative to controls) are displayed in blue.

Eckera et al. • Multiparameter SVM in Autism J. Neurosci., August 11, 2010 • 30(32):10612–10623 • 10617



between groups, but should be considered as constituent parts of
a neuroanatomical network discriminating between groups.

As can be seen in this Figure 4, the five investigated parameters
resulted in different spatially distributed patterns of regions with
highest contribution to the discrimination. While cortical thick-
ness provided best classification accuracy and maximum weight
values, differences between groups were observed in both volu-
metric as well as geometric features.

Cortical thickness
In both hemispheres, the discriminative pattern for cortical
thickness in ASD comprised regions in all four lobes of the cortex
(Fig. 4A). Regional details are summarized in Table 5. The “ex-
cess pattern” (i.e., ASD � controls) comprised several temporal
regions, including the right superior temporal sulcus [Brodmann
area 22 (BA22)], medial and superior temporal gyrus (BA21/
BA22), and the parahippocampal gyrus (BA36), fusiform gyrus
(BA20), and entorhinal cortex. In addition, the excess pattern
included the inferior/superior parietal lobe (BA39), BA18 of the
occipital lobe, and the anterior and posterior cingulate gyrus.

While the excess pattern comprised predominantly occipito-
temporal regions, the pattern displaying a relative thinning of the
cortex in ASD versus controls (i.e., “deficit pattern”) included
mainly frontal and parietal regions such as the middle frontal
gyrus (BA46), the medial/superior frontal gyrus (BA10), and
BA46 in the medial frontal gyrus. In addition, the deficit pattern

contained the superior parietal cortex (BA40/7) and the anterior
cingulate gyrus.

Surface area
Only a few surface-area (Fig. 4D) differences were observed in
relatively small clusters with generally low weights. Details are
summarized in Table 4.

Regional geometric characteristics
Apart from volumetric differences, features describing regional
geometric characteristics also displayed high discrimination
weights, which were summarized in Table 6. In both hemi-
spheres, individuals with ASD displayed a pattern of relative in-
crease in sulcal depth (Fig. 4B) in the intraparietal sulcus as well
as in the superior frontal cortex. The discriminative pattern for
cortical folding (Fig. 4C), as indicated by the metric distortion
(i.e., Jacobian), included mainly bilateral parietal regions such as
the inferior parietal lobe (BA39/40), and several regions of the
right frontal lobe (e.g., supramarginal gyrus, postcentral gyrus,
and orbitofrontal regions). In addition, the discriminative pat-
tern in cortical folding comprised the precuneus.

Morphometric profiles
The discrimination maps show that different morphometric pa-
rameters elicited different spatial patterns of weights with some

Table 5. Regions displaying high discrimination weights between ASD and control group for volumetric measures

Parameter Region Hemi x y z w

Cortical thickness
ASD � controls Lateral orbitofrontal R 27 22 �5 5.13

Supramarginal gyrus L �49 �45 35 4.37
Superior parietal R 20 �82 31 3.96
Inferior temporal L �53 �28 �22 4.53
Middle temporal L/R �48 �28 �7 6.66
Superior temporal gyrus L/R �53 �20 �1 5.85
Superior temporal sulcus R 51 �34 7 4.08
Parahippocampal gyrus L/R �31 �27 �16 3.27
Fusiform gyrus L/R �36 �28 �18 4.64
Entorhinal cortex L/R �21 �17 �23 3.87
Lateral occipital L/R �15 �98 6 6.92
Posterior cingulate gyrus L �7 �33 28 3.97
Anterior cingulate gyrus R �6 28 �7 �2.71
Precuneus L �11 �55 48 �3.82

ASD � controls Rostral middle frontal L/R �35 36 9 �5.60
Superior frontal L/R �12 61 7 �5.39
Caudal middle frontal L �40 20 36 �3.12
Pars opercularis L
Inferior parietal lobe R 41 �60 36 �3.95
Superior parietal lobe R 17 �64 50 �5.00
Precuneus R 13 �37 63 �3.18
Anterior cingulate gyrus R 6 30 �5 �3.18

