/* fwdmodel_asl_quasar.cc -resting stat ASL model for QUASAR acquisition Michael Chappell, IBME & FMRIB Image Analysis Group Copyright (C) 2010 University of Oxford */ /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ #include "fwdmodel_asl_quasar.h" #include #include #include #include "newimage/newimageall.h" #include "miscmaths/miscprob.h" using namespace NEWIMAGE; #include "easylog.h" string QuasarFwdModel::ModelVersion() const { return "$Id: fwdmodel_asl_quasar.cc,v 1.3 2012/02/09 11:33:24 chappell Exp $"; } void QuasarFwdModel::HardcodedInitialDists(MVNDist& prior, MVNDist& posterior) const { Tracer_Plus tr("QuasarFwdModel::HardcodedInitialDists"); assert(prior.means.Nrows() == NumParams()); SymmetricMatrix precisions = IdentityMatrix(NumParams()) * 1e-12; // Set priors // Tissue bolus perfusion if (infertiss) { prior.means(tiss_index()) = 0; precisions(tiss_index(),tiss_index()) = 1e-12; //if (!singleti) { // Tissue bolus transit delay prior.means(tiss_index()+1) = 0.7; precisions(tiss_index()+1,tiss_index()+1) = 10; // } } // Tissue bolus length if (infertau && infertiss) { prior.means(tau_index()) = seqtau; precisions(tau_index(),tau_index()) = 10; } if (infertaub) { prior.means(taub_index()) = seqtau; precisions(taub_index(),taub_index()) = 10; } // Arterial Perfusion & bolus delay if (inferart) { int aidx = art_index(); prior.means(aidx) = 0; precisions(aidx,aidx) = 1e-12; prior.means(aidx+1) = 0.1; precisions(aidx+1,aidx+1) = 10; } // T1 & T1b if (infert1) { int tidx = t1_index(); prior.means(tidx) = t1; prior.means(tidx+1) = t1b; precisions(tidx,tidx) = 100; //if (calibon) precisions(tidx,tidx) = 1e99; precisions(tidx+1,tidx+1) = 100; } /* if (inferart) { prior.means(R_index()) = log(10); precisions(R_index(),R_index()) = 1; }*/ if (inferwm) { int wmi = wm_index(); prior.means(wmi) = 0; prior.means(wmi+1) = 1.2; precisions(wmi,wmi) = 1e-12; precisions(wmi+1,wmi+1) = 10; if (infertau) { prior.means(wmi+2) = seqtau; precisions(wmi+2,wmi+2) = 10; } if (infert1) { prior.means(wmi+3) = t1wm; precisions(wmi+3,wmi+3) = 100; } if (usepve) { //PV entries, the means get overwritten elsewhere if the right sort of prior is specified // default is to allow both (NB artifically defies sum(pve)=1) int pvi= pv_index(); prior.means(pvi) = 1; //GM is first prior.means(pvi+1)= 1; //WM is second // precisions are big as we treat PV parameters as correct // NB they are not accesible from the data anyway precisions(pvi,pvi) = 1e12; precisions(pvi+1,pvi+1) = 1e12; } } //dispersion parameters ColumnVector prvec(4); if (disptype=="none") { prvec << 0 << 1e99 << 0 << 1e99; } if (disptype=="gvf") { prvec << 2 << 10 << 0.7 << 10; } if (disptype=="gamma") { prvec << 2 << 10 << -0.3 << 10; } if (disptype=="gauss") { prvec << -1 << 10 << 0 << 1e99; } prior.means(disp_index()) = prvec(1);//0.05; prior.means(disp_index()+1) = prvec(3); precisions(disp_index(),disp_index()) = prvec(2); //400; precisions(disp_index()+1,disp_index()+1) = prvec(4); //crushed data flow parameters int cidx=crush_index(); if (inferart) { if (artdir) { prior.means(cidx) = 0.0; precisions(cidx,cidx) = 1e12; // artdir is multiplied by 1e6 to make its numerical diff work prior.means(cidx+1) = 0.0; precisions(cidx+1,cidx+1) = 1e12; //prior.means(cidx+1) = 0.8; //precisions(cidx+1,cidx+1) = 10; } else { prior.means(cidx) = 0.0; precisions(cidx,cidx) = 1e-12; prior.means(cidx+1) = 0.0; precisions(cidx+1,cidx+1) = 1e-12; prior.means(cidx+2) = 0.0; precisions(cidx+2,cidx+2) = 1e-12; prior.means(cidx+3) = 0.0; precisions(cidx+3,cidx+3) = 1e-12; //prior.means(cidx+4) = 0.0; //precisions(cidx+4,cidx+4) = 1e-12; } } // calibration parameters if (calibon) { prior.means(calib_index()) = 1; //should be overwritten by an image precisions(calib_index(),calib_index()) = 100; //small uncertainty } // Set precsions on priors prior.SetPrecisions(precisions); // Set initial posterior posterior = prior; // For parameters with uniformative prior chosoe more sensible inital posterior // Tissue perfusion if (infertiss) { posterior.means(tiss_index()) = 10; precisions(tiss_index(),tiss_index()) = 1; } // Arterial perfusion if (inferart) { posterior.means(art_index()) = 10; precisions(art_index(),art_index()) = 1; } if (inferwm) { posterior.means(wm_index()) = 10; precisions(wm_index(),wm_index()) = 1; } posterior.means(disp_index()) = 0.05; if (inferart) { if (!artdir) { posterior.means(cidx) = 10.0; precisions(cidx,cidx) = 1; posterior.means(cidx+1) = 10.0; precisions(cidx+1,cidx+1) = 1; posterior.means(cidx+2) = 10.0; precisions(cidx+2,cidx+2) = 1; posterior.means(cidx+3) = 10.0; precisions(cidx+3,cidx+3) = 1; //posterior.means(cidx+4) = 10.0; //precisions(cidx+4,cidx+4) = 1; } } posterior.SetPrecisions(precisions); } void QuasarFwdModel::Evaluate(const ColumnVector& params, ColumnVector& result) const { Tracer_Plus tr("QuasarFwdModel::Evaluate"); // ensure that values are reasonable // negative check ColumnVector paramcpy = params; for (int i=1;i<=NumParams();i++) { if (params(i)<0) { paramcpy(i) = 0; } } // sensible limits on transit times if (infertiss) { if (params(tiss_index()+1)>timax-0.2) { paramcpy(tiss_index()+1) = timax-0.2; } } if (inferart) { if (params(art_index()+1)>timax-0.2) { paramcpy(art_index()+1) = timax-0.2; } } // parameters that are inferred - extract and give sensible names float ftiss; float delttiss; float tauset; //the value of tau set by the sequence (may be effectively infinite) float taubset; float fblood; float deltblood; float T_1; float T_1b; float pv_gm; float pv_wm; float fwm; float deltwm; float tauwmset; float T_1wm; float p; float s; //float blooddir; //float crusheff; float bloodth; float bloodphi; float fbloodc1=0.0; float fbloodc2=0.0; float fbloodc3=0.0; float fbloodc4=0.0; //float fbloodc5; //extra calibration parameters float g; // float RR; // float inveffslope; //float trailingperiod; if (infertiss) { ftiss=paramcpy(tiss_index()); //if (!singleti) { delttiss=paramcpy(tiss_index()+1); //} //else { //only inferring on tissue perfusion, assume fixed value for tissue arrival time //delttiss = 0; //} } else { ftiss=0; delttiss=0; } if (infertau && infertiss) { tauset=paramcpy(tau_index()); } else { tauset = seqtau; } if (infertaub) { taubset = paramcpy(taub_index()); } else { taubset = tauset; } if (inferart) { fblood=paramcpy(art_index()); deltblood=paramcpy(art_index()+1); } else { fblood = 0; deltblood = 0; } if (infert1) { T_1 = paramcpy(t1_index()); T_1b = paramcpy(t1_index()+1); //T1 cannot be zero! if (T_1<0.01) T_1=0.01; if (T_1b<0.01) T_1b=0.01; } else { T_1 = t1; T_1b = t1b; } /*if (inferart) { RR = exp( paramcpy(R_index()) ); if (RR<1) RR=1; }*/ if (inferwm) { fwm=paramcpy(wm_index()); //fwm=20; deltwm=paramcpy(wm_index()+1); if (infertau) { tauwmset = paramcpy(wm_index()+2); } else tauwmset = seqtau; if (infert1) { T_1wm = paramcpy(wm_index()+3); if (T_1<0.01) T_1=0.01; } else T_1wm = t1wm; if (usepve) { pv_gm = paramcpy(pv_index()); pv_wm = paramcpy(pv_index()+1); } else { pv_gm=1;pv_wm=1; } } else { fwm=0; deltwm=0; T_1wm=t1wm; pv_gm=1; pv_wm=1; } if (inferart) { if (artdir) { bloodth = params(crush_index()); bloodth = 2*M_PI*tanh(bloodth*1e6); //convert to within -360->360 range (reasonably linear over the -180->180 range); bloodphi = params(crush_index()+1); bloodphi = 2*M_PI*tanh(bloodphi*1e6); //blooddir = params(crush_index()); //blooddir = 2*M_PI*tanh(blooddir*1e6); //convert to within -360->360 range (reasonably linear over the -180->180 range) //crusheff = 1.0; //paramcpy(crush_index()+1); //if(crusheff>1.0) crusheff=1.0; } else { fbloodc1 = paramcpy(crush_index()); fbloodc2 = paramcpy(crush_index()+1); fbloodc3 = paramcpy(crush_index()+2); fbloodc4 = paramcpy(crush_index()+3); //fbloodc5 = paramcpy(crush_index()+4); } } //dispersion parameters //p = paramcpy(disp_index()); //if (p>timax-0.2) { p = timax-0.2; } s = exp( params(disp_index()) ); if (disptype=="gamma" || disptype=="gvf") { float sp = exp(params(disp_index()+1)); if (sp>10) sp=10; p = sp/s; } //calibration parameters // NOTE: T1 of tissue is handled by infert1 and not this calibration routine if (calibon) { g = params(calib_index()); } else { g = 1; } float lambdagm=0.9; //the general 'all' tissue lambda value //float lambdagm = 0.98; //float lambdawm = 0.82; // flip angle correction (only if calibon) float FAtrue = FA; float dg=0.023; if (calibon) FAtrue = (g+dg)*FA; //cout << T_1 << " " << FAtrue << " "; float T_1app = 1/( 1/T_1 + 0.01/lambdagm - log(cos(FAtrue))/dti); //float T_1appwm = 1/( 1/T_1wm + 0.01/lambdawm - log(cos(FAtrue))/dti); // Need to be careful with T1 values if (T_1b<0.1) T_1b=0.1; if (T_1app<0.1) T_1app = 0.1; if (fabs(T_1app - T_1b)<0.01) T_1app += 0.01; // calculate the 'LL T1' of the blood float T_1ll = 1/( 1/T_1b - log(cos(FAtrue))/dti); float deltll = deltblood; //the arrival time of the blood within the readout region i.e. where it sees the LL pulses. float tau=tauset; //bolus length as seen by kintic curve float taub=taubset; //bolus length of blood as seen in signal //float tauwm=tauwmset; //float F=0; //float Fwm=0; //float Fblood=0; ColumnVector kctissue(tis.Nrows()); kctissue=0.0; ColumnVector kcblood(tis.Nrows()); kcblood=0.0; ColumnVector kcwm(tis.Nrows()); kcwm=0.0; // generate the kinetic curves if (disptype=="none") { if (infertiss) kctissue=kctissue_nodisp(tis,delttiss,tau,T_1b,T_1app,deltll,T_1ll); //cout << kctissue << endl; //kcwm=kctissue_nodisp(tis,deltwm,tauwm,T_1b,T_1appwm); if (inferart) kcblood=kcblood_nodisp(tis,deltblood,taub,T_1b,deltll,T_1ll); //cout << kcblood << endl; } else if (disptype=="gamma") { if (infertiss) kctissue=kctissue_gammadisp(tis,delttiss,tau,T_1b,T_1app,s,p,deltll,T_1ll); //cout << kctissue << endl; //kcwm=kctissue_gammadisp(tis,deltwm,tauwm,T_1b,T_1appwm,s,p); if (inferart) kcblood=kcblood_gammadisp(tis,deltblood,taub,T_1b,s,p,deltll,T_1ll); //cout << kcblood << endl; } else if (disptype=="gvf") { if (infertiss) kctissue=kctissue_gvf(tis,delttiss,tau,T_1b,T_1app,s,p,deltll,T_1ll); //cout << kctissue << endl; //kcwm=kctissue_gvf(tis,deltwm,T_1b,T_1appwm,s,p); if (inferart) kcblood=kcblood_gvf(tis,deltblood,taub,T_1b,s,p,deltll,T_1ll); //cout << kcblood << endl; } else if (disptype=="gauss") { if (infertiss) kctissue=kctissue_gaussdisp(tis,delttiss,tau,T_1b,T_1app,s,s,deltll,T_1ll); //cout << kctissue << endl; //kcwm=kctissue_gvf(tis,deltwm,T_1b,T_1appwm,s,p); if (inferart) kcblood=kcblood_gaussdisp(tis,deltblood,tau,T_1b,s,s,deltll,T_1ll); //cout << kcblood << endl; } else { throw Exception("Unrecognised dispersion model "); } /* KC debugging T_1 = 1.3; T_1app = 1/( 1/T_1 + 0.01/lambdagm); cout << T_1app << " " << endl; T_1b = 1.6; tau=1; delttiss=0.7; s=100, p=0.05; kctissue=kctissue_nodisp(tis,delttiss,tau,T_1b,T_1app); cout << kctissue.t() << endl; kctissue=kctissue_gammadisp(tis,delttiss,tau,T_1b,T_1app,s,p); cout << kctissue.t() << endl; kctissue=kctissue_gvf(tis,delttiss,T_1b,T_1app,s,p); cout << kctissue.t() << endl; assert(1==0); */ // Nan catching bool cont=true; int it=1; while (cont) { if (isnan(kctissue(it)) | isinf(kctissue(it))) { LOG << "Warning NaN in kctissue" << endl; LOG << "params: " << params.t() << endl; LOG << "kctissue: " << kctissue.t() << endl; cont =false; kctissue=0.0; } it++; if (it>kctissue.Nrows()) cont=false; } cont=true; it=1; while (cont) { if (isnan(kcblood(it)) | isinf(kcblood(it))) { LOG << "Warning NaN in kcblood" << endl; LOG << "params: " << params.t() << endl; LOG << "kcblood: " << kcblood.t() << endl; cont =false; kcblood=0.0; } it++; if (it>kcblood.Nrows()) cont=false; } // assemble the result int nti=tis.Nrows(); int nphases=6; if (onephase) nphases=1; result.ReSize(tis.Nrows()*repeats*nphases); ColumnVector artweight(crushdir.Nrows()); if (artdir) { //sot out the arterial weightings for all the crushed images artweight=1.0; //float angle; ColumnVector artdir(3); artdir(1) = sin(bloodphi)*cos(bloodth); artdir(2) = sin(bloodphi)*sin(bloodth); artdir(3) = cos(bloodphi); for (int i=1; i<=crushdir.Nrows(); i++) { artweight = 1.0 - std::max(DotProduct(artdir,crushdir.Row(i)),0.0); //angle = fabs(crushdir(i) - blooddir); //if (angle(args.Read("repeats")); // number of repeats in data t1 = convertTo(args.ReadWithDefault("t1","1.3")); t1b = convertTo(args.ReadWithDefault("t1b","1.5")); t1wm = convertTo(args.ReadWithDefault("t1wm","1.1")); lambda =convertTo(args.ReadWithDefault("lambda","0.9")); //NOTE that this parameter is not used!! infertau = args.ReadBool("infertau"); // infer on bolus length? infert1 = args.ReadBool("infert1"); //infer on T1 values? inferart = args.ReadBool("inferart"); //infer on arterial compartment? inferwm = args.ReadBool("inferwm"); seqtau = convertTo(args.ReadWithDefault("tau","1000")); //bolus length as set by sequence (default of 1000 is effectively infinite bool ardoff = false; ardoff = args.ReadBool("ardoff"); bool tauboff = false; tauboff = args.ReadBool("tauboff"); //forces the inference of arterial bolus off usepve = args.ReadBool("usepve"); artdir = args.ReadBool("artdir"); //infer direction of arterial blood calibon = args.ReadBool("usecalib"); //use calibration images (provided as image priors) // combination options infertaub = false; if (inferart && infertau && !tauboff) infertaub = true; //special - turn off