/* fslmeants.cc Mark Jenkinson and Matthew Webster, FMRIB Image Analysis Group Copyright (C) 2007 University of Oxford */ /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ // Creates a mean time series (ignoring zeros) from the input 4D volume // Saves the results as a column in a text file #include "newimage/newimageall.h" #include "miscmaths/miscmaths.h" #include "utils/options.h" using namespace NEWIMAGE; using namespace MISCMATHS; using namespace Utilities; // The two strings below specify the title and example usage that is // printed out as the help or usage message string title="fslmeants \nCopyright(c) 2004-2009, University of Oxford (Mark Jenkinson, Christian F. Beckmann)\nPrints average timeseries (intensities) to the screen (or saves to a file).\nThe average is taken over all voxels in the mask (or all voxels in the image if no mask is specified).\n"; string examples="fslmeants -i filtered_func_data -o meants.txt -m my_mask\nfslmeants -i filtered_func_data -m my_mask\nfslmeants -i filtered_func_data -c 24 19 10"; // Each (global) object below specificies as option and can be accessed // anywhere in this file (since they are global). The order of the // arguments needed is: name(s) of option, default value, help message, // whether it is compulsory, whether it requires arguments // Note that they must also be included in the main() function or they // will not be active. Option verbose(string("-v,--verbose"), false, string("switch on diagnostic messages"), false, no_argument); Option help(string("-h,--help"), false, string("display this message"), false, no_argument); Option usemm(string("--usemm"), false, string("\tuse mm instead of voxel coordinates (for -c option)"), false, no_argument); Option showall(string("--showall"), false, string("show all voxel time series (within mask) instead of averaging"), false, no_argument); Option inname(string("-i"), string(""), string("~\tinput 4D image"), true, requires_argument); Option maskname(string("-m"), string(""), string("~\tinput 3D mask"), false, requires_argument); Option labelname(string("--label"), string(""), string("input 3D label image (generate separate mean for each integer label value - cannot be used with showall)"), false, requires_argument); Option outmat(string("-o"), string(""), string("~\toutput text matrix"), false, requires_argument); Option coordval(string("-c"), 0.0, string("~\trequested spatial coordinate (instead of mask)"), false, requires_3_arguments); Option eig(string("--eig"), false, string(" calculate Eigenvariate(s) instead of mean (output will have 0 mean)"), false, no_argument); Option bin_mask(string("--no_bin"), true, string(" do not binarise the mask for calculation of Eigenvariates"), false, no_argument); Option order(string("--order"), 1, string(" select number of Eigenvariates (default 1)"), false, requires_argument); Option transpose(string("--transpose"), false, string(" output results in transpose format (one row per voxel/mean)"), false, no_argument); Option weightedMask(string("-w"), false, string("output weighted mean, using mask values as weights, and exit."), false, no_argument); int nonoptarg; int main(int argc,char *argv[]) { Tracer tr("main"); OptionParser options(title, examples); options.add(inname); options.add(outmat); options.add(maskname); options.add(coordval); options.add(usemm); options.add(showall); options.add(eig); options.add(order); options.add(bin_mask); options.add(labelname); options.add(transpose); options.add(verbose); options.add(help); options.add(weightedMask); nonoptarg = options.parse_command_line(argc, argv); // line below stops the program if the help was requested or // a compulsory option was not set if ( (help.value()) || (!options.check_compulsory_arguments(true)) ) { options.usage(); exit(EXIT_FAILURE); } // OK, now do the job ... volume4D vin; read_volume4D(vin,inname.value()); volume mask, label; volume4D mask_nonbin; if (maskname.set()) { read_volume(mask,maskname.value()); } else { mask = vin[0]; mask = 1.0; } if ( weightedMask.value() ) { Matrix meanwts(vin.tsize(),1); for(int t=0;t=0.99) { mask *= label; } nlabs=MISCMATHS::round(labmax); if (nlabs<1) nlabs=1; } // override the mask (and label) if a coordinate is specified if (coordval.set()) { mask = vin[0]; mask = 0.0; float x, y, z; x = coordval.value(0); y = coordval.value(1); z = coordval.value(2); ColumnVector v(4); v << x << y << z << 1.0; if (usemm.value()) { // convert from mm to newimage voxels v = (vin[0].newimagevox2mm_mat()).i() * v; } else { // convert from nifti voxels (input) to newimage voxels (internal) v = vin[0].niftivox2newimagevox_mat() * v; } x = v(1); y = v(2); z = v(3); mask(MISCMATHS::round(x),MISCMATHS::round(y),MISCMATHS::round(z)) = 1.0; } if (!samesize(vin[0],mask)) { cerr << "ERROR: Mask and Input volumes have different (x,y,z) size." << endl; return -1; } mask_nonbin.addvolume(mask); if (labelname.unset()) { mask.binarise(1e-8); } // arbitrary "0" threshold Matrix meants; int nt = vin.tsize(); int nvox = nlabs; if (showall.value()) { nvox = no_mask_voxels(mask); nt += 3; } meants.ReSize(nt,nvox); meants = 0; for (int iter=1; iter<=nlabs; iter++) { if (eig.value()) { Matrix dat, evecs, scales; scales = mask_nonbin.matrix(mask); dat = vin.matrix(mask); if(!bin_mask.value()) dat = SP (dat, ones(dat.Nrows(),1) * scales); dat = remmean(dat,1); if (verbose.value()) { cout << "Number of voxels used = " << dat.Ncols() << endl; } SymmetricMatrix Corr; Corr << dat * dat.t() / dat.Ncols(); DiagonalMatrix tmpD; EigenValues(Corr,tmpD,evecs); evecs = fliplr(evecs.Columns(evecs.Ncols()-order.value()+1 , evecs.Ncols())) * std::sqrt(dat.Nrows()); Matrix res2 = mean(dat,2); res2 = res2.Column(1).t() * evecs.Column(1); if((float)res2.AsScalar()<0) evecs = -1.0 * evecs; if (transpose.value()) { evecs=evecs.t(); } if (outmat.set()) { write_ascii_matrix(evecs,outmat.value()); } else { cout << evecs << endl; } if (transpose.value()) { evecs=evecs.t(); } } else { // NOT EIG long int num=0; for (int z=mask.minz(); z<=mask.maxz(); z++) { for (int y=mask.miny(); y<=mask.maxy(); y++) { for (int x=mask.minx(); x<=mask.maxx(); x++) { if (MISCMATHS::round(mask(x,y,z))==iter) { num++; if (showall.value()) { ColumnVector v(4); v << x << y << z << 1.0; v = (vin[0].niftivox2newimagevox_mat()).i() * v; meants(1,num) = v(1); meants(2,num) = v(2); meants(3,num) = v(3); meants.SubMatrix(4,nt,num,num) = vin.voxelts(x,y,z); } else { meants.SubMatrix(1,nt,iter,iter) = meants.SubMatrix(1,nt,iter,iter) + vin.voxelts(x,y,z); } } } } } if (verbose.value()) { cout << "Number of voxels used = " << num << endl; } // normalise for number of valid entries if averaging if (!showall.value()) { if (num>0) meants.SubMatrix(1,nt,iter,iter) = meants.SubMatrix(1,nt,iter,iter) / ((float) num); } // save the result if (transpose.value()) { meants=meants.t(); } if (outmat.set()) { write_ascii_matrix(meants,outmat.value()); } else { cout << meants << endl; } if (transpose.value()) { meants=meants.t(); } } } return 0; }