Surface area
ASD � controls Precentral R 56 5 15 3.23

Orbitofrontal L �18 �96 �7 2.60
Supramarginal gyrus L �55 �40 36 3.45
Inferior parietal R 49 �50 12 4.57
Inferior temporal lobe L �45 �63 �1 2.69
Lateral occipital R 17 �95 14 2.54

ASD � controls Superior frontal R 15 39 7 �2.26
Rostral middle frontal R 35 36 8 �2.85
Paracentral R 10 �6 46 �2.20
Superior temporal L �51 5 13 �3.98
Pericalcarine fissure L �13 �76 7 �4.50

Hemi, Hemisphere; L, left hemisphere; R, right hemisphere; w, weight of each cluster centroid.
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overlap between particular parameter
pairs. The weights for individual parame-
ters are thus not uniform across the cortex
but vary from region to region (i.e., vertex to
vertex). This can also be seen on the basis of
the morphometric profile for individual re-
gions, which are displayed in Figures 5D,
6D, 7D, and 8C and listed in Table 7. These
profiles visualize the mean parameter
weights for individual features within
regions of interest.

In the intraparietal sulcus for instance,
high discrimination weights were observed
for differences in sulcal depth with lower
weights for volumetric features such as cor-
tical thickness or surface area (see Fig. 5). A
similar profile was also seen in the inferior
parietal lobe (BA39). Here, the weights for
volumetric parameters such as cortical
thickness or surface area were very low in
comparison to the weights associated with
the pattern of cortical folding (i.e., metric
distortion) (see Fig. 6).

Other regions, however, displayed
high weights for volumetric parameters
exclusively. For instance, in the temporal
sulcus (BA21), high weights were ob-
served for cortical thickness exclusively in
the light of low weights in all other param-
eters (see Fig. 8). There were also regions

Figure 5. Visualization of the morphometric abnormalities in the right intraparietal sulcus. Color maps represent the weight vector
score (A). B, Outlines of the cortical surface for ASD (red) and control (blue) group. This main discriminating factor in this group was an
increase in sulcal depth in ASDs relative to controls. Differences in sulcal depth for this ROI are shown for both groups in C. D, Morphometric
profile for this region. Profiles were derived by averaging the weight vector scores across vertices within this region of interest, and for the
different morphometric parameters. Weights were identified on the basis of the concatenated SVM model, thus showing the relative
contribution of parameters in this ROI.

Table 6. Regions displaying high discriminative weights between ASD and control group for geometric measures

Parameter Region Hemi x y z w

Metric distortion
ASD � controls Precentral gyrus L �50 �5 37 3.23

Rostral middle frontal L �44 24 28 3.27
Superior frontal gyrus R 14 40 14 2.51
Supramarginal gyrus L �51 �50 25 5.30
Postcentral gyrus L �60 �8 20 3.67
Posterior cingulate gyrus L �7 �28 29 3.50
Pericalcarine fissure L �17 �67 10 3.46
Lateral occipital gyrus R 28 �86 16 2.87
Inferior parietal lobe R 47 �45 37 4.90
Middle temporal gyrus R 53 �53 2 2.69
Paracentral gyrus R 8 �22 47 3.23
Lingual gyrus R 25 �55 2 2.50

ASD � controls Anterior cingulate L �6 34 0 �2.75
Postcentral gyrus R 30 �28 63 �3.98
Supramarginal gyrus R 59 �35 29 �3.75
Rostral middle frontal R 37 32 7 �4.27
Precentral gyrus R 42 �6 47 �3.59
Middle temporal gyrus R 62 �25 �12 �2.49
Superior frontal lobe R 17 7 56 �5.14
Precuneus R 7 �44 49 �5.13
Medial orbitofrontal gyrus R 7 32 �147 �2.36

