//#define WANT_STREAM #include "include.h" #include "newmat.h" #include "tmt.h" #ifdef use_namespace using namespace NEWMAT; #endif /**************************** test program ******************************/ void trymat4() { // cout << "\nFourth test of Matrix package\n"; Tracer et("Fourth test of Matrix package"); Tracer::PrintTrace(); int i,j; { Tracer et1("Stage 1"); Matrix M(10,10); UpperTriangularMatrix U(10); for (i=1;i<=10;i++) for (j=1;j<=10;j++) M(i,j) = 100*i+j; U << -M; Matrix X1 = M.Rows(2,4); Matrix Y1 = U.t().Rows(2,4); Matrix X = U; { Print(Matrix(X.Columns(2,4).t()-Y1)); } RowVector RV = M.Row(5); { X.ReSize(3,10); X.Row(1) << M.Row(2); X.Row(2) << M.Row(3); X.Row(3) << M.Row(4); Print(Matrix(X-X1)); } { UpperTriangularMatrix V = U.SymSubMatrix(3,5); Matrix MV = U.SubMatrix(3,5,3,5); { Print(Matrix(MV-V)); } Matrix X2 = M.t().Columns(2,4); { Print(Matrix(X2-X1.t())); } Matrix Y2 = U.Columns(2,4); { Print(Matrix(Y2-Y1.t())); } ColumnVector CV = M.t().Column(5); { Print(ColumnVector(CV-RV.t())); } X.ReSize(10,3); M = M.t(); X.Column(1) << M.Column(2); X.Column(2) << M.Column(3); X.Column(3) << M.Column(4); Print(Matrix(X-X2)); } } { Tracer et1("Stage 2"); Matrix M; Matrix X; M.ReSize(5,8); for (i=1;i<=5;i++) for (j=1;j<=8;j++) M(i,j) = 100*i+j; { X = M.Columns(5,8); M.Columns(5,8) << M.Columns(1,4); M.Columns(1,4) << X; X = M.Columns(3,4); M.Columns(3,4) << M.Columns(1,2); M.Columns(1,2) << X; X = M.Columns(7,8); M.Columns(7,8) << M.Columns(5,6); M.Columns(5,6) << X; } { X = M.Column(2); M.Column(2) = M.Column(1); M.Column(1) = X; X = M.Column(4); M.Column(4) = M.Column(3); M.Column(3) = X; X = M.Column(6); M.Column(6) = M.Column(5); M.Column(5) = X; X = M.Column(8); M.Column(8) = M.Column(7); M.Column(7) = X; X.ReSize(5,8); } for (i=1;i<=5;i++) for (j=1;j<=8;j++) X(i,9-j) = 100*i+j; Print(Matrix(X-M)); } { Tracer et1("Stage 3"); // try submatrices of zero dimension Matrix A(4,5); Matrix B, C; for (i=1; i<=4; i++) for (j=1; j<=5; j++) A(i,j) = 100+i*10+j; B = A + 100; C = A | B.Columns(4,3); Print(Matrix(A - C)); C = A | B.Columns(1,0); Print(Matrix(A - C)); C = A | B.Columns(6,5); Print(Matrix(A - C)); C = A & B.Rows(2,1); Print(Matrix(A - C)); } { Tracer et1("Stage 4"); BandMatrix BM(5,3,2); BM(1,1) = 1; BM(1,2) = 2; BM(1,3) = 3; BM(2,1) = 4; BM(2,2) = 5; BM(2,3) = 6; BM(2,4) = 7; BM(3,1) = 8; BM(3,2) = 9; BM(3,3) =10; BM(3,4) =11; BM(3,5) =12; BM(4,1) =13; BM(4,2) =14; BM(4,3) =15; BM(4,4) =16; BM(4,5) =17; BM(5,2) =18; BM(5,3) =19; BM(5,4) =20; BM(5,5) =21; SymmetricBandMatrix SM(5,3); SM.Inject(BandMatrix(BM + BM.t())); Matrix A = BM + 1; Matrix M = A + A.t() - 2; Matrix C = A.i() * BM; C = A * C - BM; Clean(C, 0.000000001); Print(C); C = A.i() * SM; C = A * C - M; Clean(C, 0.000000001); Print(C); // check row-wise load BandMatrix BM1(5,3,2); BM1.Row(1) << 1 << 2 << 3; BM1.Row(2) << 4 << 5 << 6 << 7; BM1.Row(3) << 8 << 9 << 10 << 11 << 12; BM1.Row(4) << 13 << 14 << 15 << 16 << 17; BM1.Row(5) << 18 << 19 << 20 << 21; Matrix M1 = BM1 - BM; Print(M1); } { Tracer et1("Stage 5"); Matrix X(4,4); X << 1 << 2 << 3 << 4 << 5 << 6 << 7 << 8 << 9 <<10 <<11 <<12 <<13 <<14 <<15 <<16; Matrix Y(4,0); Y = X | Y; X -= Y; Print(X); DiagonalMatrix D(1); D << 23; // matrix input with just one value D(1) -= 23; Print(D); } { Tracer et1("Stage 6"); Matrix h (2,2); h << 1.0 << 2.0 << 0.0 << 1.0 ; RowVector c(2); c << 0.0 << 1.0; h -= c & c; h -= c.t().Reverse() | c.Reverse().t(); Print(h); } { Tracer et1("Stage 7"); // Check row-wise input for diagonal matrix DiagonalMatrix D(4); D << 18 << 23 << 31 << 17; DiagonalMatrix D1(4); D1.Row(1) << 18; D1.Row(2) << 23; D1.Row(3) << 31; D1.Row(4) << 17; D1 -= D; Print(D1); D1(1) = 18; D1(2) = 23; D1(3) = 31; D1(4) = 17; D1 -= D; Print(D1); } // cout << "\nEnd of fourth test\n"; }