/* pnm_evs.cc Mark Jenkinson, FMRIB Image Analysis Group Copyright (C) 2008 University of Oxford */ /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ #define _GNU_SOURCE 1 #define POSIX_SOURCE 1 #include "newimage/newimageall.h" #include "miscmaths/miscmaths.h" #include "utils/options.h" using namespace MISCMATHS; using namespace NEWIMAGE; using namespace Utilities; // The two strings below specify the title and example usage that is // printed out as the help or usage message string title="pnm_evs (Version 2.0)\nCopyright(c) 2011, University of Oxford (Mark Jenkinson)"; string examples="pnm_evs [options] --tr=3.0 -i -o -r -c ... TBD ..."; // Each (global) object below specificies as option and can be accessed // anywhere in this file (since they are global). The order of the // arguments needed is: name(s) of option, default value, help message, // whether it is compulsory, whether it requires arguments // Note that they must also be included in the main() function or they // will not be active. Option verbose(string("-v,--verbose"), false, string("switch on diagnostic messages"), false, no_argument); Option help(string("-h,--help"), false, string("display this message"), false, no_argument); Option debug(string("--debug"), false, string("turn on debugging output"), false, no_argument); Option cardorder(string("--oc"), 2, string("order of basic cardiac regressors (number of Fourier pairs) - default=2"), false, requires_argument); Option resporder(string("--or"), 1, string("order of basic respiratory regressors (number of Fourier pairs) - default=1"), false, requires_argument); Option multc(string("--multc"), 0, string("order of multiplicative cardiac terms (also need to set --multr) - default=0"), false, requires_argument); Option multr(string("--multr"), 0, string("order of multiplicative respiratory terms (also need to set --multc) - default=0"), false, requires_argument); Option tr(string("--tr"), 0.0, string("TR of fMRI volumes (in seconds)"), true, requires_argument); Option heartratesmooth(string("--heartratesmooth"), 15.0, string("Optional smoothing of heart rate regressor (in seconds - e.g. 10)"), false, requires_argument); Option rvtsmooth(string("--rvtsmooth"), 0.0, string("Optional smoothing of RVT regressor (in seconds - default 0)"), false, requires_argument); Option slicedir(string("--slicedir"), string("z"), string("specify slice direction (x/y/z) - default is z"), false, requires_argument); Option sliceordering(string("--sliceorder"), string("up"), string("specify slice ordering (up/down/interleaved_up/interleaved_down)"), false, requires_argument); Option slicetiming(string("--slicetiming"), string(""), string("specify slice timing via an external file"), false, requires_argument); Option csfmask(string("--csfmask"), string(""), string("filename of csf mask image (and generate csf regressor)"), false, requires_argument); Option cardname(string("-c,--cardiac"), string(""), string("input filename for cardiac values (1 or 2 columns: time [phase])"), false, requires_argument); Option respname(string("-r,--respiratory"), string(""), string("input filename for respiratory phase values (1 or 2 columns: time [phase])"), false, requires_argument); Option rvt(string("--rvt"), string(""), string("input filename of RVT data (2 columns: time value)"), false, requires_argument); Option heartrate(string("--heartrate"), string(""), string("input filename for heartrate data (2 columns: time value)"), false, requires_argument); Option inname(string("-i,--in"), string(""), string("input image filename (of 4D functional/EPI data)"), true, requires_argument); Option