/* Copyright (C) 2008 University of Oxford */ /* S.Jbabdi */ /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ #include #include #include "miscmaths/miscmaths.h" #include "miscmaths/minimize.h" #include "newmat.h" #include "newimage/newimageall.h" #include "dtifitOptions.h" using namespace std; using namespace NEWMAT; using namespace MISCMATHS; using namespace NEWIMAGE; using namespace DTIFIT; const float maxfloat=1e10; const float minfloat=1e-10; const float maxlogfloat=23; const float minlogfloat=-23; const int maxint=1000000000; ReturnMatrix form_Kmat(const Matrix& r){ Matrix K(r.Ncols(),15); Matrix ind(15,4); ind << 1 << 1 << 1 << 1 << 2 << 2 << 2 << 2 << 3 << 3 << 3 << 3 << 1 << 1 << 1 << 2 << 1 << 1 << 1 << 3 << 1 << 2 << 2 << 2 << 2 << 2 << 2 << 3 << 1 << 3 << 3 << 3 << 2 << 3 << 3 << 3 << 1 << 1 << 2 << 2 << 1 << 1 << 3 << 3 << 2 << 2 << 3 << 3 << 1 << 1 << 2 << 3 << 1 << 2 << 2 << 3 << 1 << 2 << 3 << 3; for(int i=1;i<=15;i++){ for(int j=1;j<=r.Ncols();j++){ K(j,i) = r((int)ind(i,1),j) * r((int)ind(i,2),j) * r((int)ind(i,3),j) * r((int)ind(i,4),j); } } // for(int j=1;j<=r.Ncols();j++){ // float x=r(1,j),y=r(2,j),z=r(3,j); // K(j,1) = MISCMATHS::pow(x,4); // K(j,2) = MISCMATHS::pow(y,4); // K(j,3) = MISCMATHS::pow(z,4); // K(j,4) = 4*MISCMATHS::pow(x,3)*y; // K(j,5) = 4*MISCMATHS::pow(x,3)*z; // K(j,6) = 4*MISCMATHS::pow(y,3)*x; // K(j,7) = 4*MISCMATHS::pow(y,3)*z; // K(j,8) = 4*MISCMATHS::pow(z,3)*x; // K(j,9) = 4*MISCMATHS::pow(z,3)*y; // K(j,10) = 6*MISCMATHS::pow(x,2)*MISCMATHS::pow(y,2); // K(j,11) = 6*MISCMATHS::pow(x,2)*MISCMATHS::pow(z,2); // K(j,12) = 6*MISCMATHS::pow(y,2)*MISCMATHS::pow(z,2); // K(j,13) = 12*MISCMATHS::pow(x,2)*y*z; // K(j,14) = 12*MISCMATHS::pow(y,2)*x*z; // K(j,15) = 12*MISCMATHS::pow(z,2)*x*y; // j+=1; // } K.Release(); return K; } // note the order of the variable parameters // D11,D12,D13,D22,D23,D33,logS0 // W1111,W2222,W333,W1112,W1113,W1222,W2223,W1333, // W2333,W1122,W1133,W2233,W1123,W1223,W1233 class KurtosisNonlinCF : public gEvalFunction { protected: ColumnVector m_A; ColumnVector m_B; Matrix m_C; Matrix m_D; int m_n; public: KurtosisNonlinCF(const ColumnVector& data,const Matrix& bvals,const Matrix& bvecs):gEvalFunction() { m_n = data.Nrows(); m_A.ReSize(m_n); m_B.ReSize(m_n); m_C.ReSize(m_n,6); m_D.ReSize(m_n,15); Matrix K = form_Kmat(bvecs); for (int i=1;i<=m_n;i++){ if(data(i)>0){ m_A(i)=-log(data(i)); } else{ m_A(i)=0; } m_B(i) = 1.0; m_C(i,1) = -bvals(1,i)*bvecs(1,i)*bvecs(1,i); m_C(i,2) = -2*bvals(1,i)*bvecs(1,i)*bvecs(2,i); m_C(i,3) = -2*bvals(1,i)*bvecs(1,i)*bvecs(3,i); m_C(i,4) = -bvals(1,i)*bvecs(2,i)*bvecs(2,i); m_C(i,5) = -2*bvals(1,i)*bvecs(2,i)*bvecs(3,i); m_C(i,6) = -bvals(1,i)*bvecs(3,i)*bvecs(3,i); for(int