Sulcal depth
ASD � controls Superior parietal lobe L/R �26 �50 44 3.20

Rostral middle frontal L �24 30 28 3.21
Inferior parietal L 41 �59 9 2.57
Superior frontal L/R 25 15 39 3.00

ASD � controls Supramarginal gyrus L �34 �39 37 �3.94
Lateral occipital cortex L �45 �63 0 �2.85
Inferior parietal R 48 �52 17 �2.76
Rostral middle frontal R 40 25 18 �2.92
Pericalcarine fissure R 18 �70 12 �2.83

Hemi, Hemisphere; L, left hemisphere; R, right hemisphere; w, weight of each cluster centroid.
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with equally high weights in volumetric as
well as geometric features— e.g., the ante-
rior cingulate gyrus. Here, cortical thick-
ness as well as local cortical folding
displayed high parameter weights.

In summary, we observed a spatially
distributed pattern of regions that can be
used to differentiate individuals with ASD
from controls. Overall, highest weights
were observed for measures of cortical
thickness, followed by geometric features
such as sulcal depth and metric distortion,
which were predominantly observed in
parietal regions. This suggests that both
volumetric and geometric features play an
important role in distinguishing between
ASD and control group. Last we demon-
strated that the parameter weights for
individual cortical features were region
dependent.

Discussion
Autism affects multiple aspects of the cere-
bral anatomy, which makes its neuroana-
tomical correlates inherently difficult to
describe. Here, we used a multiparameter
classification approach to characterize the
complex and subtle gray matter differences
in adults with ASD. SVM achieved good
separation between groups, and revealed
spatially distributed and largely non-
overlapping patterns of regions with highest
classification weights for each of five mor-
phological features. Our results confirm
that the neuroanatomy of ASD is truly mul-
tidimensional affecting multiple neural sys-
tems. The discriminating patterns detected
using SVM may help further exploration of
the genetic and neuropathological under-
pinnings of ASD.

There is good evidence to suggest that
several aspects of cerebral morphology are
implemented in ASD—including both
volumetric and geometric features (Levitt et
al., 2003; Nordahl et al., 2007). However,
these are normally explored in isolation.
Here, we aimed to establish a framework
for multiparameter image classification to
describe differences in gray matter neuro-
anatomy in autism in multiple dimen-
sions, and to explore the predictive power
of individual parameters for group
membership. This was achieved using a
multiparameter classifier incorporating
volumetric and geometric features at each
cerebral vertex. In the left hemisphere, SVM
correctly classified 85.0% of all cases overall
at a sensitivity and specificity as high as
90.0% and 80.0%, respectively, using all five
morphological features. This level of sensi-
tivity compares well with behaviorally
guided diagnostic tools whose accuracies are
on average �80%. Naturally, one would ex-

Figure 6. A, Visualization of the morphometric abnormalities in the left inferior parietal lobe (BA39). B, Outlines of the
cortical surface for ASD and control group. Differences in metric distortion for this ROI are shown for both groups in C. D, Morphometric
profile (see Fig. 4 legend).

Figure 7. A, Morphometric abnormalities in the middle temporal sulcus. B, Visualization of cortical thickness measures for ASD
(red straight line) and control (blue straight line) group. In this region cortical thickness exclusively discriminated between groups
with individuals with ASD displaying increased thickness relative to controls (C, D).
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pect lower sensitivity values than the test used for defining the “au-
tistic prototype” itself (i.e., ADI-R). Thus, if a classifier is trained on
the basis of true positives identified by diagnostic tools, the max-
imal classification accuracy that could be reached is only as good
as the measurements used to identify true positives.

