// // Declarations for tetrahedron class Tetrahedron // // tetrahedron.h // // Implements a tetrahedron class that can be used for inverting // 3D warp-fields. It has functionality for finding the tetrahedron // (in warped space) that encompasses a point (given in original // space). Once that tetrahedron is found is has functionality // for calculating the exact location of that point in transformed // space. // // Jesper Andersson, FMRIB Image Analysis Group // // Copyright (C) 2010 University of Oxford // /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ #ifndef tetrahedron_h #define tetrahedron_h #include #include #include "newmat.h" #include "newimage/newimageall.h" // namespace { // to be decided class TetrahedronException: public std::exception { private: std::string m_msg; public: TetrahedronException(const std::string& msg) throw(): m_msg(msg) {} virtual const char * what() const throw() { return string("Tetrahedron::" + m_msg).c_str(); } ~TetrahedronException() throw() {} }; //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ // // This class is used for inverting warp-fields. Let us say we have // a point x,y,z in original point and we want to know what point // x',y',z' in warped space that corresponds to. We do so by finding // the indicies of the tetrahedron in warped space for which x,y,z // falls within when these 4 vertices of that tetrahedron in // original space. Within this tetrahedron every point x',y',z' is // given by equations // x' = a1 + b1*x + c1*y + d1*z // y' = a2 + b2*x + c2*y + d2*z // z' = a3 + b3*x + c3*y + d3*z // And the coefficients a1,b1,...,d3 can be calculated from the // coordinates of the vertices of the tetrahedron in the two spaces. // //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ class Tetrahedron { public: Tetrahedron(int x, int y, int z, unsigned int xs, unsigned int ys, unsigned int zs) : _i1(x), _j1(y), _k1(z), _is(xs), _js(ys), _ks(zs), _miter(1000), _hasaff(false) { populate_me(); set_coordinates(); } Tetrahedron(int x, int y, int z, const boost::shared_ptr >& def) : _i1(x), _j1(y), _k1(z), _is(def->xsize()), _js(def->ysize()), _ks(def->zsize()), _miter(1000), _hasaff(false), _def(def) { populate_me(); set_coordinates(); } Tetrahedron(int x, int y, int z, const boost::shared_ptr >& def, const NEWMAT::Matrix& aff) : _i1(x), _j1(y), _k1(z), _is(def->xsize()), _js(def->ysize()), _ks(def->zsize()), _miter(1000), _hasaff(true), _def(def) { populate_me(); set_affine(aff); set_coordinates(); } ~Tetrahedron() {} void SetFirstPoint(int x, int y, int z) { _i1 = x; _j1 = y; _k1 = z; populate_me(); set_coordinates(); } void SetDeformationField(const boost::shared_ptr >& def) { const boost::shared_ptr > test = def; _def = def; set_coordinates(); } void SetAffine(const NEWMAT::Matrix& aff) { set_affine(aff); set_coordinates(); } void SetIgnoreFOV(bool set=true) { _ioob=set; _def->setextrapolationmethod(NEWIMAGE::zeropad); } bool FindPoint(double x, double y, double z, double& ox, double& oy, double& oz) { if (find_tetrahedron(x,y,z)) { get_point(x,y,z,ox,oy,oz); return(true); } else return(false); } void Print() { PrintIndicies(); PrintCoordinates(); } void PrintIndicies() { cout << _i1 << " " << _j1 << " " << _k1 << endl; cout << _i2 << " " << _j2 << " " << _k2 << endl; cout << _i3 << " " << _j3 << " " << _k3 << endl; cout << _i4 << " " << _j4 << " " << _k4 << endl; } void PrintCoordinates() { cout << _x1 << " " << _y1 << " " << _z1 << endl; cout << _x2 << " " << _y2 << " " << _z2 << endl; cout << _x3 << " " << _y3 << " " << _z3 << endl; cout << _x4 << " " << _y4 << " " << _z4 << endl; } private: void populate_me(); void set_affine(const NEWMAT::Matrix& aff); void set_coordinates(); void set_coordinates(int indx); bool is_point_in_tetrahedron(double x, double y, double