outname(string("-o,--out"), string(""), string("output filename (for confound/EV matrix)"), true, requires_argument); int nonoptarg; // GLOBAL VARIABLES (!) Matrix slicetimingvals; //////////////////////////////////////////////////////////////////////////// // Local functions int sanity_check() { // sanity checking if (cardorder.value()<0) { cerr << "Invalid order for cardiac (" << cardorder.value() << ") - must be non-negative" << endl; return 1; } if ((cardorder.value()>0) && cardname.unset()) { cerr << "Must specify cardiac phase in order to generate cardiac regressors" << endl; return 1; } if (heartrate.set() && cardname.unset()) { cerr << "Must specify cardiac phase in order to generate heartrate regressor" << endl; return 1; } if (resporder.value()<0) { cerr << "Invalid order for respiratory (" << resporder.value() << ") - must be non-negative" << endl; return 1; } if ((resporder.value()>0) && respname.unset()) { cerr << "Must specify respiratory phase in order to generate respiratory regressors" << endl; return 1; } if (tr.value()<=0.0) { cerr << "Must specify a positive TR value (specified value = " << tr.value() << ")" << endl; return 1; } return 0; } int numslices(int64_t sx, int64_t sy, int64_t sz) { int nslices=0; if (slicedir.value()=="x") nslices=sx; if (slicedir.value()=="y") nslices=sy; if (slicedir.value()=="z") nslices=sz; if (nslices<=0) { cerr << "Cannot determine number of slices: slicedir = " << slicedir.value() << endl; exit(EXIT_FAILURE); } return nslices; } int moving_average(ColumnVector& vec, int ns) { // use the efficient circular storage (one in, one out) method ColumnVector tmp(ns); tmp=0.0; double movsum=0.0; int m=1; // index for circular tmp buffer int n2=(ns-1)/2, den=0; for (int n=1; n<=vec.Nrows()+n2; n++) { if (n>ns) { movsum-=tmp(m); den--; } if (n<=vec.Nrows()) { tmp(m)=vec(n); movsum+=tmp(m); den++; } if ((n-n2)>=1) vec(n-n2)=movsum/den; m++; if (m>ns) m=1; } return 0; } ColumnVector interp1(const ColumnVector& x, const ColumnVector& y, const ColumnVector& xi) // Look-up function for data table defined by x, y // Returns the values yi at xi using linear interpolation // Assumes that x is sorted in ascending order // Also assumes that xi is sorted in ascending order { ColumnVector ans; ans=xi*0.0; int ind=2; float xmax, xmin; xmax = x.Maximum(); xmin = x.Minimum(); for (int idx=1; idx<=xi.Nrows(); idx++) { if(xi(idx) >= xmax) { ind=x.Nrows(); } else if(xi(idx) <= xmin) { ind=2; } else { while(xi(idx) >= x(ind)) { ind++; } } float xa = x(ind-1), xb = x(ind), ya = y(ind-1), yb = y(ind); ans(idx) = ya + (xi(idx) - xa)/(xb - xa) * (yb - ya); } return ans; } ColumnVector bandpass_temporal_filter(const ColumnVector& invals, double lp_sigma) { ColumnVector outvals(invals.Nrows()); volume4D tmpv(1,1,1,invals.Nrows()); for (int z=0; z& invals, int x, int y, double lp_sigma) { volume4D tmpv(1,1,1,invals.zsize()); for (int z=0; z acquisition starts with slices closest to the // feet, and moves upwards towards the head. descending => topmost (closest to the head) slices // acquired first, then slices further towards the feet. interleaved => odd slices before even // ones, with the most inferior (bottom most) odd numbered slice acquired first, i.e. like // an ascending acquisition. NOTE!!!! a) obviously this applies primarily to axial or "transversal" // acquisitions, b) that *irrespective* of the slice acquisition ordering, the slices are numbered // and stored on the scanner with the bottom-most slice as number 1 and the topmost slice as number N. // // // SIEMENS WEIRDNESS!!!! If there are an odd number of slices and ordering // is