/* fwdmodel_asl_pvc.cc - Partial Volume Correction resting state ASL model (Buxton) Michael Chappell, FMRIB Image Analysis Group Copyright (C) 2009 University of Oxford */ /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ #include "fwdmodel_asl_pvc.h" #include #include #include #include "newimage/newimageall.h" #include "miscmaths/miscprob.h" using namespace NEWIMAGE; #include "easylog.h" string ASL_PVC_FwdModel::ModelVersion() const { return "$Id: fwdmodel_asl_pvc.cc,v 1.4 2011/08/24 10:28:36 chappell Exp $"; } void ASL_PVC_FwdModel::HardcodedInitialDists(MVNDist& prior, MVNDist& posterior) const { Tracer_Plus tr("ASL_PVC_FwdModel::HardcodedInitialDists"); assert(prior.means.Nrows() == NumParams()); SymmetricMatrix precisions = IdentityMatrix(NumParams()) * 1e-12; // Set priors // Tissue bolus perfusion if (infertiss) { prior.means(tiss_index()) = 0; precisions(tiss_index(),tiss_index()) = 1e-12; //if (!singleti) { // Tissue bolus transit delay prior.means(tiss_index()+1) = setdelt; precisions(tiss_index()+1,tiss_index()+1) = 10; // } } // Tissue bolus length if (infertau && infertiss) { prior.means(tau_index()) = seqtau; precisions(tau_index(),tau_index()) = 10; } if (infertaub) { prior.means(taub_index()) = seqtau; precisions(taub_index(),taub_index()) = 10; } // Arterial Perfusion & bolus delay if (inferart) { int aidx = art_index(); prior.means(aidx) = 0; prior.means(aidx+1) = 0.5; precisions(aidx+1,aidx+1) = 10; precisions(aidx,aidx) = 1e-12; } // T1 & T1b if (infert1) { int tidx = t1_index(); prior.means(tidx) = t1; prior.means(tidx+1) = t1b; precisions(tidx,tidx) = 100; precisions(tidx+1,tidx+1) = 100; } /* if (inferart) { prior.means(R_index()) = log(10); precisions(R_index(),R_index()) = 1; }*/ if (inferwm) { int wmi = wm_index(); prior.means(wmi) = 0; prior.means(wmi+1) = 1.2; precisions(wmi,wmi) = 1e-12; precisions(wmi+1,wmi+1) = 10; if (infertau) { prior.means(wmi+2) = seqtau; precisions(wmi+2,wmi+2) = 10; } if (infert1) { prior.means(wmi+3) = t1wm; precisions(wmi+3,wmi+3) = 100; } if (usepve) { //PV entries, the means get overwritten elsewhere if the right sort of prior is specified // default is to allow both (NB artifically defies sum(pve)=1) int pvi= pv_index(); prior.means(pvi) = 1; //GM is first prior.means(pvi+1)= 1; //WM is second // (precisions are big as we treat PV parameters as correct // NB they are not accesible from the data anyway) //std dev of 1% precisions(pvi,pvi) = 1e4; precisions(pvi+1,pvi+1) = 1e4; } } /* if (inferinveff) { prior.means(inveff_index()) = 0.3; precisions(inveff_index(),inveff_index()) = 10; }*/ // Set precsions on priors prior.SetPrecisions(precisions); // Set initial posterior posterior = prior; // For parameters with uniformative prior chosoe more sensible inital posterior // Tissue perfusion if (infertiss) { posterior.means(tiss_index()) = 10; precisions(tiss_index(),tiss_index()) = 1; } // Arterial perfusion if (inferart) { posterior.means(art_index()) = 10; precisions(art_index(),art_index()) = 1; } if (inferwm) { posterior.means(wm_index()) = 10; precisions(wm_index(),wm_index()) = 1; } posterior.SetPrecisions(precisions); } void ASL_PVC_FwdModel::Evaluate(const ColumnVector& params, ColumnVector& result) const { Tracer_Plus tr("ASL_PVC_FwdModel::Evaluate"); // ensure that values are reasonable // negative check ColumnVector paramcpy = params; for (int i=1;i<=NumParams();i++) { if (params(i)<0) { paramcpy(i) = 0; } } // sensible limits on transit times if (infertiss) { if (params(tiss_index()+1)>timax-0.2) { paramcpy(tiss_index()+1) = timax-0.2; } } if (inferart) { if (params(art_index()+1)>timax-0.2) { paramcpy(art_index()+1) = timax-0.2; } } // parameters that are inferred - extract and give sensible names float ftiss; float delttiss; float tauset; //the value of tau set by the sequence (may be effectively infinite) float taubset; float fblood; float deltblood; float T_1; float T_1b; float pv_gm; float pv_wm; float fwm; float deltwm; float