tissue cpt infertiss=true; bool tissoff = args.ReadBool("tissoff"); if (tissoff) infertiss = false; //special - a single phase of data (if we have already processed the phases) onephase=false; onephase = args.ReadBool("onephase"); // deal with ARD selection doard=false; tissard=false;artard=true;wmard=true; //default ARD flags //if (inferart==true && ardoff==false) { doard=true;} //if (inferwm==true && ardoff==false) {doard=true; } //special, individual ARD switches bool tissardon = args.ReadBool("tissardon"); if (tissardon) tissard=true; bool artardoff = args.ReadBool("artardoff"); if (artardoff) artard=false; bool wmardoff = args.ReadBool("wmardoff"); if (wmardoff) wmard=false; // ** ardoff overrides all other ARD options if ( (tissard || artard || wmard) && !ardoff) doard = true; /* if (infertrailing) { if (!infertau) { // do not permit trailing edge inference without inferring on bolus length throw Invalid_option("--infertrailing has been set without setting --infertau"); } else if (inferinveff) //do not permit trailing edge inference and inversion efficiency inference (they are mututally exclusive) throw Invalid_option("--infertrailing and --inferinveff may not both be set"); }*/ // Deal with tis tis.ReSize(1); //will add extra values onto end as needed tis(1) = atof(args.Read("ti1").c_str()); while (true) //get the rest of the tis { int N = tis.Nrows()+1; string tiString = args.ReadWithDefault("ti"+stringify(N), "stop!"); if (tiString == "stop!") break; //we have run out of tis // append the new ti onto the end of the list ColumnVector tmp(1); tmp = convertTo(tiString); tis &= tmp; //vertical concatenation } timax = tis.Maximum(); //dtermine the final TI //determine the TI interval (assume it is even throughout) dti = tis(2)-tis(1); float fadeg = convertTo(args.ReadWithDefault("fa","30")); FA = fadeg * M_PI/180; //setup crusher directions //crushdir.ReSize(4); //crushdir << 45.0 << -45.0 << 135.0 << -135.0; //in degees //crushdir = crushdir * M_PI/180; //cout << crushdir << endl; crushdir.ReSize(4,3); crushdir << 1 << 1 << 1 << -1 << 1 << 1 << 1 << -1 << 1 << -1 << -1 << 1; crushdir /= 3; //make unit vectors; singleti = false; //normally we do multi TI ASL /*if (tis.Nrows()==1) { //only one TI therefore only infer on CBF and ignore other inference options LOG << "--Single inversion time mode--" << endl; LOG << "Only a sinlge inversion time has been supplied," << endl; LOG << "Therefore only tissue perfusion will be inferred." << endl; LOG << "-----" << endl; singleti = true; // force other inference options to be false infertau = false; infert1 = false; inferart = false; //inferinveff = false; }*/ // add information about the parameters to the log LOG << "Inference using development model" << endl; LOG << " Data parameters: #repeats = " << repeats << ", t1 = " << t1 << ", t1b = " << t1b; LOG << ", bolus length (tau) = " << seqtau << endl ; if (infertau) { LOG << "Infering on bolus length " << endl; } if (doard) { LOG << "ARD subsystem is enabled" << endl; } if (infertiss) { LOG << "Infertting on tissue component " << endl; } if (doard && tissard) { LOG << "ARD has been set on the tissue component " << endl; } if (inferart) { LOG << "Infering on artertial compartment " << endl; } if (doard && artard) { LOG << "ARD has been set on arterial compartment " << endl; } if (inferwm) { LOG << "Inferring on white matter component" << endl; if (doard && wmard) { LOG << "ARD has been set on wm component" << endl;} } if (infert1) { LOG << "Infering on T1 values " << endl; } LOG << "TIs: "; for (int i=1; i <= tis.Nrows(); i++) LOG << tis(i) << " "; LOG << endl; } else throw invalid_argument("Only --scan-params=cmdline is accepted at the moment"); } void QuasarFwdModel::ModelUsage() { cout << "To be added" << endl ; } void QuasarFwdModel::DumpParameters(const ColumnVector& vec, const string& indent) const { } void QuasarFwdModel::NameParams(vector& names) const { names.clear(); if (infertiss) { names.push_back("ftiss"); //if (!singleti) names.push_back("delttiss"); } if (infertau && infertiss) { names.push_back("tautiss"); } if (inferart) { names.push_back("fblood"); names.push_back("deltblood"); } if (infert1) { names.push_back("T_1"); names.push_back("T_1b"); } if (infertaub) { names.push_back("taublood"); } /*if (inferart) { names.push_back("R"); }*/ if (inferwm) { names.push_back("fwm"); names.push_back("deltwm"); if (infertau) names.push_back("tauwm"); if (infert1) names.push_back("T_1wm"); if (usepve) { names.push_back("p_gm"); names.push_back("p_wm"); } } names.push_back("sp_log"); names.push_back("s_log"); if (inferart) { if (artdir) { names.push_back("thblood"); names.push_back("phiblood"); //names.push_back("crusheff"); } else { names.push_back("fbloodc1"); names.push_back("fbloodc2"); names.push_back("fbloodc3"); names.push_back("fbloodc4"); //names.push_back("fbloodc5"); } } if (calibon) { names.push_back("g"); } } void QuasarFwdModel::SetupARD( const MVNDist& theta, MVNDist& thetaPrior, double& Fard) { Tracer_Plus tr("QuasarFwdModel::SetupARD"); if (doard) { //sort out ARD indices if (tissard) ard_index.push_back(tiss_index()); if (artard) ard_index.push_back(art_index()); if (wmard) ard_index.push_back(wm_index()); Fard = 0; int ardindex; for (unsigned int i=0; i= deltblood && ti <= (deltblood + taub)) { kcblood(it) = 2 * exp(-ti/T_1b); } else //(ti > deltblood + tau) { kcblood(it) = 2 * exp(-(deltblood+taub)/T_1b); kcblood(it) *= (0.98 * exp( -(ti - deltblood - taub)/0.05) + 0.02 * (1-(ti - deltblood - taub)/5)); // artifical lead out period for taub model fitting if (kcblood(it)<0) kcblood(it)=0; //negative values are possible with the lead out period equation } } return kcblood; } ColumnVector QuasarFwdModel::kcblood_gammadisp(const ColumnVector& tis, float deltblood, float taub, float T_1bin, float s, float p, float deltll,float T_1ll) const { Tracer_Plus tr("QuasarFwdModel:kcblood_gammadisp"); ColumnVector kcblood(tis.Nrows()); kcblood=0.0; float T_1b; // Gamma dispersed arterial curve (pASL) float k=1+p*s; float ti=0.0; for(int it=1; it<=tis.Nrows(); it++) { ti = tis(it); if (ti< deltll) T_1b = T_1bin; else T_1b = T_1ll; if(ti < deltblood) { kcblood(it) = 0.0; } else if(ti >= deltblood && ti <= (deltblood + taub)) { kcblood(it) = 2 * exp(-ti/T_1b) * ( 1 - igamc(k,s*(ti-deltblood)) ); } else //(ti > deltblood + taub) { kcblood(it) = 2 * exp(-ti/T_1b) * ( igamc(k,s*(ti-deltblood-taub)) - igamc(k,s*(ti-deltblood)) ) ; } //if (isnan(kcblood(it))) { kcblood(it)=0.0; cout << "Warning NaN in blood KC"; } } return kcblood; } ColumnVector QuasarFwdModel::kcblood_gvf(const ColumnVector& tis, float deltblood, float