j=1;j<=15;j++) m_D(i,j) = (bvals(1,i)*bvals(1,i)/6) * K(i,j) / 9; } // m_D=0; } virtual ~KurtosisNonlinCF(){}; float evaluate(const ColumnVector& x) const{ float res=0; res = ( m_A + m_B*x(7) + m_C*x.SubMatrix(1,6,1,1) + m_D*x.SubMatrix(8,22,1,1)*(x(1)+x(4)+x(6))*(x(1)+x(4)+x(6))).SumSquare(); OUT(x.t()); OUT(res); return res; } ReturnMatrix g_evaluate(const ColumnVector& x) const{ ColumnVector sj_g(x.Nrows()); // ColumnVector sj_gg; // sj_gg = MISCMATHS::gradient(x,*this,1e-4); ColumnVector sj_d(6); ColumnVector sj_w(15); sj_d = x.SubMatrix(1,6,1,1); sj_w = x.SubMatrix(8,22,1,1); double sj_t = x(1)+x(4)+x(6); double sj_t2=sj_t*sj_t; ColumnVector sj_func(m_n); sj_func = m_A + m_B*x(7) + m_C*sj_d + m_D*sj_w*sj_t2; sj_g(1) = 2*NEWMAT::SP(sj_func,m_C.Column(1)+2*sj_t*m_D*sj_w).Sum(); sj_g(2) = 2*NEWMAT::SP(sj_func,m_C.Column(2)).Sum(); sj_g(3) = 2*NEWMAT::SP(sj_func,m_C.Column(3)).Sum(); sj_g(4) = 2*NEWMAT::SP(sj_func,m_C.Column(4)+2*sj_t*m_D*sj_w).Sum(); sj_g(5) = 2*NEWMAT::SP(sj_func,m_C.Column(5)).Sum(); sj_g(6) = 2*NEWMAT::SP(sj_func,m_C.Column(6)+2*sj_t*m_D*sj_w).Sum(); sj_g(7) = 2*NEWMAT::SP(sj_func,m_B).Sum(); for(int i=1,j=8;j<=x.Nrows();i++,j++) sj_g(j) = 2*NEWMAT::SP(sj_func,sj_t2*m_D.Column(i)).Sum(); OUT(sj_g.t()); sj_g.Release(); return sj_g; // sj_gg.Release(); //return sj_gg; } const KurtosisNonlinCF& operator=(const KurtosisNonlinCF& par) { m_A = par.m_A; m_B = par.m_B; m_C = par.m_C; m_D = par.m_D; m_n = par.m_n; return *this; } KurtosisNonlinCF(const KurtosisNonlinCF& rhs): m_A(rhs.m_A),m_B(rhs.m_B),m_C(rhs.m_C),m_D(rhs.m_D),m_n(rhs.m_n){ *this=rhs; } }; inline Matrix Anis() { Matrix A(3,3); A << 1 << 0 << 0 << 0 << 0 << 0 << 0 << 0 << 0; return A; } Matrix form_Amat(const Matrix& r,const Matrix& b) { Matrix A(r.Ncols(),7); Matrix tmpvec(3,1), tmpmat; for( int i = 1; i <= r.Ncols(); i++){ tmpvec << r(1,i) << r(2,i) << r(3,i); tmpmat = tmpvec*tmpvec.t()*b(1,i); A(i,1) = tmpmat(1,1); A(i,2) = 2*tmpmat(1,2); A(i,3) = 2*tmpmat(1,3); A(i,4) = tmpmat(2,2); A(i,5) = 2*tmpmat(2,3); A(i,6) = tmpmat(3,3); A(i,7) = 1; } return A; } inline SymmetricMatrix vec2tens(ColumnVector& Vec){ SymmetricMatrix tens(3); tens(1,1)=Vec(1); tens(2,1)=Vec(2); tens(3,1)=Vec(3); tens(2,2)=Vec(4); tens(3,2)=Vec(5); tens(3,3)=Vec(6); return tens; } void kurtosisfit(DiagonalMatrix& Dd,ColumnVector& evec1,ColumnVector& evec2, ColumnVector& evec3, float& f,float& s0,ColumnVector& Dvec, float& mk, ColumnVector& tens4, const Matrix& Amat,const Matrix& Kmat,const