tauwmset; float T_1wm; // float RR; // float inveffslope; //float trailingperiod; if (infertiss) { ftiss=paramcpy(tiss_index()); //if (!singleti) { delttiss=paramcpy(tiss_index()+1); //} //else { //only inferring on tissue perfusion, assume fixed value for tissue arrival time //delttiss = 0; //} } else { ftiss=0; delttiss=0; } if (infertau && infertiss) { tauset=paramcpy(tau_index()); } else { tauset = seqtau; } if (infertaub) { taubset = paramcpy(taub_index()); } else { taubset = tauset; } if (inferart) { fblood=paramcpy(art_index()); deltblood=paramcpy(art_index()+1); } else { fblood = 0; deltblood = 0; } if (infert1) { T_1 = paramcpy(t1_index()); T_1b = paramcpy(t1_index()+1); //T1 cannot be zero! if (T_1<0.01) T_1=0.01; if (T_1b<0.01) T_1b=0.01; } else { T_1 = t1; T_1b = t1b; } /*if (inferart) { RR = exp( paramcpy(R_index()) ); if (RR<1) RR=1; }*/ if (inferwm) { fwm=paramcpy(wm_index()); //fwm=20; deltwm=paramcpy(wm_index()+1); if (infertau) { tauwmset = paramcpy(wm_index()+2); } else tauwmset = seqtau; if (infert1) { T_1wm = paramcpy(wm_index()+3); if (T_1<0.01) T_1=0.01; } else T_1wm = t1wm; if (usepve) { pv_gm = paramcpy(pv_index()); pv_wm = paramcpy(pv_index()+1); } else { pv_gm=1;pv_wm=1; } } else { fwm=0; deltwm=0; T_1wm=t1wm; pv_gm=1; pv_wm=1; } float lambdagm = 0.98; float lambdawm = 0.82; float T_1app = 1/( 1/T_1 + 0.01/lambdagm ); float T_1appwm = 1/( 1/T_1wm + 0.01/lambdawm ); float R = 1/T_1app - 1/T_1b; float Rwm = 1/T_1appwm - 1/T_1b; float tau; //bolus length as seen by kintic curve float taub; //bolus length of blood as seen in signal float tauwm; float F=0; float Fwm=0; float kctissue; float kcblood; float kcwm; // loop over tis float ti; result.ReSize(tis.Nrows()*repeats); for(int it=1; it<=tis.Nrows(); it++) { ti = tis(it) + slicedt*coord_z; //account here for an increase in the TI due to delays between slices; F = 2*ftiss * exp(-ti/T_1app); Fwm = 2*fwm * exp(-ti/T_1appwm); //GRASE - deal with bolus length (see above) */ // Deal with saturation of the bolus before the TI - defined by pretisat if(tauset < ti - pretisat) { tau = tauset; } else { tau = ti - pretisat; } if(taubset < ti - pretisat) {taub = taubset; } else {taub = ti - pretisat; } if(tauwmset < ti - pretisat) {tauwm = tauwmset; } else {tauwm = ti - pretisat; } // (1) tissue contribution if(ti < delttiss) { kctissue = 0;} else if(ti >= delttiss && ti <= (delttiss + tau)) { kctissue = F/R * ( (exp(R*ti) - exp(R*delttiss)) ) ; if (kctissue<0) {kctissue = 0; } //dont allow negative values (should be redundant!) } else //(ti > delttiss + tau) { kctissue = F/R * ( (exp(R*(delttiss+tau)) - exp(R*delttiss)) ); if (kctissue<0) { kctissue = 0; } //dont allow negative values (should be redundant) } // (2) arterial contribution if(ti < deltblood) { //kcblood = 0; // use a artifical lead in period for arterial bolus to improve model fitting kcblood = fblood * exp(-deltblood/T_1b) * (0.98 * exp( (ti-deltblood)/0.05 ) + 0.02 * ti/deltblood ); } else if(ti >= deltblood && ti <= (deltblood + taub)) { kcblood = fblood * exp(-ti/T_1b); if (kcblood<0) { kcblood = 0; } //dont allow negative values } else //(ti > deltblood + tau) { // artifical lead out period for taub model fitting kcblood = fblood * exp(-(deltblood+taub)/T_1b) * (0.98 * exp( -(ti - deltblood - taub)/0.05) + 0.02 * (1-(ti - deltblood - taub)/5)); if (kcblood<0) kcblood=0; //negative values are possible with the lead out period equation } // full model for arterial cpt /* if(ti < deltblood) { kcblood = 0; } else if(ti >= deltblood && ti <= (deltblood + taub)) { kcblood = fblood * exp(-ti/T_1b) * (1 - exp( -RR*(ti-deltblood) ) ); } else //(ti > deltblood + tau) { kcblood = 0; //end of bolus }*/ // (3) WM contribution if(ti < deltwm) { kcwm = 0;} else if(ti >= deltwm && ti <= (deltwm + tauwm)) { kcwm = Fwm/Rwm * ( (exp(Rwm*ti) - exp(Rwm*deltwm)) ) ; if (kcwm<0) {kcwm = 0; } //dont allow negative values (should be redundant!) } else //(ti > delttiss + tau) { kcwm = Fwm/Rwm * ( (exp(Rwm*(deltwm+tauwm)) - exp(Rwm*deltwm)) ); if (kcwm<0) { kcwm = 0; } //dont allow negative values (should be redundant) } if (isnan(kctissue)) { kctissue=0; LOG << "Warning NaN in tissue curve at TI:" << ti << " with f:" << ftiss << " delt:" << delttiss << " tau:" << tau << " T1:" << T_1 << " T1b:" << T_1b << endl; } if (isnan(kcwm)) { kcwm=0; LOG << "Warning NaN in WM curve at TI:" << ti << " with f:" << fwm << " delt:" << deltwm << " tau:" << tauwm << " T1wm:" << T_1wm << " T1b:" << T_1b << endl; } //} /* output */ // loop over the repeats for (int rpt=1; rpt<=repeats; rpt++) { result( (it-1)*repeats+rpt ) = pv_gm*kctissue + kcblood + pv_wm*kcwm; } } //cout << result.t(); return; } ASL_PVC_FwdModel::ASL_PVC_FwdModel(ArgsType& args) { string scanParams = args.ReadWithDefault("scan-params","cmdline"); if (scanParams == "cmdline") { // specify command line parameters here repeats = convertTo(args.Read("repeats")); // number of repeats in data t1 = convertTo(args.ReadWithDefault("t1","1.3")); t1b = convertTo(args.ReadWithDefault("t1b","1.5")); t1wm = convertTo(args.ReadWithDefault("t1wm","1.1")); lambda = convertTo(args.ReadWithDefault("lambda","0.9")); //NOT used - here for compatibility pretisat = convertTo(args.ReadWithDefault("pretisat","0")); // deal with saturation of the bolus a fixed time pre TI measurement grase = args.ReadBool("grase"); // DEPRECEATED data has come from the GRASE-ASL sequence - therefore apply pretisat of 0.1s if (grase) pretisat=0.1; slicedt = convertTo(args.ReadWithDefault("slicedt","0.0")); // increase in TI per slice infertau = args.ReadBool("infertau"); // infer on bolus length? infert1 = args.ReadBool("infert1"); //infer on T1 values? inferart = args.ReadBool("inferart"); //infer on arterial compartment? inferwm = args.ReadBool("inferwm"); //inferinveff = args.ReadBool("inferinveff"); //infer on a linear decrease in inversion efficiency? //infertrailing = args.ReadBool("infertrailing"); //infers a trailing edge bolus slope using new model seqtau = convertTo(args.ReadWithDefault("tau","1000")); //bolus length as set by sequence (default of 1000 is effectively infinite setdelt = convertTo(args.ReadWithDefault("bat","0.7")); bool ardoff = false; ardoff = args.ReadBool("ardoff"); bool tauboff = false; tauboff = args.ReadBool("tauboff"); //forces the inference of arterial bolus off usepve = args.ReadBool("usepve"); // combination options infertaub = false; if (inferart && infertau && !tauboff) infertaub = true; //special - turn off tissue cpt infertiss=true; bool tissoff = args.ReadBool("tissoff"); if (tissoff) infertiss = false; // deal with ARD selection doard=false; tissard=false;artard=true;wmard=true; //default ARD flags //if (inferart==true && ardoff==false) { doard=true;} //if (inferwm==true && ardoff==false) {doard=true; } //special, individual ARD switches bool tissardon = args.ReadBool("tissardon"); if (tissardon) tissard=true; bool artardoff = args.ReadBool("artardoff"); if (artardoff) artard=false; bool wmardoff = args.ReadBool("wmardoff"); if (wmardoff) wmard=false; // ** ardoff overrides all other ARD options if ( (tissard || artard || wmard) && !ardoff) doard = true; /* if (infertrailing) { if (!infertau) { // do not permit trailing edge inference without inferring on bolus length throw Invalid_option("--infertrailing has been set without setting --infertau"); } else if (inferinveff) //do not permit trailing edge inference and inversion efficiency inference (they are mututally exclusive) throw Invalid_option("--infertrailing and --inferinveff may not both be set"); }*/ // Deal with tis tis.ReSize(1); //will add extra values onto end as needed tis(1) = atof(args.Read("ti1").c_str()); while (true) //get the rest of the tis { int N = tis.Nrows()+1; string tiString = args.ReadWithDefault("ti"+stringify(N), "stop!"); if (tiString == "stop!") break; //we have run out of tis // append the new ti onto the end of the list ColumnVector tmp(1); tmp = convertTo(tiString); tis &= tmp; //vertical