z, int& indx); bool is_point_on_right_side_of_plane(double x, double y, double z, unsigned int indx); bool mirror_tetrahedron(int indx); bool find_tetrahedron(double x, double y, double z); void get_point(double x, double y, double z, double& ox, double& oy, double& oz); int _i1, _j1, _k1; // Index (in warped space) of first point of tetrahedron int _i2, _j2, _k2; // Index (in warped space) of second point of tetrahedron int _i3, _j3, _k3; // You get it? int _i4, _j4, _k4; unsigned int _is, _js, _ks; // Size of space it resides in. double _x1, _y1, _z1; // Coordinates (in original space) of first point of tetrahedron double _x2, _y2, _z2; // Coordinates (in original space) of second point of tetrahedron double _x3, _y3, _z3; double _x4, _y4, _z4; int _miter; // Max iterations, used to detect singularities. bool _ioob; // If set means we should ignore out-of-bounds bool _hasaff; // If set means that there is an explicit affine component double _a11, _a12, _a13, _a14; // First row of affine matrix double _a21, _a22, _a23, _a24; // Second row of affine matrix double _a31, _a32, _a33, _a34; // Third row of affine matrix boost::shared_ptr > _def; // Deformation field. }; ///////////////////////////////////////////////////////////////////// // // Returns true if the point given by x,y,z (in original space) // is inside the tetrahedron. If it returns false it will also // return an index to a point that defines which plane it was // on the outside of. This will be the point of the tetrahedron // _not_ on that plane. // Note that it may well be "outside" several of the planes, but // only the first encountered will be reported in indx. // To decrease the changes of a tetrahedron getting stuck // in an area of singularity (in which case the tetrahedron // gets turned inside-out) the order in which the planes will // be random. // If it finds it is outside a plane, but that a step in that // direction would take it outside the valid FOV it will go to // the next plane and test that. If it turns out that there is // direction in which it can go it will return false and set // indx to -1, indicating that the point out of bounds. // The FOV checking can be turned off by setting the _ioob (ignore // out of bounds) flag. // ///////////////////////////////////////////////////////////////////// bool Tetrahedron::is_point_in_tetrahedron(double x, double y, double z, int& indx) { indx = (rand() % 4) + 1; // Random value in range 1-4 bool one_is_on_right_side = false; bool four_is_on_right_side = false; bool one_is_ok = false; bool four_is_ok = false; for (int i=0; i<4; i++) { switch (indx) { case 1: if (!_ioob) { if (_i1 != _i2) { int tmp = _i1 + 2*(_i2-_i1); if (tmp>0 && tmp0 && tmp0 && tmp0 && tmp0 && tmp0 && tmp (int(_is)-1))) return(false); else _i1 = tmp; } else if (_j1 != _j2) { int tmp = _j1 + 2*(_j2-_j1); if (!_ioob && (tmp < 0 || tmp > (int(_js)-1))) return(false); else _j1 = tmp; } else if (_k1 != _k2) { int tmp = _k1 + 2*(_k2-_k1); if (!_ioob && (tmp < 0 || tmp > (int(_ks)-1))) return(false); else _k1 = tmp; } else throw TetrahedronException("mirror_tetrahedron::Nämenvanudå 1"); break; case 2: if (_i2==_i1 && _i2==_i3) { // If in yz-plane if (_j2 == _j1) { _j2=_j3; _k2=_k1; } else if (_k2 == _k1) { _k2=_k3; _j2=_j1; } else throw TetrahedronException("mirror_tetrahedron::Nämenvanudå 2-x"); } else if (_j2==_j1 && _j2==_j3) { // If in xz-plane if (_i2 == _i1) { _i2=_i3; _k2=_k1; } else if (_k2 == _k1) { _k2=_k3; _i2=_i1; } else throw TetrahedronException("mirror_tetrahedron::Nämenvanudå 2-y"); } else if (_k2==_k1 && _k2==_k3) { // If in xy-plane if (_i2 == _i1) { _i2=_i3; _j2=_j1; } else if (_j2 == _j1) { _j2=_j3; _i2=_i1; } else throw TetrahedronException("mirror_tetrahedron::Nämenvanudå 2-z"); } else throw TetrahedronException("mirror_tetrahedron::Nämenvanudå 