The significant predictive value of pattern classification ap-
proaches may have potential clinical applications. Currently,
ASD is diagnosed solely on the basis of behavioral criteria. The
behavioral diagnosis is however often time consuming and can be
problematic, particularly in adults. Also, different biological eti-
ologies might result in the same behavioral phenotype [the “au-
tisms” (Geschwind, 2007)], which is undetectable using behavioral
measures alone. Thus, the existence of an ASD biomarker such as
brain anatomy might be useful to facilitate and guide the behavioral
diagnosis. This would, however, require further extensive ex-
ploration in the clinical setting, particularly with regards to
classifier specificity to ASD rather than neurodevelopmental
conditions in general.

To address the issue of clinical specificity, the established ASD
classifier was used to classify individuals with ADHD—a neuro-
developmental control group. Bilaterally, the ASD classifier did
not allocate the majority of ADHD subjects to the ASD category.
This indicates that it does not perform equally well for other
neurodevelopmental conditions, and is more specific to ASD. To

further demonstrate that the classification
is driven by autistic symptoms, the test
margins of individuals with ASD were
correlated with measures of symptom se-
verity (Ecker et al., 2010). We found that
larger margins were associated with more
severe impairments in the social and com-
munication domain of the ADI-R. The
classifier therefore seems to use neuroana-
tomical information specifically related to
ASD rather than simply reflecting nonspe-
cific effects introduced by any kind of pa-
thology. However, due to a recent scanner
upgrade, ADHD scans were acquired with
different acquisition parameters, while
manufacturer, field strength, and pulse se-
quence remained the same. FreeSurfer has
been demonstrated to show good test–retest
reliability particularly within scanner-
manufacturer and field strength (Han et al.,
2006), but we cannot exclude the possibility
that systematic differences in regional con-
trast may have affected the ADHD classifi-
cation. Future research is thus needed to
validate the ADHD findings on an indepen-
dent sample.

The overall classification accuracy var-
ied across hemispheres (79.0% left vs

65.0% right) in the absence of interhemispheric differences in
parameter variability. Hemisphere laterality is an area, which re-
mains relatively unexplored in autism. While our data suggest
that the left hemisphere is better at discriminating between
groups (i.e., is more “abnormal”), it is unclear whether this dis-
crepancy is due to quantitative differences in parameters or to
qualitative aspects of the discriminating patterns (i.e., additional
regions). Furthermore, it is also not possible to identify whether
individuals with ASD display a higher (lower) degree of cortical
asymmetry relative to controls. There is some evidence to suggest
that individuals with ASD show a lower degree of “leftward” (i.e.,
left � right) cortical symmetry than controls (Herbert et al., 2005),
which may explain differences in classification accuracy. There is
also evidence to suggest that the left hemisphere is under tighter
genetic control than the right hemisphere (Thompson et al.,
2001), which may be of relevance to a highly heritable condition
such as ASD. However, a direct numerical comparison between
hemispheres is needed to address this issue directly.

The classification accuracy not only varied across hemispheres
but also across morphometric parameters. Bilaterally, cortical
thickness provided the best classification accuracy and highest
regional weights. Differences in cortical thickness have been re-
ported previously in ASD for both increases (Chung et al., 2005;
Hardan et al., 2006) as well as decreases (Chung et al., 2005;
Hadjikhani et al., 2006), and in similar regions as reported here
(i.e., parietal, temporal, and frontal areas). The overlap with pre-
vious studies indicates that these regions display high classifica-
tion weights due to a quantitative (i.e., “true”) difference rather
than high intercorrelations with thickness measures in other
brain regions.

Certain geometric features such as average convexity and met-
ric distortion provided above chance classifications as well, par-
ticularly in parietal, temporal, and frontal regions, and in areas of
the cingulum. Average convexity and metric distortion measure
different aspects of cortical geometry (see Materials and Meth-

Figure 8. A, Morphometric abnormalities in the posterior cingulate gyrus. B, C, Here, a combination of cortical thickness and
folding pattern led to a high contribution to the classification in that region.