ColumnVector& S,const Matrix& bvals,const Matrix& bvecs){ // calculate DT and KT using non-linear fitting KurtosisNonlinCF KNL(S,bvals,bvecs); ColumnVector xmin(22); xmin=0.0; xmin << .002 << 0 << 0 << .001 << 0 << .001 << 1000 << .5 << 0.5 << 0.1 << 0 << 0 << 0 << 0 << 0 << 0 <<0<<0<<0<<0<<0<<0; KNL.minimize(xmin); Dvec.SubMatrix(1,6,1,1) = xmin.SubMatrix(1,6,1,1); tens4 = xmin.SubMatrix(8,22,1,1); Dvec(7) = exp(xmin(7)); s0 = Dvec(7); // Tensor Stuff float mDd, fsquared; SymmetricMatrix tens; DiagonalMatrix Ddsorted(3); Matrix Vd; tens = vec2tens(Dvec); EigenValues(tens,Dd,Vd); mDd = Dd.Sum()/Dd.Nrows(); int maxind = Dd(1) > Dd(2) ? 1:2; //finding max,mid and min eigenvalues maxind = Dd(maxind) > Dd(3) ? maxind:3; int midind; if( (Dd(1)>=Dd(2) && Dd(2)>=Dd(3)) || (Dd(1)<=Dd(2) && Dd(2)<=Dd(3)) ){midind=2;} else if( (Dd(2)>=Dd(1) && Dd(1)>=Dd(3)) || (Dd(2)<=Dd(1) && Dd(1)<=Dd(3)) ){midind=1;} else {midind=3;} int minind = Dd(1) < Dd(2) ? 1:2; //finding maximum eigenvalue minind = Dd(minind) < Dd(3) ? minind:3; Ddsorted << Dd(maxind) << Dd(midind) << Dd(minind); Dd=Ddsorted; evec1 << Vd(1,maxind) << Vd(2,maxind) << Vd(3,maxind); evec2 << Vd(1,midind) << Vd(2,midind) << Vd(3,midind); evec3 << Vd(1,minind) << Vd(2,minind) << Vd(3,minind); float numer=1.5*((Dd(1)-mDd)*(Dd(1)-mDd)+(Dd(2)-mDd)*(Dd(2)-mDd)+(Dd(3)-mDd)*(Dd(3)-mDd)); float denom=(Dd(1)*Dd(1)+Dd(2)*Dd(2)+Dd(3)*Dd(3)); if(denom>0) fsquared=numer/denom; else fsquared=0; if(fsquared>0){f=sqrt(fsquared);} else{f=0;} // Kurtosis Stuff mk = 0; ColumnVector vec(S.Nrows()); vec = Kmat*tens4; for(int i=1;i<=S.Nrows();i++){ if(bvals(1,i)>0) mk+=vec(i)/(bvecs.Column(i).t()*tens*bvecs.Column(i)).AsScalar(); } mk *= mDd*mDd; mk /= float(S.Nrows()); } int main(int argc, char** argv) { //parse command line dtifitOptions& opts = dtifitOptions::getInstance(); int success=opts.parse_command_line(argc,argv); if(!success) return 1; if(opts.verbose.value()){ cout<<"data file "<3) r=r.t(); for(int i=1;i<=r.Ncols();i++){ float tmpsum=sqrt(r(1,i)*r(1,i)+r(2,i)*r(2,i)+r(3,i)*r(3,i)); if(tmpsum!=0){ r(1,i)=r(1,i)/tmpsum; r(2,i)=r(2,i)/tmpsum; r(3,i)=r(3,i)/tmpsum; } } Matrix b = read_ascii_matrix(opts.bvalsfile.value()); if(b.Nrows()>1) b=b.t(); ////////////////////////////////////////// volume4D data; volume mask; if(opts.verbose.value()) cout<<"reading data"< l1(maxx-minx,maxy-miny,maxz-minz); volume l2(maxx-minx,maxy-miny,maxz-minz); volume l3(maxx-minx,maxy-miny,maxz-minz); volume MD(maxx-minx,maxy-miny,maxz-minz); volume FA(maxx-minx,maxy-miny,maxz-minz); volume S0(maxx-minx,maxy-miny,maxz-minz); volume4D