/* FAST4 - FMRIB's Automated Segmentation Tool v4 John Vickers, Mark Jenkinson, Matthew Webster and Steve Smith FMRIB Image Analysis Group Copyright (C) 2005-2012 University of Oxford */ /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ #define _GNU_SOURCE 1 #define POSIX_SOURCE 1 #include "mriseg_two.h" #include "multi_mriseg_two.h" /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// string title="FAST \nCopyright(c) 2004-2012, University of Oxford"; string examples="fast [options] file(s)"; string examples_multi_channel="fast [options] [ ... ]"; /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Each (global) object below specificies as option and can be accessed // anywhere in this file (since they are global). The order of the // arguments needed is: name(s) of option, default value, help message, // whether it is compulsory, whether it requires arguments // Note that they must also be included in the main() function or they // will not be active. Option inititer(string("-W,--init"), 15, string("number of segmentation-initialisation iterations; default=15"), false, requires_argument); Option nbiter(string("-I,--iter"), 4, string("number of main-loop iterations during bias-field removal; default=4"), false, requires_argument); Option initfixity(string("-O,--fixed"), 4, string("number of main-loop iterations after bias-field removal; default=4"), false, requires_argument); Option fbeta(string("-f,--fHard"), 0.02, string("initial segmentation spatial smoothness (during bias field estimation); default=0.02"), false, requires_argument); Option Hyp(string("-H,--Hyper"), 0.1, string("segmentation spatial smoothness; default=0.1"), false, requires_argument); Option fpveMRFmixeltype(string("-R,--mixel"), 0.3, string("spatial smoothness for mixeltype; default=0.3"), false, requires_argument); Option nblowpass(string("-l,--lowpass"), 20, string("bias field smoothing extent (FWHM) in mm; default=20"), false, requires_argument); Option typeofimage(string("-t,--type"), 1, string("type of image 1=T1, 2=T2, 3=PD; default=T1"), false, requires_argument); Option nclass(string("-n,--class"), 3, string("number of tissue-type classes; default=3"), false, requires_argument); Option outname(string("-o,--out"), string(""), string("output basename"), false, requires_argument); Option nchannel(string("-S,--channels"), 1, string("number of input images (channels); default 1"), false, requires_argument); Option nopve(string("--nopve"), false, string("turn off PVE (partial volume estimation)"), false, no_argument); Option pve(string("--pvestep"), 100, string("discretisation levels of pve values; default=100"), false, requires_argument); Option segments(string("-g,--segments"), false, string("outputs a separate binary image for each tissue type"), false, no_argument); Option outputProbabilities(string("-p"), false, //not used by user any more but still needed internally string("\toutputs individual probability maps"), false, no_argument); Option removeBias(string("-N,--nobias"), false, string("do not remove bias field"), false, no_argument); Option outputBias(string("-b"), false, string("\toutput estimated bias field"), false, no_argument); Option outputCorrected(string("-B"), false, string("\toutput bias-corrected image"), false, no_argument); Option bapriori(string("-a"), "", string("~ initialise using priors; you must supply a FLIRT transform"), false, requires_argument); Option talaraichiterations(string("-P,--Prior"), false, string("use priors throughout; you must also set the -a option"), false, no_argument); Option alternatePriors(string("-A"), "", string("~ alternative prior images"), false, requires_3_arguments); Option manualsegmentation(string("-s,--manualseg"), "", string("~ Filename containing intensities"), false, requires_argument); Option verbose(string("-v,--verbose"), false, string("switch on diagnostic messages"), false, no_argument); Option help(string("-h,--help"), false, string("display this