2"); break; case 3: if (_i3==_i2 && _i3==_i4) { // If in yz-plane if (_j3 == _j2) { _j3=_j4; _k3=_k2; } else if (_k3 == _k2) { _k3=_k4; _j3=_j2; } else throw TetrahedronException("mirror_tetrahedron::Nämenvanudå 3-x"); } else if (_j3==_j2 && _j3==_j4) { // If in xz-plane if (_i3 == _i2) { _i3=_i4; _k3=_k2; } else if (_k3 == _k2) { _k3=_k4; _i3=_i2; } else throw TetrahedronException("mirror_tetrahedron::Nämenvanudå 3-y"); } else if (_k3==_k2 && _k3==_k4) { // If in xy-plane if (_i3 == _i2) { _i3=_i4; _j3=_j2; } else if (_j3 == _j2) { _j3=_j4; _i3=_i2; } else throw TetrahedronException("mirror_tetrahedron::Nämenvanudå 3-z"); } else throw TetrahedronException("mirror_tetrahedron::Nämenvanudå 3"); break; case 4: if (_i4 != _i3) { int tmp = _i4 + 2*(_i3-_i4); if (!_ioob && (tmp < 0 || tmp > (int(_is)-1))) return(false); else _i4 = tmp; } else if (_j4 != _j3) { int tmp = _j4 + 2*(_j3-_j4); if (!_ioob && (tmp < 0 || tmp > (int(_js)-1))) return(false); else _j4 = tmp; } else if (_k4 != _k3) { int tmp = _k4 + 2*(_k3-_k4); if (!_ioob && (tmp < 0 || tmp > (int(_ks)-1))) return(false); else _k4 = tmp; } else throw TetrahedronException("mirror_tetrahedron::Nämenvanudå 4"); break; default: throw TetrahedronException("mirror_tetrahedron::Invalid index"); break; } set_coordinates(indx); return(true); } ///////////////////////////////////////////////////////////////////// // // Returns true if the point given by x,y,z is on the "right" side // of the plane spanned by the three vertices that are _not_ // indicated by indx. N.B. that indx is one-offset. // It first calculates a normal to the plane and then calculates // the dot-product of that normal and a vector from one of the // vertices to the point given by x,y,z. If that dot-product has // the same sign as the dot-product between the normal and the // vector to the remaining vertex the point is on the "right" side. // A dot-product of zero (point is on the plane) counts as "in". // ///////////////////////////////////////////////////////////////////// bool Tetrahedron::is_point_on_right_side_of_plane(double x, double y, double z, unsigned int indx) { double nx, ny, nz; // Normal to plane double udot=0.0; // Dot product with "unknown" point double kdot=0.0; // Dot product with "known" point switch(indx) { case 1: nx=(_y3-_y2)*(_z4-_z2)-(_z3-_z2)*(_y4-_y2); ny=(_z3-_z2)*(_x4-_x2)-(_x3-_x2)*(_z4-_z2); nz=(_x3-_x2)*(_y4-_y2)-(_y3-_y2)*(_x4-_x2); udot=nx*(x-_x2)+ny*(y-_y2)+nz*(z-_z2); kdot=nx*(_x1-_x2)+ny*(_y1-_y2)+nz*(_z1-_z2); break; case 2: nx=(_y3-_y1)*(_z4-_z1)-(_z3-_z1)*(_y4-_y1); ny=(_z3-_z1)*(_x4-_x1)-(_x3-_x1)*(_z4-_z1); nz=(_x3-_x1)*(_y4-_y1)-(_y3-_y1)*(_x4-_x1); udot=nx*(x-_x1)+ny*(y-_y1)+nz*(z-_z1); kdot=nx*(_x2-_x1)+ny*(_y2-_y1)+nz*(_z2-_z1); break; case 3: nx=(_y2-_y1)*(_z4-_z1)-(_z2-_z1)*(_y4-_y1); ny=(_z2-_z1)*(_x4-_x1)-(_x2-_x1)*(_z4-_z1); nz=(_x2-_x1)*(_y4-_y1)-(_y2-_y1)*(_x4-_x1); udot=nx*(x-_x1)+ny*(y-_y1)+nz*(z-_z1); kdot=nx*(_x3-_x1)+ny*(_y3-_y1)+nz*(_z3-_z1); break; case 4: nx=(_y2-_y1)*(_z3-_z1)-(_z2-_z1)*(_y3-_y1); ny=(_z2-_z1)*(_x3-_x1)-(_x2-_x1)*(_z3-_z1); nz=(_x2-_x1)*(_y3-_y1)-(_y2-_y1)*(_x3-_x1); udot=nx*(x-_x1)+ny*(y-_y1)+nz*(z-_z1); kdot=nx*(_x4-_x1)+ny*(_y4-_y1)+nz*(_z4-_z1); break; default: break; } return(!udot || (udot<0)&&(kdot<0) || (udot>0)&&(kdot>0)); } ///////////////////////////////////////////////////////////////////// // // Given a point x,y,z in original space and given that this // point falls inside the current location of the tetrahedron (in // original space) it will return the corresponing point xx,yy,zz // in transformed space. // ///////////////////////////////////////////////////////////////////// void Tetrahedron::get_point(double x, double y, double z, double& xx, double& yy, double& zz) { NEWMAT::Matrix X(4,4); // Coordinates of