Table 7. Mean discrimination weights within regions of interest for individual
morphometric features

Region

Mean(w)

Cortical
thickness

Mean
curvature

Sulcal
depth

Metric
distortion

Surface
area

Intraparietal sulcus (R) 0.97 0.16 4.63 1.51 2.38
Inferior parietal lobe (L) 1.51 0.23 0.99 4.96 0.88
Medial temporal sulcus (L) 5.66 0.07 0.17 0.48 0.62
Posterior cingulate gyrus (L) 3.83 0.09 0.78 3.79 0.20

R, Right hemisphere; L, left hemisphere; w, weight.
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ods) and have previously been linked to ASD, as has sulcal depth
(Nordahl et al., 2007). Such geometric features were suggested
to reflect abnormal patterns of cortical connectivity. There
have also been reports of abnormal patterns of gyrification
(Piven et al., 1990; Hardan et al., 2004) and large-scale dis-
placements of the major sulci (Levitt et al., 2003). Thus, our
study provides further evidence to support the hypothesis that
the “autistic brain” is not just bigger or smaller but is also
abnormally shaped.

While we demonstrated that the neuroanatomy of ASD is
multidimensional, the etiology of such multivariate differences
remains unclear. Here, little or no spatial overlap was observed
between the discriminating patterns for individual parameters.
Such region dependency was also observed in the regional mor-
phometric profiles displaying the distribution of weights across
multiple cortical features in a region of interest. If one assumes
that different cortical features reflect different neuropathological
processes, such region- and parameter-dependent variations may
reflect the multifactorial etiology of ASD. For example, evidence
suggests that cortical thickness and surface area reflect different
neurobiological processes and are associated with different ge-
netic mechanisms (Panizzon et al., 2009). Cortical thickness is
likely to reflect dendritic arborization (Huttenlocher, 1990) or
changing myelination at the gray/white matter interface (Sowell
et al., 2004). In contrast, surface area is influenced by the division
of progenitor cells in the embryological periventricular area, and
is associated with the number of minicolumns (Rakic, 1988).
Instead, geometric differences are predominantly linked with the
development of neuronal connections and cortical pattern of
connectivity, and are thus a marker for cerebral development
(Armstrong et al., 1995; Van Essen, 1997). It is therefore likely
that the reported maps reflect multiple genetic and/or neurobio-
logical etiologies, which need further investigation. Thus, our
findings should be interpreted in the context of a number of
methodological limitations.

First, the classification algorithm is highly specific to the par-
ticular sample used for “training” the classifier, namely high-
functioning adults with ASD. The advantage of this approach is
that the classifier offers high specificity with regard to this partic-
ular subject group, but is less specific to other cohorts on the
spectrum. Due to the small sample size, it was also not possible to
reliably investigate differences between high-functioning autism
and Asperger’s syndrome. Evidence (Howlin, 2003) suggests that
by adulthood these groups are largely indistinguishable at the
phenotypic level. However, the extent to which these groups
differ at the level of brain anatomy is unknown, and may be
investigating using SVM in the future. Second, 85% of ASD
participants in our sample were diagnosed using the ADI-R,
and 15% were diagnosed using the ADOS. As both diagnostic
tools measure autistic symptoms at different developmental
stages, the classifier may be biased toward individuals with an
early diagnosis of ASD. Although it is not expected that clas-
sifier performance on the basis of ADOS and ADI differ dras-
tically, diagnostic heterogeneity may be a potential limitation.
Last, SVM is a multivariate technique and hence offers a lim-
ited degree of interpretability of specific network components.
Additional analysis such as “searchlight” or “virtual lesions”
approaches (Averbeck et al., 2006; Kriegeskorte et al., 2006;
Pessoa and Padmala, 2007) may therefore be combined with SVM in
the future to establish the relative contribution of individual re-
gions/parameters to the overall classification performance.

Nevertheless, while classification values and specific patterns
we report must be considered as preliminary, our study offers a

“proof of concept” for describing the complex multidimensional
gray matter differences in ASD.
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