message"), false, no_argument); /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Local functions int prior_registration(string inname, string main_prior_vol, NEWIMAGE::volume& pCSF, NEWIMAGE::volume& pGM, NEWIMAGE::volume& pWM) { string csfPriorName, grayPriorName, whitePriorName; if(alternatePriors.unset()) { string priorRootName=string(getenv("FSLDIR")) + "/data/standard/tissuepriors/avg152T1_"; csfPriorName = priorRootName+"csf"; grayPriorName = priorRootName+"gray"; whitePriorName = priorRootName+"white"; } else { csfPriorName = alternatePriors.value(0); grayPriorName = alternatePriors.value(1); whitePriorName = alternatePriors.value(2); } int bapused=0; if((bapriori.value()!="")) bapused= 1; if((nclass.value()!=2)&&(nclass.value()!=3)&(bapused!=0)) { bapused=0; cerr<< "Apriori can only be used for 2 or 3-class segmentation\n"; } if(bapused>0) { if(fsl_imageexists(csfPriorName)) read_volume(pCSF, csfPriorName); else { cerr<< "prior image " << csfPriorName << " is not found! priors are not used!\n"; bapused = 0; } if(fsl_imageexists(grayPriorName)) read_volume(pGM, grayPriorName); else { cerr<< "prior image " << grayPriorName << " is not found! priors are not used!\n"; bapused = 0; } if(fsl_imageexists(whitePriorName)) read_volume(pWM, whitePriorName); else { cerr<< "prior image " << whitePriorName << " is not found! priors are not used!\n"; bapused = 0; } } if(bapused>0) { char reg[1024]; sprintf(reg, "%s/bin/flirt -ref %s -in %s -out %s -applyxfm -init %s", getenv("FSLDIR"), inname.c_str(), csfPriorName.c_str(), (main_prior_vol+"_csf_stdspace").c_str(), bapriori.value().c_str()); if(verbose.value()) cout<0) { if(fsl_imageexists((main_prior_vol+"_csf_stdspace"))) read_volume(pCSF, (main_prior_vol+"_csf_stdspace")); else { cerr << "csf prior image not transformed correctly! priors are not used!\n"; bapused = 0; return -1; } if(fsl_imageexists(main_prior_vol+"_gm_stdspace")) read_volume(pGM, main_prior_vol+"_gm_stdspace"); else { cerr << "grey matter prior image not transformed correctly! priors are not used!\n"; bapused = 0; return -1; } if(fsl_imageexists(main_prior_vol+"_wm_stdspace")) read_volume(pWM, main_prior_vol+"_wm_stdspace"); else { cerr << "white matter prior image not transformed correctly! priors are not used!\n"; bapused = 0; return -1; } if(talaraichiterations.value()) bapused=2; } else { pCSF=volume(); pGM=volume(); pWM=volume(); } return bapused; } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //Single channel main call int segmentSingleChannel(int argc, char* argv[]) { volume inputImage,pCSF, pGM, pWM; if (verbose.value()) cout << "Starting Single Image Segmentation" << endl; string inputName(argv[argc-1]); if (outname.unset()) outname.set_value(inputName); string tempName=outname.value(); make_basename(tempName); outname.set_value(tempName); if(read_volume(inputImage,inputName)!=0) { cerr<<"Image cannot be found"; return 1; } if(inputImage.min()<0.0) { if(inputImage.percentile(0.02)<0.0) inputImage-=inputImage.min(); else inputImage.threshold(0,inputImage.max(),inclusive); } if(verbose.value()) { switch(typeofimage.value()) { default: case 1: if(verbose.value()) cout<< "T1-weighted image" << endl; break; case 2: if(verbose.value()) cout << "T2-weighted image" << endl; break; case 3: if(verbose.value()) cout << "PD-weighted image" << endl; break; } if(verbose.value()) { cout<< "Imagesize : " << inputImage.xsize() << " x " << inputImage.ysize() << " x " << inputImage.zsize() << endl; cout<< "Pixelsize : " << inputImage.xdim() << " x " << inputImage.ydim() << " x " << inputImage.zdim() << endl << endl; } } int bapused=prior_registration(inputName,outname.value(), pCSF, pGM, pWM); inputImage.setDisplayMaximumMinimum(0,0); ZMRISegmentation mri; mri.TanakaCreate(inputImage, fbeta.value(), nclass.value(), nblowpass.value(),!removeBias.value(), pve.value(), fpveMRFmixeltype.value(), nbiter.value(),initfixity.value(), inititer.value(), bapused, Hyp.value(), verbose.value(),manualsegmentation.value(),typeofimage.value()); if (mri.TanakaMain(pCSF, pGM, pWM)) return -1; save_volume(mri.m_Segment,outname.value()+"_seg"); if(segments.value()) { volume ind_segments; for(int i=1; i<=nclass.value(); i++) { ind_segments=mri.m_Segment; for(int z=0;z estimatedField(mri.m_BiasField); estimatedField=1; estimatedField/=mri.m_BiasField; save_volume(estimatedField,outname.value()+"_bias"); } return 0; } /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //Multi channel main call int segmentMultiChannel(int argc, char* argv[]) { volume pCSF, pGM, pWM; string inputName; if (verbose.value()) cout << "Starting Multi Image Segmentation" << endl; if(nchannel.value()>=2) { volume* images=new volume[nchannel.value()]; for(int c=0;c<=nchannel.value()-1;c++) { if (c==0) { inputName=string(argv[argc-c-1]); if (outname.unset()) outname.set_value(inputName); string tempName=outname.value(); make_basename(tempName); outname.set_value(tempName); } if(read_volume(images[c], argv[argc-c-1])!=0) { cerr<<"Image cannot be found"; return 1; } else { if(images[c].min()<0.0) { if (images[c].percentile(0.02)<0.0) images[c]-=images[c].min(); else images[c].threshold(0,images[c].max(),inclusive); } } images[c].setDisplayMaximumMinimum(0,0); } int bapused=prior_registration(inputName,outname.value(), pCSF, pGM, pWM); ZMRIMULTISegmentation mri; mri.TanakaCreate(images, nclass.value(), false, nbiter.value(), nblowpass.value(), fbeta.value(), bapused, pve.value(), nchannel.value(),!removeBias.value(),initfixity.value(), verbose.value(), pve.value(), inititer.value(),fpveMRFmixeltype.value(), Hyp.value(),manualsegmentation.value(),typeofimage.value()); if (mri.TanakaMain(pCSF, pGM, pWM)) return -1; save_volume(mri.m_Segment, outname.value()+"_seg"); if(segments.value()) { volume ind_segments; for(int i=1; i<=nclass.value(); i++) { ind_segments=mri.m_Segment; for(int z=0;z ind_pve; for(int i=1; i<=nclass.value(); i++) save_volume(mri.m_pve[i],outname.value()+"_pve_"+num2str(i-1)); save_volume(mri.m_pveSegment,outname.value()+"_pveseg"); save_volume(mri.hardPV, outname.value()+"_mixeltype"); } if(outputCorrected.value()) for(int i=1;i estimatedField(mri.m_Finalbias[i]); copybasicproperties(mri.m_Segment,estimatedField); estimatedField=1; estimatedField/=mri.m_Finalbias[i]; save_volume(estimatedField,outname.value()+"_bias_"+num2str(i)); } delete[] images; return 0; } else cerr<<"At least 2 channels required for Multi Channel Segmentation"; return 1; } /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// int main(int argc,char *argv[]) { Tracer tr("main"); OptionParser options(title, examples); try { // must include all wanted options here (the order determines how // the help message is printed) options.add(nclass); options.add(nbiter);; options.add(nblowpass); options.add(typeofimage); options.add(fbeta); options.add(segments); options.add(bapriori); options.add(alternatePriors); options.add(nopve); options.add(outputBias); options.add(outputCorrected); options.add(removeBias); options.add(nchannel); options.add(outname); options.add(talaraichiterations); options.add(inititer); options.add(fpveMRFmixeltype); options.add(initfixity); options.add(Hyp); options.add(verbose); options.add(help); options.add(manualsegmentation); options.add(outputProbabilities); // line below stops the program if the help was requested or // a compulsory option was not set options.parse_command_line(argc, argv); if ( argc<2 || (help.value()) || (!options.check_compulsory_arguments(true)) ) { options.usage(); exit(EXIT_FAILURE); } if (nopve.value()) pve.set_value("0"); } catch(X_OptionError& e) { options.usage(); cerr << endl << e.what() << endl; exit(EXIT_FAILURE); } catch(std::exception &e) { cerr << e.what() << endl; } if (Hyp.value()<0) { cerr << "ERROR: Segmentation smoothness must be positive. Exiting" << endl;; return(1); } // Call the local functions if(nchannel.value()==1) return segmentSingleChannel(argc,argv); return segmentMultiChannel(argc, argv); }