tetrahedron in original space Real a[] = {1.0,_x1,_y1,_z1,1.0,_x2,_y2,_z2,1.0,_x3,_y3,_z3,1.0,_x4,_y4,_z4}; X << a; NEWMAT::CroutMatrix XX = X; // Looks weird, but allegedly carries out LU-decomp. NEWMAT::Matrix Xp(4,3); // Coordinates of tetrahedron in transformed space Real b[] = {_i1,_j1,_k1,_i2,_j2,_k2,_i3,_j3,_k3,_i4,_j4,_k4}; Xp << b; NEWMAT::Matrix B = XX.i() * Xp; // x' = B(1,1) + B(2,1)*x + B(3,1)*y + B(4,1)*z ColumnVector xo(4); // 1-augmented coordinates of point of interest in original space Real c[] = {1.0,x,y,z}; xo << c; ColumnVector xt = B.t()*xo; // Point of interest in transformed space xx = xt(1); yy = xt(2); zz = xt(3); return; } ///////////////////////////////////////////////////////////////////// // // Move tetrahedron around until point (in original space) falls // within the coordinates of the tetrahedron (when warped into // original space). // ///////////////////////////////////////////////////////////////////// bool Tetrahedron::find_tetrahedron(double x, double y, double z) { int indx = 0; int iter = 0; while (iter < _miter && !is_point_in_tetrahedron(x,y,z,indx)) { if (indx < 0) return(false); // Point outside allowed volume mirror_tetrahedron(indx); iter++; } if (iter == _miter) return(false); return(true); } ///////////////////////////////////////////////////////////////////// // // Translate indicies in warped space to coordinates in original // space. // ///////////////////////////////////////////////////////////////////// void Tetrahedron::set_coordinates(int indx) { switch(indx) { case 1: if (_hasaff) { _x1 = _a11*_i1+_a12*_j1+_a13*_k1+_a14; _y1 = _a21*_i1+_a22*_j1+_a23*_k1+_a24; _z1 = _a31*_i1+_a32*_j1+_a33*_k1+_a34; } else { _x1=_i1; _y1=_j1; _z1=_k1; } if (_def) { _x1 += (*_def)(_i1,_j1,_k1,0); _y1 += (*_def)(_i1,_j1,_k1,1); _z1 += (*_def)(_i1,_j1,_k1,2); } break; case 2: if (_hasaff) { _x2 = _a11*_i2+_a12*_j2+_a13*_k2+_a14; _y2 = _a21*_i2+_a22*_j2+_a23*_k2+_a24; _z2 = _a31*_i2+_a32*_j2+_a33*_k2+_a34; } else { _x2=_i2; _y2=_j2; _z2=_k2; } if (_def) { _x2 += (*_def)(_i2,_j2,_k2,0); _y2 += (*_def)(_i2,_j2,_k2,1); _z2 += (*_def)(_i2,_j2,_k2,2); } break; case 3: if (_hasaff) { _x3 = _a11*_i3+_a12*_j3+_a13*_k3+_a14; _y3 = _a21*_i3+_a22*_j3+_a23*_k3+_a24; _z3 = _a31*_i3+_a32*_j3+_a33*_k3+_a34; } else { _x3=_i3; _y3=_j3; _z3=_k3; } if (_def) { _x3 += (*_def)(_i3,_j3,_k3,0); _y3 += (*_def)(_i3,_j3,_k3,1); _z3 += (*_def)(_i3,_j3,_k3,2); } break; case 4: if (_hasaff) { _x4 = _a11*_i4+_a12*_j4+_a13*_k4+_a14; _y4 = _a21*_i4+_a22*_j4+_a23*_k4+_a24; _z4 = _a31*_i4+_a32*_j4+_a33*_k4+_a34; } else { _x4=_i4; _y4=_j4; _z4=_k4; } if (_def) { _x4 += (*_def)(_i4,_j4,_k4,0); _y4 += (*_def)(_i4,_j4,_k4,1); _z4 += (*_def)(_i4,_j4,_k4,2); } break; default: break; } } void Tetrahedron::set_coordinates() { set_coordinates(1); set_coordinates(2); set_coordinates(3); set_coordinates(4); } ///////////////////////////////////////////////////////////////////// // // Populates tetrahedron from an initial point. // Can be made more clever by allowing population in arbitrary // directions (all positive now). // ///////////////////////////////////////////////////////////////////// void Tetrahedron::populate_me() { if (!_ioob && (_i1<0 || _i1 > int(_is-2) || _j1<0 || _j1 > int(_js-2) || _k1<0 || _k1 > int(_ks-2))) throw TetrahedronException("populate_me::Invalid initial point"); _i2 = _i1; _j2 = _j1; _k2 = _k1+1; _i3 = _i1; _j3 = _j1+1; _k3 = _k1+1; _i4 = _i1+1; _j4 = _j1+1; _k4 = _k1+1; set_coordinates(); } void Tetrahedron::set_affine(const NEWMAT::Matrix& aff) { _hasaff = true; _a11=aff(1,1); _a12=aff(1,2); _a13=aff(1,3); _a14=aff(1,4); _a21=aff(2,1); _a22=aff(2,2); _a23=aff(2,3); _a24=aff(2,4); _a31=aff(3,1); _a32=aff(3,2); _a33=aff(3,3); _a34=aff(3,4); } // } // End namespace to be decided #endif // End #ifndef tetrahedron_h