/* fwdmodel_asl_buxton.cc - Implements the Buxton kinetic curve model Michael Chappell, FMRIB Image Analysis Group Copyright (C) 2007 University of Oxford */ /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ #include "fwdmodel_asl_buxton.h" #include #include #include #include "newimage/newimageall.h" using namespace NEWIMAGE; #include "easylog.h" string BuxtonFwdModel::ModelVersion() const { return "$Id: fwdmodel_asl_buxton.cc,v 1.8 2010/02/11 16:48:42 chappell Exp $"; } void BuxtonFwdModel::HardcodedInitialDists(MVNDist& prior, MVNDist& posterior) const { Tracer_Plus tr("BuxtonFwdModel::HardcodedInitialDists"); assert(prior.means.Nrows() == NumParams()); SymmetricMatrix precisions = IdentityMatrix(NumParams()) * 1e-12; // Set priors // Tissue bolus perfusion prior.means(tiss_index()) = 0; precisions(tiss_index(),tiss_index()) = 1e-12; // Tissue bolus transit delay prior.means(tiss_index()+1) = 0.7; precisions(tiss_index()+1,tiss_index()+1) = 10; // Tissue bolus length if (infertau) { prior.means(tau_index()) = seqtau; precisions(tau_index(),tau_index()) = 100; } // T1 & T1b if (infert1) { int tidx = t1_index(); prior.means(tidx) = t1; prior.means(tidx+1) = t1b; precisions(tidx,tidx) = 100; precisions(tidx+1,tidx+1) = 100; } // second bolus if (twobol) { int tiss2idx = tiss2_index(); // perfusion prior.means(tiss2idx) = 0; precisions(tiss2idx,tiss2idx) = 1e-12; //should be largely irrelevant as this will be subject to ARD // transit delay prior.means(tiss2idx+1) = 1; precisions(tiss2idx+1,tiss2idx+1) = 10; } // Set precsions on priors prior.SetPrecisions(precisions); // Set initial posterior posterior = prior; // Modify posterior for perfusion to a more realisitic starting point posterior.means(tiss_index()) = 10; precisions(tiss_index(),tiss_index()) = 0.1; posterior.SetPrecisions(precisions); } void BuxtonFwdModel::Evaluate(const ColumnVector& params, ColumnVector& result) const { Tracer_Plus tr("BuxtonFwdModel::Evaluate"); // ensure that values are reasonable // negative check ColumnVector paramcpy = params; for (int i=1;i<=NumParams();i++) { if (params(i)<0) { paramcpy(i) = 0; } } // sensible limits on transit times if (params(tiss_index()+1)>timax-0.2) { paramcpy(tiss_index()+1) = timax-0.2; } // parameters that are inferred - extract and give sensible names float ftiss; float delttiss; float tautiss; float T_1; float T_1b; float ftiss2 = 0; float delttiss2 = 0; ftiss=paramcpy(tiss_index()); delttiss=paramcpy(tiss_index()+1); if (infertau) { tautiss=paramcpy(tau_index()); } else { tautiss = seqtau; } if (infert1) { T_1 = paramcpy(t1_index()); T_1b = paramcpy(t1_index()+1); } else { T_1 = t1; T_1b = t1b; } if (twobol) { ftiss2 = paramcpy(tiss2_index()); delttiss2 = paramcpy(tiss2_index()+1); } //float lambda = 0.9; float T_1app = 1/( 1/T_1 + 0.01/lambda ); float R = 1/T_1app - 1/T_1b; float tau1 = delttiss; float tau2 = delttiss + tautiss; // for second bolus float tau3 = delttiss2; float tau4 = delttiss2 + tautiss; float F=0;float F2=0; float kctissue; float kctissue2; // loop over tis float ti; result.ReSize(tis.Nrows()*repeats); for(int it=1; it<=tis.Nrows(); it++) { ti = tis(it); // 1st bolus F = 2*ftiss * exp(-ti/T_1app); /* tissue contribution */ if(ti < tau1) { kctissue = 0;} else if(ti >= tau1 && ti <= tau2) { kctissue = F/R * (exp(R*ti) - exp(R*tau1)); } else /*(ti > tau2)*/ {kctissue = F/R * (exp(R*tau2) - exp(R*tau1)); } // 2nd bolus F2 = 2*ftiss2/lambda * exp(-ti/T_1app); /* tissue contribution */ if(ti < tau3) { kctissue2 = 0;} else if(ti >= tau3 && ti <= tau4) { kctissue2 = F2/R * (exp(R*ti) - exp(R*tau3)); } else /*(ti > tau2)*/ {kctissue2 = F2/R * (exp(R*tau4) - exp(R*tau3)); } /* output */ // loop over the repeats for (int rpt=1; rpt<=repeats; rpt++) { result( (it-1)*repeats+rpt ) = kctissue + kctissue2; } } return; } BuxtonFwdModel::BuxtonFwdModel(ArgsType& args) { string scanParams = args.ReadWithDefault("scan-params","cmdline"); if (scanParams == "cmdline") { // specify command line parameters here repeats = convertTo(args.Read("repeats")); // number of repeats in data t1 = convertTo(args.ReadWithDefault("t1","1.3")); t1b = convertTo(args.ReadWithDefault("t1b","1.5")); lambda = convertTo(args.ReadWithDefault("lambda","0.9")); infertau = args.ReadBool("infertau"); // infer on bolus length? infert1 = args.ReadBool("infert1"); //infer on T1 values? twobol = args.ReadBool("twobol"); //infer a second bolus? doard=false; if (twobol) { doard = true; } //ARD is always used on perfusion of second bolus seqtau = convertTo(args.Read("tau")); // Deal with tis tis.ReSize(1); //will add extra values onto end as needed tis(1) = atof(args.Read("ti1").c_str()); while (true) //get the rest of the tis { int N = tis.Nrows()+1; string tiString = args.ReadWithDefault("ti"+stringify(N), "stop!"); if (tiString == "stop!") break; //we have run out of tis // append the new ti onto the end of the list ColumnVector tmp(1); tmp = convertTo(tiString); tis &= tmp; //vertical concatenation } timax = tis.Maximum(); //dtermine the final TI // add information about the parameters to the log LOG << " Data parameters: #repeats = " << repeats << ", t1 = " << t1 << ", t1b = " << t1b; LOG << ", bolus length (tau) = " << seqtau << endl ; if (infertau) { LOG << "Infering on bolus length " << endl; } if (infert1) { LOG << "Infering on T1 values " << endl; } if (twobol) { LOG << "Inferring upon a second bolus " << endl; } LOG << "TIs: "; for (int i=1; i <= tis.Nrows(); i++) LOG << tis(i) << " "; LOG << endl; } else throw invalid_argument("Only --scan-params=cmdline is accepted at the moment"); } void BuxtonFwdModel::ModelUsage() { cout << "\nUsage info for --model=buxton:\n" << "Required parameters:\n" << "--repeats=\n" << "--ti1=\n" << "--ti2=, etc...\n" << "--tau= \n" << "Optional arguments:\n" << "--t1= (default 1.3)\n" << "--t1b= (default 1.5)\n" << "--infertau (to infer on bolus length)\n" << "--infert1 (to infer on T1 values)\n" ; } void BuxtonFwdModel::DumpParameters(const ColumnVector& vec, const string& indent) const { } void BuxtonFwdModel::NameParams(vector& names) const { names.clear(); names.push_back("ftiss"); names.push_back("delttiss"); if (infertau) names.push_back("tautiss"); if (infert1) { names.push_back("T_1"); names.push_back("T_1b"); } if (twobol) { names.push_back("ftiss2"); names.push_back("delttiss2"); } } /* ARD for second bolus perfusion */ /* taken from fwdmodel_asl_grase.cc (29-11-2007) */ void BuxtonFwdModel::SetupARD( const MVNDist& theta, MVNDist& thetaPrior, double& Fard) const { Tracer_Plus tr("BuxtonFwdModel::SetupARD"); int ardindex = ard_index(); if (doard) { SymmetricMatrix PriorPrec; PriorPrec = thetaPrior.GetPrecisions(); PriorPrec(ardindex,ardindex) = 1e-12; thetaPrior.SetPrecisions(PriorPrec); thetaPrior.means(ardindex)=0; //set the Free energy contribution from ARD term SymmetricMatrix PostCov = theta.GetCovariance(); double b = 2/(theta.means(ardindex)*theta.means(ardindex) + PostCov(ardindex,ardindex)); Fard = -1.5*(log(b) + digamma(0.5)) - 0.5 - gammaln(0.5) - 0.5*log(b); //taking c as 0.5 - which it will be! } return; } void BuxtonFwdModel::UpdateARD( const MVNDist& theta, MVNDist& thetaPrior, double& Fard) const { Tracer_Plus tr("BuxtonFwdModel::UpdateARD"); int ardindex = ard_index(); if (doard) { SymmetricMatrix PriorCov; SymmetricMatrix PostCov; PriorCov = thetaPrior.GetCovariance(); PostCov = theta.GetCovariance(); PriorCov(ardindex,ardindex) = theta.means(ardindex)*theta.means(ardindex) + PostCov(ardindex,ardindex); thetaPrior.SetCovariance(PriorCov); //Calculate the extra terms for the free energy double b = 2/(theta.means(ardindex)*theta.means(ardindex) + PostCov(ardindex,ardindex)); Fard = -1.5*(log(b) + digamma(0.5)) - 0.5 - gammaln(0.5) - 0.5*log(b); //taking c as 0.5 - which it will be! } return; }