V1(maxx-minx,maxy-miny,maxz-minz,3); volume4D V2(maxx-minx,maxy-miny,maxz-minz,3); volume4D V3(maxx-minx,maxy-miny,maxz-minz,3); volume4D Delements(maxx-minx,maxy-miny,maxz-minz,6); volume MK(maxx-minx,maxy-miny,maxz-minz); volume4D KurtTens(maxx-minx,maxy-miny,maxz-minz,15); if(opts.verbose.value()) cout<<"copying input properties to output volumes"<0){ for(int t=0;t < data.tsize();t++){ S(t+1)=data(i,j,k,t); } //tensorfit(evals,evec1,evec2,evec3,fa,s0,Dvec,Amat,S); kurtosisfit(evals,evec1,evec2,evec3,fa,s0,Dvec,mk,tens4,Amat,Kmat,S,b,r); l1(i-minx,j-miny,k-minz)=evals(1); l2(i-minx,j-miny,k-minz)=evals(2); l3(i-minx,j-miny,k-minz)=evals(3); MD(i-minx,j-miny,k-minz)=(evals(1)+evals(2)+evals(3))/3; FA(i-minx,j-miny,k-minz)=fa; S0(i-minx,j-miny,k-minz)=s0; V1(i-minx,j-miny,k-minz,0)=evec1(1); V1(i-minx,j-miny,k-minz,1)=evec1(2); V1(i-minx,j-miny,k-minz,2)=evec1(3); V2(i-minx,j-miny,k-minz,0)=evec2(1); V2(i-minx,j-miny,k-minz,1)=evec2(2); V2(i-minx,j-miny,k-minz,2)=evec2(3); V3(i-minx,j-miny,k-minz,0)=evec3(1); V3(i-minx,j-miny,k-minz,1)=evec3(2); V3(i-minx,j-miny,k-minz,2)=evec3(3); Delements(i-minx,j-miny,k-minz,0)=Dvec(1); Delements(i-minx,j-miny,k-minz,1)=Dvec(2); Delements(i-minx,j-miny,k-minz,2)=Dvec(3); Delements(i-minx,j-miny,k-minz,3)=Dvec(4); Delements(i-minx,j-miny,k-minz,4)=Dvec(5); Delements(i-minx,j-miny,k-minz,5)=Dvec(6); MK(i-minx,j-miny,k-minz)=mk; for(int iii=0;iii<15;iii++) KurtTens(i-minx,j-miny,k-minz,iii) = tens4(iii+1); } } } } string fafile=opts.ofile.value()+"_FA"; string s0file=opts.ofile.value()+"_S0"; string l1file=opts.ofile.value()+"_L1"; string l2file=opts.ofile.value()+"_L2"; string l3file=opts.ofile.value()+"_L3"; string v1file=opts.ofile.value()+"_V1"; string v2file=opts.ofile.value()+"_V2"; string v3file=opts.ofile.value()+"_V3"; string MDfile=opts.ofile.value()+"_MD"; string tensfile=opts.ofile.value()+"_tensor"; string MKfile=opts.ofile.value()+"_MK"; string kurtosisfile=opts.ofile.value()+"_kurtosis"; if(opts.littlebit.value()){ fafile+="littlebit"; s0file+="littlebit"; l1file+="littlebit"; l2file+="littlebit"; l3file+="littlebit"; v1file+="littlebit"; v2file+="littlebit"; v3file+="littlebit"; MDfile+="littlebit"; tensfile+="littlebit"; MKfile+="littlebit"; kurtosisfile+="littlebit"; } save_volume(FA,fafile); save_volume(S0,s0file); save_volume(l1,l1file); save_volume(l2,l2file); save_volume(l3,l3file); save_volume(MD,MDfile); save_volume4D(V1,v1file); save_volume4D(V2,v2file); save_volume4D(V3,v3file); save_volume(MK,MKfile); if(opts.savetensor.value()){ save_volume4D(Delements,tensfile); save_volume4D(KurtTens,kurtosisfile); } return 0; }