taub, float T_1bin, float s, float p, float deltll,float T_1ll) const { Tracer_Plus tr("QuasarFwdModel:kcblood_gammadisp"); ColumnVector kcblood(tis.Nrows()); kcblood=0.0; float T_1b; if (s<1) s=1; //dont allow this to become too extreme // gamma variate arterial curve // NOTES: this model is only suitable for pASL // no explicit taub (see below). However, it does scale the area under the curve // (since it affects the original ammount of labeled blood). float ti=0.0; for(int it=1; it<=tis.Nrows(); it++) { ti = tis(it); if (ti< deltll) T_1b = T_1bin; else T_1b = T_1ll; if(ti < deltblood) { kcblood(it) = 0.0; } else //if(ti >= deltblood) && ti <= (deltblood + taub)) { kcblood(it) = 2 * exp(-ti/T_1b) * gvf(ti-deltblood,s,p); } // we do not have bolus duration with a GVF AIF - the duration is 'built' into the function shape //else //(ti > deltblood + taub) // { // kcblood(it) = 0.0 ; // // } } return kcblood*taub; } ColumnVector QuasarFwdModel::kcblood_gaussdisp(const ColumnVector& tis, float deltblood, float taub, float T_1bin, float sig1, float sig2, float deltll,float T_1ll) const { Tracer_Plus tr("QuasarFwdModel:kcblood_normdisp"); ColumnVector kcblood(tis.Nrows()); kcblood=0.0; float T_1b; // Gaussian dispersion arterial curve // after Hrabe & Lewis, MRM, 2004 float ti=0.0; float sqrt2 = sqrt(2); for(int it=1; it<=tis.Nrows(); it++) { ti = tis(it); if (ti< deltll) T_1b = T_1bin; else T_1b = T_1ll; kcblood(it) = 0.5*exp(-ti/T_1b)*( erf( (ti-deltblood)/(sqrt2*sig1) ) - erf( (ti-deltblood+taub)/(sqrt2*sig2) ) ); } return kcblood; } //Tissue ColumnVector QuasarFwdModel::kctissue_nodisp(const ColumnVector& tis, float delttiss, float tau, float T_1bin, float T_1app, float deltll,float T_1ll) const { Tracer_Plus tr("QuasarFwdModel::kctissue_nodisp"); ColumnVector kctissue(tis.Nrows()); kctissue=0.0; float ti=0.0; float T_1b; // Tissue kinetic curve no dispersion (pASL) // Buxton (1998) model float R; for(int it=1; it<=tis.Nrows(); it++) { ti = tis(it); float F = 2 * exp(-ti/T_1app); if (ti< deltll) T_1b = T_1bin; else T_1b = T_1ll; R = 1/T_1app - 1/T_1b; if(ti < delttiss) { kctissue(it) = 0;} else if(ti >= delttiss && ti <= (delttiss + tau)) { kctissue(it) = F/R * ( (exp(R*ti) - exp(R*delttiss)) ) ; } else //(ti > delttiss + tau) { kctissue(it) = F/R * ( (exp(R*(delttiss+tau)) - exp(R*delttiss)) ); } } return kctissue; } ColumnVector QuasarFwdModel::kctissue_gammadisp(const ColumnVector& tis, float delttiss, float tau, float T_1bin, float T_1app, float s, float p, float deltll,float T_1ll) const { Tracer_Plus tr("QuasarFwdModel::kctissue_gammadisp"); ColumnVector kctissue(tis.Nrows()); kctissue=0.0; float ti=0.0; float A; float B; float C; float k=1+p*s; float T_1b; //cout << T_1app << " " << A << " " << B << " "<< C << " " << endl ; for(int it=1; it<=tis.Nrows(); it++) { ti = tis(it); if (ti< deltll) T_1b = T_1bin; else T_1b = T_1ll; A = T_1app - T_1b; B = A + s*T_1app*T_1b; if (B<1e-12) B=1e-12; //really shouldn't happen, but combination of parameters may arise in artefactual voxels? C = pow(s-1/T_1app+1/T_1b,p*s); if (s-1/T_1app+1/T_1b<=0) C=1e-12; //really shouldn't happen, but combination of parameters may arise in artefactual voxels? if(ti < delttiss) { kctissue(it) = 0;} else if(ti >= delttiss && ti <= (delttiss + tau)) { kctissue(it) = 2* 1/A * exp( -(T_1app*delttiss + (T_1app+T_1b)*ti)/(T_1app*T_1b) )*T_1app*T_1b*pow(B,-k)* ( exp(delttiss/T_1app + ti/T_1b) * pow(s*T_1app*T_1b,k) * ( 1 - igamc(k,B/(T_1app*T_1b)*(ti-delttiss)) ) + exp(delttiss/T_1b + ti/T_1app) * pow(B,k) * ( -1 + igamc(k,s*(ti-delttiss)) ) ); } else //(ti > delttiss + tau) { kctissue(it) = 2* 1/(A*B) * ( exp(-A/(T_1app*T_1b)*(delttiss+tau) - ti/T_1app)*T_1app*T_1b/C* ( pow(s,k)*T_1app*T_1b* ( -1 + exp( (-1/T_1app+1/T_1b)*tau )*( 1 - igamc(k,B/(T_1app*T_1b)*(ti-delttiss)) ) + igamc(k,B/(T_1app*T_1b)*(ti-delttiss-tau)) ) - exp( -A/(T_1app*T_1b)*(ti-delttiss-tau) )*C*B * ( igamc(k,s*(ti-delttiss-tau)) - igamc(k,s*(ti-delttiss)) ) ) ); } //if (isnan(kctissue(it))) { kctissue(it)=0.0; cout << "Warning NaN in tissue KC"; } } //cout << kctissue.t() << endl; return kctissue; } ColumnVector QuasarFwdModel::kctissue_gvf(const ColumnVector& tis, float delttiss, float tau, float T_1bin, float T_1app, float s, float p, float deltll,float T_1ll) const { Tracer_Plus tr("QuasarFwdModel::kctissue_gvf"); ColumnVector kctissue(tis.Nrows()); kctissue=0.0; float ti=0.0; float T_1b; float k=1+p*s; float A; float B; float C; float sps = pow(s,k); for(int it=1; it<=tis.Nrows(); it++) { ti = tis(it); if (ti< deltll) T_1b = T_1bin; else T_1b = T_1ll; A = T_1app - T_1b; B = A + s*T_1app*T_1b; C = pow(s-1/T_1app+1/T_1b,p*s); if(ti < delttiss) { kctissue(it) = 0.0;} else //if(ti >= delttiss && ti <= (delttiss + tau)) { kctissue(it) = 2* 1/(B*C) * exp(-(ti-delttiss)/T_1app)*sps*T_1app*T_1b * (1 - igamc(k,(s-1/T_1app-1/T_1b)*(ti-delttiss))); } // bolus duraiton is specified by the CVF AIF shape and is not an explicit parameter //else //(ti > delttiss + tau) // { // kctissue(it) = exp(-(ti-delttiss-tau)/T_1app) * 2* 1/(B*C) * exp(-(delttiss+tau)/T_1app)*sps*T_1app*T_1b * (1 - igamc(k,(s-1/T_1app-1/T_1b)*(delttiss+tau))); // } } return kctissue*tau; } ColumnVector QuasarFwdModel::kctissue_gaussdisp(const ColumnVector& tis, float delttiss, float tau, float T_1bin, float T_1app, float sig1, float sig2, float deltll,float T_1ll) const { Tracer_Plus tr("QuasarFwdModel::kctissue_gaussdisp"); ColumnVector kctissue(tis.Nrows()); kctissue=0.0; float ti=0.0; float T_1b; // Tissue kinetic curve gaussian dispersion (pASL) // Hrabe & Lewis, MRM, 2004 float R; float sqrt2 = sqrt(2); for(int it=1; it<=tis.Nrows(); it++) { ti = tis(it); if (ti< deltll) T_1b = T_1bin; else T_1b = T_1ll; R = 1/T_1app - 1/T_1b; float F = 2 * exp(-ti/T_1app); float u1 = (ti-delttiss)/(sqrt2*sig1); float u2 = (ti - delttiss - tau)/(sqrt2*sig2); kctissue(it) = F/(2*R) * ( (erf(u1) - erf(u2))*exp(R*ti) - (1 + erf(u1 - (R*sig1)/sqrt2))*exp(R*(delttiss+(R*sig1*sig1)/2)) + (1 + erf(u2 - (R*sig2)/sqrt2))*exp(R*(delttiss+tau+(R*sig2*sig2)/2)) ); } return kctissue; } // --- useful general functions --- float QuasarFwdModel::icgf(float a, float x) const { Tracer_Plus tr("QuasarFwdModel::icgf"); //incomplete gamma function with a=k, based on the incomplete gamma integral return gamma(a)*igamc(a,x); } float QuasarFwdModel::gvf(float t, float s, float p) const { Tracer_Plus tr("QuasarFwdModel::gvf"); //The Gamma Variate Function (correctly normalised for area under curve) // Form of Rausch 2000 // NB this is basically a gamma pdf if (t<0) return 0.0; else return pow(s,1+s*p) / gamma(1+s*p) * pow(t,s*p) * exp(-s*t); }