concatenation } timax = tis.Maximum(); //dtermine the final TI // need to set the voxel coordinates to a deafult of 0 (for the times we call the model before we start handling data) coord_x = 0; coord_y = 0; coord_z = 0; singleti = false; //normally we do multi TI ASL /*if (tis.Nrows()==1) { //only one TI therefore only infer on CBF and ignore other inference options LOG << "--Single inversion time mode--" << endl; LOG << "Only a sinlge inversion time has been supplied," << endl; LOG << "Therefore only tissue perfusion will be inferred." << endl; LOG << "-----" << endl; singleti = true; // force other inference options to be false infertau = false; infert1 = false; inferart = false; //inferinveff = false; }*/ // add information about the parameters to the log LOG << "Inference using development model" << endl; if (pretisat>0) LOG << "Saturation of" << pretisat << "s before TI has been specified" << endl; if (grase) LOG << "Using pre TI saturation of 0.1 for GRASE-ASL sequence" << endl; LOG << " Data parameters: #repeats = " << repeats << ", t1 = " << t1 << ", t1b = " << t1b; LOG << ", bolus length (tau) = " << seqtau << endl ; if (infertau) { LOG << "Infering on bolus length " << endl; } if (doard) { LOG << "ARD subsystem is enabled" << endl; } if (infertiss) { LOG << "Infertting on tissue component " << endl; } if (doard && tissard) { LOG << "ARD has been set on the tissue component " << endl; } if (inferart) { LOG << "Infering on artertial compartment " << endl; } if (doard && artard) { LOG << "ARD has been set on arterial compartment " << endl; } if (inferwm) { LOG << "Inferring on white matter component" << endl; if (doard && wmard) { LOG << "ARD has been set on wm component" << endl;} } if (infert1) { LOG << "Infering on T1 values " << endl; } /*if (inferinveff) { LOG << "Infering on Inversion Efficency slope " << endl; } if (infertrailing) { LOG << "Infering bolus trailing edge period" << endl; }*/ LOG << "TIs: "; for (int i=1; i <= tis.Nrows(); i++) LOG << tis(i) << " "; LOG << endl; } else throw invalid_argument("Only --scan-params=cmdline is accepted at the moment"); } void ASL_PVC_FwdModel::ModelUsage() { cout << "\nUsage info for --model=grase:\n" << "Required parameters:\n" << "--repeats=\n" << "--ti1=\n" << "--ti2=, etc...\n" << "Optional arguments:\n" << "--grase *DEPRECEATAED* (data collected using GRASE-ASL: same as --pretissat=0.1)" << "--pretisat= (Define that blood is saturated a specific time before TI image acquired)" << "--tau= (default 10s if --infertau not set)\n" << "--t1= (default 1.3)\n" << "--t1b= (default 1.5)\n" << "--infertau (to infer on bolus length)\n" << "--inferart (to infer on arterial compartment)\n" << "--infert1 (to infer on T1 values)\n" ; } void ASL_PVC_FwdModel::DumpParameters(const ColumnVector& vec, const string& indent) const { } void ASL_PVC_FwdModel::NameParams(vector& names) const { names.clear(); if (infertiss) { names.push_back("ftiss"); //if (!singleti) names.push_back("delttiss"); } if (infertau && infertiss) { names.push_back("tautiss"); } if (inferart) { names.push_back("fblood"); names.push_back("deltblood"); } if (infert1) { names.push_back("T_1"); names.push_back("T_1b"); } /* if (inferinveff) { names.push_back("Inveffslope"); } if (infertrailing) { names.push_back("trailingperiod"); }*/ if (infertaub) { names.push_back("taublood"); } /*if (inferart) { names.push_back("R"); }*/ if (inferwm) { names.push_back("fwm"); names.push_back("deltwm"); if (infertau) names.push_back("tauwm"); if (infert1) names.push_back("T_1wm"); if (usepve) { names.push_back("p_gm"); names.push_back("p_wm"); } } } void ASL_PVC_FwdModel::SetupARD( const MVNDist& theta, MVNDist& thetaPrior, double& Fard) { Tracer_Plus tr("ASL_PVC_FwdModel::SetupARD"); if (doard) { //sort out ARD indices if (tissard) ard_index.push_back(tiss_index()); if (artard) ard_index.push_back(art_index()); if (wmard) ard_index.push_back(wm_index()); Fard = 0; int ardindex; for (unsigned int i=0; i