interleaved then scanner will acquire ODD then EVEN. HOWEVER, if there // are and even number of slices it acquires EVEN then ODD. Go figure! // Generate timing for slice #slicenum (where slicenum starts at 1, not 0) ColumnVector slice_timing(int slicenum, int64_t sx, int64_t sy, int64_t sz, int64_t st) { ColumnVector stimes(st); if (slicetiming.unset()) { int nslices=numslices(sx,sy,sz); float firsttime=0.0, halftime=0.0; if (sliceordering.value()=="up") { firsttime = (slicenum-1)*tr.value()/nslices; } else if (sliceordering.value()=="down") { firsttime = (nslices - slicenum)*tr.value()/nslices; } else if (sliceordering.value()=="interleaved_up") { if ((nslices % 2) == 1) { // odd number of slices - odd first, then even if ((slicenum % 2) == 1) { firsttime = ((slicenum-1)/2)*tr.value()/nslices; } else { halftime = ((nslices-1)/2)*tr.value()/nslices + tr.value()/nslices; firsttime = ((slicenum-2)/2)*tr.value()/nslices + halftime;} } else { // even number of slices - even first, then odd if ((slicenum % 2) == 0) { firsttime = ((slicenum-2)/2)*tr.value()/nslices; } else { halftime = ((nslices-2)/2)*tr.value()/nslices + tr.value()/nslices; firsttime = ((slicenum-1)/2)*tr.value()/nslices + halftime; } } } else if (sliceordering.value()=="interleaved_down") { int snum = nslices - slicenum + 1; // convert to pseudo-ascending number if ((nslices % 2) == 1) { // odd number of slices - odd first, then even if ((slicenum % 2) == 1) { firsttime = ((snum-1)/2)*tr.value()/nslices; } else { halftime = ((nslices-1)/2)*tr.value()/nslices + tr.value()/nslices; firsttime = ((snum-2)/2)*tr.value()/nslices + halftime;} } else { // even number of slices - even first, then odd if ((slicenum % 2) == 0) { firsttime = ((snum-1)/2)*tr.value()/nslices; } else { halftime = ((nslices-2)/2)*tr.value()/nslices + tr.value()/nslices; firsttime = ((snum-2)/2)*tr.value()/nslices + halftime; } } } else { cerr << "Unrecognised slice ordering: " << sliceordering.value() << endl; exit(EXIT_FAILURE); } for (int n=1; n<=stimes.Nrows(); n++) { stimes(n) = firsttime + (n-1)*tr.value(); } } else { // user provided timings stimes = slicetimingvals.Column(slicenum); } return stimes; } volume calc_confounds(const Matrix& cardph, const Matrix& respph, int64_t sx, int64_t sy, int64_t sz, int64_t st) { if (verbose.value()) { cout << "Beginning to calculate confounds" << endl; } int nreg = cardorder.value()*2 + resporder.value()*2 + multc.value()*multr.value()*4; if (rvt.set()) nreg++; if (heartrate.set()) nreg++; if (csfmask.set()) nreg++; if (verbose.value()) { cout << "Number of confounds = " << nreg << endl; } int nslices = numslices(sx,sy,sz); if (verbose.value()) { cout << "Number of slices = " << nslices << endl; } volume confoundvol(nreg,nslices,st); volume4D vol; volume csfm, varim, totalmask; if (csfmask.set()) { read_volume4D(vol,inname.value()); read_volume(csfm,csfmask.value()); varim = variancevol(vol); varim *= csfm; totalmask = csfm*0.0f; } // following few lines are just to setup tmpv (to be more efficient) ColumnVector tslice; tslice = slice_timing(1,sx,sy,sz,st); int nt=tslice.Nrows(); for (int n=1; n<=nslices; n++) { if (verbose.value()) { cout << "Loop number " << n << endl; } // get slice timings tslice = slice_timing(n,sx,sy,sz,st); if (debug.value() && (n==1)) { write_ascii_matrix(tslice,"tslice"); } // resample phase values at the appropriate slice timings if (verbose.value()) { cout << "Resampling phase" << endl; } ColumnVector cph_slice(nt), rph_slice(nt); cph_slice = 0.0f; rph_slice = 0.0f; if (cardorder.value()>0) { cph_slice = interp1(cardph.Column(1),cardph.Column(2),tslice); } if (resporder.value()>0) { rph_slice = interp1(respph.Column(1),respph.Column(2),tslice); } if (debug.value() && (n==1)) { write_ascii_matrix(cph_slice,"cph_slice"); } if (debug.value() && (n==1)) { write_ascii_matrix(rph_slice,"rph_slice"); } // generate the required regressors int col=1; // cardiac-only terms if (verbose.value()) { cout << "Cardiac terms" << endl; } for (int m=1; m<=cardorder.value(); m++) { for (int nn=1; nn<=nt; nn++) { confoundvol(col-1,n-1,nn-1) = sin(cph_slice(nn)*m); confoundvol(col,n-1,nn-1) = cos(cph_slice(nn)*m); } col+=2; } if (verbose.value()) { cout << "Respiratory terms" << endl; } // respiratory-only terms for (int m=1; m<=resporder.value(); m++) { for (int nn=1; nn<=nt; nn++) { confoundvol(col-1,n-1,nn-1) = sin(rph_slice(nn)*m); confoundvol(col,n-1,nn-1) = cos(rph_slice(nn)*m); } col+=2; } if (verbose.value()) { cout << "Amplitude modulated terms" << endl; } // amplitude modulated terms for (int mc=1; mc<=multc.value(); mc++) { for (int mr=1; mr<=multr.value(); mr++) { for (int nn=1; nn<=nt; nn++) { confoundvol(col-1,n-1,nn-1) = cos(cph_slice(nn)*mc + rph_slice(nn)*mr); confoundvol(col,n-1,nn-1) = sin(cph_slice(nn)*mc + rph_slice(nn)*mr); confoundvol(col+1,n-1,nn-1) = cos(cph_slice(nn)*mc - rph_slice(nn)*mr); confoundvol(col+2,n-1,nn-1) = sin(cph_slice(nn)*mc - rph_slice(nn)*mr); } col+=4; } } if (heartrate.set()) { // heartrate if (verbose.value()) { cout << "HR term" << endl; } Matrix hrmat; hrmat = read_ascii_matrix(heartrate.value()); if (heartratesmooth.value()>0.0) { // Smooth with moving average over higher sampling (~10Hz) int nsec = MISCMATHS::round((tslice(2)-tslice(1))/0.1); // divide TR into N sections (close to 0.1s) float tsamp=(tslice(2)-tslice(1))/nsec; ColumnVector tvals(nt*nsec); for (int nn=1; nn<=nt*nsec; nn++) { tvals(nn) = interp1(hrmat.Column(1),hrmat.Column(2),tslice(1)+(nn-1)*tsamp); } // smooth int nsmooth = MISCMATHS::round(heartratesmooth.value()/tsamp); moving_average(tvals,nsmooth); // resample for (int nn=1; nn<=nt; nn++) { confoundvol(col-1,n-1,nn-1) = tvals(1+(nn-1)*nsec); } } else { for (int nn=1; nn<=nt; nn++) { confoundvol(col-1,n-1,nn-1) = interp1(hrmat.Column(1),hrmat.Column(2),tslice(nn)); } } col++; } if (rvt.set()) { // rvt if (verbose.value()) { cout << "RVT term" << endl; } // MJ CHECK - SEEMS TO BE TOO LITTLE CHANGE WRT SLICE Matrix rvtmat; rvtmat = read_ascii_matrix(rvt.value()); ColumnVector rvt_slicevals(nslices); if (rvtsmooth.value()>0.0) { // Smooth with moving average over higher sampling (~10Hz) int nsec = MISCMATHS::round((tslice(2)-tslice(1))/0.1); // divide TR into N sections (close to 0.1s) float tsamp=(tslice(2)-tslice(1))/nsec; ColumnVector tvals(nt*nsec); for (int nn=1; nn<=nt*nsec; nn++) { tvals(nn) = interp1(rvtmat.Column(1),rvtmat.Column(2),tslice(1)+(nn-1)*tsamp); } // smooth int nsmooth = MISCMATHS::round(rvtsmooth.value()/tsamp); moving_average(tvals,nsmooth); // resample for (int nn=1; nn<=nt; nn++) { confoundvol(col-1,n-1,nn-1) = tvals(1+(nn-1)*nsec); } } else { for (int nn=1; nn<=nt; nn++) { confoundvol(col-1,n-1,nn-1) = interp1(rvtmat.Column(1),rvtmat.Column(2),tslice(nn)); } } col++; } if (csfmask.set()) { // csf if (verbose.value()) { cout << "CSF term" << endl; } // take top 10% of variance voxels and generate mean timeseries from this // Define a single slice mask volume slicemask(varim); slicemask=0.0f; for (int x=slicemask.minx(); x<=slicemask.maxx(); x++) { for (int y=slicemask.miny(); y<=slicemask.maxy(); y++) { slicemask(x,y,n-1)=1.0f; } } slicemask *= csfm; float varthresh = varim.percentile(0.9f,slicemask); slicemask *= varim; // put the variance values into this volume slicemask.binarise(varthresh); totalmask += slicemask; for (int mm=1; mm<=nt; mm++) { confoundvol(col-1,n-1,mm-1) = mean(vol[mm-1],slicemask); } col++; } } if (csfmask.set()) { save_volume(totalmask,outname.value()+"_csfmask"); } return confoundvol; } int do_work(int argc, char* argv[]) { if (sanity_check()!