/* fwdmodel_fasl.cc - multi-TI functional ASL model Michael Chappell, IBME & FMRIB Image Analysis Group Copyright (C) 2010 University of Oxford */ /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ #include "fwdmodel_fasl.h" #include #include #include #include "newimage/newimageall.h" using namespace NEWIMAGE; #include "easylog.h" string FASLFwdModel::ModelVersion() const { return "$Id: fwdmodel_fasl.cc,v 1.1 2010/10/01 13:54:29 chappell Exp $"; } void FASLFwdModel::HardcodedInitialDists(MVNDist& prior, MVNDist& posterior) const { Tracer_Plus tr("FASLFwdModel::HardcodedInitialDists"); assert(prior.means.Nrows() == NumParams()); // Set priors prior.means = 0; SymmetricMatrix precisions = IdentityMatrix(NumParams()) * 1e-12; // if we have TC difference data then dont infer static mag if (dataisdiff) { precisions(M0index(),M0index()) = 1e99; for (int i=1; i<=Mbasis.Ncols(); i++) { precisions(M0index()+i,M0index()+i) = 1e99; } } // We are more informative about arrival time prior.means(D0index()) = 0.7; precisions(D0index(),D0index()) = 10; for (int i=1; i<=Dbasis.Ncols(); i++) { prior.means(D0index()+i) = 0; precisions(D0index()+i,D0index()+i) = 1e6;//100; //only small changes in deltaT are likely } if (stdevT1b>0) { prior.means(T1bIndex()) = fixedT1b; precisions(T1bIndex(),T1bIndex()) = 1/(stdevT1b*stdevT1b); } if (stdevT1>0) { prior.means(T1Index()) = fixedT1; precisions(T1Index(),T1Index()) = 1/(stdevT1*stdevT1); } if (stdevInvEff>0) { prior.means(InvEffIndex()) = fixedInvEff; precisions(InvEffIndex(),InvEffIndex()) = 1/(stdevInvEff*stdevInvEff); } prior.means(AIndex()) = 1; precisions(AIndex(),AIndex()) = 10; prior.SetPrecisions(precisions); // Set informative initial posterior posterior = prior; posterior.means(M0index()) = 1.5e4; //roughly what we expect the magntiude to be posterior.means(Q0index()) = 1e-3*posterior.means(M0index()); //initial value based on static mag precisions(Q0index(),Q0index()) = 1; // NB arrival time is sufficicently informative to not need specific intialization //posterior.means(R0index()) = 25; posterior.SetPrecisions(precisions); } void FASLFwdModel::Evaluate(const ColumnVector& params, ColumnVector& result) const { Tracer_Plus tr("FASLFwdModel::Evaluate"); // Parameterization used in most recent results: // Absolute M and Q change (same units as M0 or Q0): ColumnVector StatMag = params(M0index()) - Mbasis * MnOf(params); ColumnVector CBF = params(Q0index()) + Qbasis * QnOf(params); double D0cpy = params(D0index()); if (D0cpy<0) D0cpy=0; //D0 cannot be negative ColumnVector DelT = D0cpy + Dbasis * 100*DnOf(params); //Note scaling of arrival time changes here! /* THIS SECTION FOR MULTI ECHO // Fractional change in BOLD effect (at TE_2), rather than using % R2* change ColumnVector R2s = -1/echoTime(2) * log( Rbasis * RnOf(params) + exp(-echoTime(2)*params(R0index()))); */ double T1b = (stdevT1b>0 ? params(T1bIndex()) : fixedT1b); double T1 = (stdevT1>0 ? params(T1Index()) : fixedT1); double invEfficiency = (stdevInvEff>0 ? params(InvEffIndex()) : fixedInvEff); //kinetic curve modelling int npoints = CBF.Nrows(); ColumnVector Sb(npoints); Sb=0.0; float lambda=0.9; float T_1app = 1/( 1/T1 + 0.01/lambda); for (int i=1; i<=npoints; i++) { if (dataisdiff) { Sb(i) = CBF(i)*2*invEfficiency*kctissue_nodisp(tivec(i),DelT(i),tau,T1b,T_1app); } else { if (rho(i) < 0) { //Sb(i) = 0.0; Sb(i) = -CBF(i)*2*invEfficiency*kctissue_nodisp(tivec(i),DelT(i),tau,T1b,T_1app); } } } if (dataisdiff) { StatMag=0; } else { //saturation recovery of static magnetization double A = params(AIndex()); for (int i=1; i<=npoints; i++) { StatMag(i) = StatMag(i)*(1.0 - A*exp(-tivec(i)/T1)); } } ColumnVector S = StatMag + Sb; result = S; //int Ntimes = S.Nrows(); //int Nte = echoTime.Nrows(); //if (result.Nrows() != Nte*Ntimes) // result.ReSize(Nte*Ntimes); /* ASSEMBLE multi TE result for (int te = 1; te <= Nte; te++) { ColumnVector nuisance = Nbasis * NnOf(te, params); // Will be all-zero if there are no nuisance regressors for (int i = 1; i <= Ntimes; i++) result( Nte*(i-1) + te ) = S(i) * exp(-echoTime(te) * R2s(i)) + nuisance(i); // Fill order: te1 te2 te1 te2 te1 te2 te1 te2 ... } */ return; } void FASLFwdModel::ModelUsage() { cout << "\nUsage info for --model=quipss2:\n" << "Required options:\n" << "--bold-basis=\n" << "--cbf-basis=\n" << "--statmag-basis=\n\n" << "Optional options:\n" << "--nuisance-basis= (default: null)\n" << "--ti1=, " << "--ti2= (default: 0.6, 1.5)\n" // << "--te1=, " //<< "--te2= (default: 9.1, 30)\n" // << "--te3=, etc.\n" << "--tag-pattern= (default: TC)\n" << "--t1b= (default: 1.66), --t1b-stdev= (to add it as a parameter)\n" //<< "--dt=, --dt-stdev (default: --dt=0.5 --dt-stdev=0.25)\n" << "--inv-eff=, --inv-eff-stdev= (to add it as a parameter)\n\n" ; } FASLFwdModel::FASLFwdModel(ArgsType& args) { Tracer_Plus tr("FASLFwdModel::FASLFwdModel"); string scanParams = args.ReadWithDefault("scan-params","cmdline"); string tagPattern; ColumnVector tis(1); //will add extra values onto end as needed int ndiscarded; if (scanParams == "cmdline") { stdevT1b = convertTo(args.ReadWithDefault("t1b-stdev", "0")); fixedT1b = convertTo(args.ReadWithDefault("t1b","1.66")); stdevT1 = convertTo(args.ReadWithDefault("t1-stdev", "0")); fixedT1 = convertTo(args.ReadWithDefault("t1","1.3")); stdevInvEff = convertTo(args.ReadWithDefault("inv-eff-stdev","0")); fixedInvEff = convertTo(args.ReadWithDefault("inv-eff","1")); stdevDt = convertTo(args.ReadWithDefault("dt-stdev","0.25")); fixedDt = convertTo(args.ReadWithDefault("dt","0.5")); tau = convertTo(args.Read("tau")); if (stdevInvEff < 0 || stdevDt < 0 || stdevT1b < 0) throw Invalid_option("standard deviations must not be negative!"); tagPattern = args.ReadWithDefault("tag-pattern","TC"); if (tagPattern.find_first_not_of("TCtc") != tagPattern.npos) throw Invalid_option("tagpattern string must contain only Ts and Cs!"); /* MULTI ECHO IS CURRENTLY DISABLED - COULD PROBABLY BE ADDED BACK IN LATER echoTime.ReSize(2); echoTime(1) = convertTo(args.ReadWithDefault("te1","9.1"))/1000.0; echoTime(2) = convertTo(args.ReadWithDefault("te2","30"))/1000.0; while (true) { int N = echoTime.Nrows()+1; string teString = args.ReadWithDefault("te"+stringify(N), "stop!"); if (teString == "stop!") break; // This just isn't tested enough (at all)... remove if you dare throw Invalid_option( "Using more than two echo times is implemented but completely untested... modify the code if you really want to try it."); // Append this TE to the list of TEs ColumnVector tmp(1); tmp = atof(teString.c_str())/1000.0; echoTime &= tmp; // vertcat // Sanity checks: if (echoTime(N) <= 0.001) throw Invalid_option( "Was expecting TE > 1 ms (don't use seconds!)"); if (echoTime(N) > 0.500) throw Invalid_option("Was expecting TE < 500 ms"); } */ //TIs - these are TIs and not PLDs (TI = PLD + bolus duration) tis(1) = atof(args.Read("ti1","0").c_str()); while (true) //get the rest of the tis { int N = tis.Nrows()+1; string tiString = args.ReadWithDefault("ti"+stringify(N), "stop!"); if (tiString == "stop!") break; //we have run out of tis // append the new ti onto the end of the list ColumnVector tmp(1); tmp = convertTo(tiString); tis &= tmp; //vertical concatenation } //timax = tis.Maximum(); //dtermine the final TI ndiscarded = convertTo(args.ReadWithDefault("discarded","0")); //number of datapoints discarded from start of data dataisdiff = args.ReadBool("dataisdiff"); //LOGGING HERE! LOG << " --t1b=" << fixedT1b << "--t1b-stdev=" << stdevT1b << " --inv-eff=" << fixedInvEff << " --inv-eff-stdev=" << stdevInvEff << " --dt=" << fixedDt << "--dt-stdev=" << stdevDt << " --tag-pattern=" << tagPattern ; /* for (int i = 1; i <= echoTime.Nrows(); i++) LOG << " --te" << i << "=" << echoTime(i)*1000.0; LOG << endl;*/ } else throw Invalid_option("Only --scan-params=cmdline is accepted at the moment"); //string rb = args.Read("bold-basis"); // bold basis set string qb = args.Read("cbf-basis"); // CBF basis set string db = args.ReadWithDefault("delt-basis",qb); //arr time basis set (default to CBF basis set) string mb = args.Read("statmag-basis"); //string nb = args.ReadWithDefault("nuisance-basis", "null"); // LOG_ERR( " Reading BOLD basis functions: " << rb << endl ); //if (rb != "null") // Rbasis = read_vest(rb); //else // throw Invalid_option("Currently --bold-basis=null isn't allowed..."); LOG_ERR( " Reading CBF basis functions: " << qb << endl ); Qbasis = read_vest(qb); LOG_ERR( " Reading arrival time basis functions: " << qb << endl ); Dbasis = read_vest(db); LOG_ERR( " Reading Stat. Mag. basis functions: " << mb << endl ); Mbasis = read_vest(mb); const int numTR = Qbasis.Nrows(); /* LOG_ERR( " Reading Nuisance basis functions: " << nb << endl ); if (nb != "null") Nbasis = read_vest(nb); else Nbasis.ReSize(numTR, 0); */ // Now we can parse the TagPattern string. rho.ReSize(numTR); for (unsigned i = 1; i <= tagPattern.length(); i++) rho(i) = (toupper(tagPattern[i-1]) == 'T') ? -1 : 1; for (int i = tagPattern.length()+1; i<=numTR; i++) rho(i) = rho(i-tagPattern.length()); LOG << "Full tag-control pattern used (" << rho.Nrows() << " TRs): "; for (int i = 1; i <= rho.Nrows(); i++) LOG << (rho(i)>0 ? "C" : "T"); LOG << endl; // expand the TIs for the full duration ColumnVector tivectemp(numTR+ndiscarded); tivectemp.Rows(1,tis.Nrows()) = tis; // load in the first block of TIs for (int i=tis.Nrows()+1; i<=numTR+ndiscarded; i++) { tivectemp(i) = tivectemp(i-tis.Nrows()); } tivec = tivectemp.Rows(ndiscarded+1,numTR+ndiscarded); LOG << "Full TIs used: " << tivec.t() << endl; } void FASLFwdModel::DumpParameters(const ColumnVector& vec, const string& indent) const { } void FASLFwdModel::NameParams(vector& names) const { names.clear(); names.push_back("Q0"); for (int i = 1; i <= Qbasis.Ncols(); i++) names.push_back("Q_abschg_" + stringify(i)); names.push_back("M0"); for (int i = 1; i <= Mbasis.Ncols(); i++) names.push_back("M_abschg_" + stringify(i)); names.push_back("D0"); for (int i = 1; i <= Dbasis.Ncols(); i++) names.push_back("D_abschg_" + stringify(i)); // names.push_back("R0"); // for (int i = 1; i <= Rbasis.Ncols(); i++) // names.push_back("BOLD_abschg_" + stringify(i)); // for (int i = 1; i <= Nbasis.Ncols(); i++) // names.push_back("Nuisance_signal_" + stringify(i)); if (stdevInvEff>0) names.push_back("InvEff"); if (stdevT1b>0) names.push_back("T1b"); if (stdevT1>0) names.push_back("T1"); names.push_back("A"); // if (stdevDt>0) // names.push_back("dt"); assert(names.size() == unsigned(NumParams())); } float FASLFwdModel::kctissue_nodisp(const float ti, const float delttiss, const float tau, const float T_1b, const float T_1app) const { Tracer_Plus tr("FASLFwdModel::kctissue_nodisp"); float kctissue; kctissue=0.0; // Tissue kinetic curve no dispersion (cASL) // Buxton (1998) model //float R = 1/T_1app - 1/T_1b; float F = 2 * exp(-ti/T_1app); if(ti < delttiss) { kctissue = 0;} else if(ti >= delttiss && ti <= (delttiss + tau)) { kctissue = F * T_1app * exp(-delttiss/T_1b) * (1 - exp(-(ti-delttiss)/T_1app)); } else //(ti > delttiss + tau) { kctissue = F * T_1app * exp(-delttiss/T_1b) * exp(-(ti-tau-delttiss)/T_1app) * (1 - exp(-tau/T_1app)); } return kctissue; }