=0) { exit(EXIT_FAILURE); } if (verbose.value()) { cout << "Calculating slice timings" << endl; } if (slicetiming.set()) { slicetimingvals = read_ascii_matrix(slicetiming.value()); } // read in cardiac phase values Matrix cardph; if (cardname.set()) { if (verbose.value()) { cout << "Reading in cardiac phase" << endl; } Matrix cardpht; cardpht = read_ascii_matrix(cardname.value()); if (cardpht.Ncols()==1) { cardph.ReSize(cardpht.Nrows(),2); for (int n=1; n<=cardpht.Nrows(); n++) { cardph(n,1)=cardpht(n,1); cardph(n,2)=(n-1)*2.0*M_PI; } } else { cardph=cardpht; } } // read in respiratory phase values Matrix respph; if (respname.set()) { if (verbose.value()) { cout << "Reading in respiratory phase" << endl; } respph = read_ascii_matrix(respname.value()); // decide whether input is just timing of zero phase points, or full histogram normalised phases if (respph.Ncols()==1) { Matrix resppht; resppht=respph; respph.ReSize(resppht.Nrows(),2); for (int n=1; n<=resppht.Nrows(); n++) { respph(n,1)=resppht(n,1); respph(n,2)=(n-1)*2.0*M_PI; } } } if (verbose.value()) { cout << "Reading in functional image" << endl; } int64_t vsx,vsy,vsz,vst,vs5; read_volume_size(inname.value(),vsx,vsy,vsz,vst,vs5); int nslices, nvols; nvols = vst; nslices = numslices(vsx,vsy,vsz); // confound storage volume confoundvol; if (verbose.value()) { cout << "Calculating confounds" << endl; } confoundvol = calc_confounds(cardph,respph,vsx,vsy,vsz,vst); int numevs = confoundvol.xsize(); // save output if (verbose.value()) { cout << "Calculating and saving EVs" << endl; } double tmean=0; string outbase=fslbasename(outname.value()); volume4D ev_vol(1,1,nslices,nvols); for (int ev=1; ev<=numevs; ev++) { for (int ns=1; ns<=nslices; ns++) { tmean=0; for (int nv=1; nv<=nvols; nv++) { ev_vol(0,0,ns-1,nv-1)=confoundvol(ev-1,ns-1,nv-1); tmean+=ev_vol(0,0,ns-1,nv-1); } // demean EV tmean/=nvols; for (int nv=1; nv<=nvols; nv++) { ev_vol(0,0,ns-1,nv-1) -= tmean; } } save_volume4D(ev_vol,outbase+"ev"+num2str(ev,3)); } return 0; } //////////////////////////////////////////////////////////////////////////// int main(int argc,char *argv[]) { Tracer tr_main("main"); OptionParser options(title, examples); try { // must include all wanted options here (the order determines how // the help message is printed) options.add(inname); options.add(outname); options.add(tr); options.add(cardname); options.add(respname); options.add(cardorder); options.add(resporder); options.add(multc); options.add(multr); options.add(csfmask); options.add(rvt); options.add(heartrate); options.add(rvtsmooth); options.add(heartratesmooth); options.add(slicedir); options.add(sliceordering); options.add(slicetiming); options.add(debug); options.add(verbose); options.add(help); nonoptarg = options.parse_command_line(argc, argv); // line below stops the program if the help was requested or // a compulsory option was not set if ( (help.value()) || (!options.check_compulsory_arguments(true)) ) { options.usage(); exit(EXIT_FAILURE); } // Call the local functions return do_work(argc,argv); } catch(X_OptionError& e) { options.usage(); cerr << endl << e.what() << endl; exit(EXIT_FAILURE); } catch(std::exception &e) { cerr << e.what() << endl; } catch(Exception &e) { cerr << e.what() << endl; } catch(...) { cerr << "Fatal Error" << endl; } return 0; }