/* filmbabe_vb_flobs.cc Mark Woolrich, FMRIB Image Analysis Group Copyright (C) 1999-2000 University of Oxford */ /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ #include "filmbabe_vb_flobs.h" #include "utils/log.h" #include "miscmaths/miscmaths.h" #include "miscmaths/miscprob.h" #include "libvis/miscplot.h" #include "libvis/miscpic.h" #include "newmat.h" #include "utils/tracer_plus.h" #include "filmbabeoptions.h" #include "newimage/newimagefns.h" #include #include "libprob.h" #include "miscmaths/sparsefn.h" using namespace NEWIMAGE; using namespace Utilities; using namespace MISCMATHS; using namespace NEWMAT; using namespace MISCPLOT; namespace Filmbabe { Filmbabe_Vb_Flobs::Filmbabe_Vb_Flobs(const volume4D& pdata, const volume& pmask, const Matrix& pdesignmatrix, const ColumnVector& pflobsregressors, const volume4D& plocalweights, const vector& pconnected_offsets, int pnum_superthreshold) : xsize(pdata.xsize()), ysize(pdata.ysize()), zsize(pdata.zsize()), ntpts(pdata.tsize()), data(pdata), mask(pmask), designmatrix(pdesignmatrix), flobsregressors(pflobsregressors), QtXXt(), localweights(plocalweights), connected_offsets(pconnected_offsets), indices(pdata.xsize(),pdata.ysize(),pdata.zsize()), Y(), D(), trace_ilambdaDA(FilmbabeOptions::getInstance().ntar.value()), trace_ilambdaBeta(pnum_superthreshold), trace_ilambdaXXt(pnum_superthreshold), diag_ilambdaA(FilmbabeOptions::getInstance().ntar.value()), m_Beta(pnum_superthreshold), ilambda_Beta(pnum_superthreshold), m_A(FilmbabeOptions::getInstance().ntar.value()), gam_Beta(pnum_superthreshold), gam_A(FilmbabeOptions::getInstance().ntar.value()), gam_e(pnum_superthreshold), num_superthreshold(pnum_superthreshold), maxnumneighs(8), ntar(FilmbabeOptions::getInstance().ntar.value()), ilambdaDA(FilmbabeOptions::getInstance().ntar.value()), ilambdaA(FilmbabeOptions::getInstance().ntar.value()), realevcoord(), Q() { } void Filmbabe_Vb_Flobs::process_flobsregressors() { Tracer_Plus trace("Filmbabe_Vb_Flobs::process_flobsregressors"); // total number of actual real evs nrealevs = flobsregressors.Nrows(); // assumes real evs belonging to an original flob ev come in contiguously // want design matrix reordered so that flob regressors come first // must have same number of basis fns for each original flob ev Matrix designmatrixnew = designmatrix; nflobsevs=0;// num flobs Original evs nnonflobsevs=0;// num of non flobs evs nbfs=0;// num basis functions for each flobs Original evs (is the same for all Original evs) vector nonflobsindex; vector flobsindex; // find number of non flobs regressors and put flobs regressors to the start of dm int j=1; for(int i=1; i<=nrealevs; i++) { if(flobsregressors(i) == -1) { // non flob ev nonflobsindex.push_back(i); } else { designmatrixnew.Column(j) = designmatrix.Column(i); flobsindex.push_back(i); j++; } } nnonflobsevs = nonflobsindex.size(); // put non flobs regressors to the end for(int i=1; i<=nnonflobsevs; i++) { designmatrixnew.Column(j) = designmatrix.Column(nonflobsindex[i-1]); j++; } designmatrix = designmatrixnew; // output reordered designmatrix write_ascii_matrix(designmatrix, LogSingleton::getInstance().appendDir("designmatrixnew")); // find nbfs int ind = int(flobsregressors(flobsindex[0])); for(unsigned int i=1; i<=flobsindex.size(); i++) { if(flobsregressors(flobsindex[i-1]) == ind) nbfs++; } nflobsevs = int((nrealevs - nnonflobsevs)/nbfs); OUT(nnonflobsevs); OUT(nrealevs); OUT(nbfs); OUT(nflobsevs); if(nrealevs != nbfs*nflobsevs + nnonflobsevs) throw Exception("Invalid FLOBS regressors file"); // setup flobs constraints: if(!FilmbabeOptions::getInstance().flobsprioroff.value()) { if(FilmbabeOptions::getInstance().flobsdir.value()!=string("")) { m_Beta_0_global = read_vest(FilmbabeOptions::getInstance().flobsdir.value()+"/priormeans.mat"); } else m_Beta_0_global = read_vest(FilmbabeOptions::getInstance().priormeanfile.value()).AsColumn(); if(FilmbabeOptions::getInstance().verbose.value()) OUT(m_Beta_0_global); Matrix lambdatmp; if(FilmbabeOptions::getInstance().flobsdir.value()!=string("")) lambdatmp = read_vest(FilmbabeOptions::getInstance().flobsdir.value()+"/priorcovars.mat"); else lambdatmp = read_vest(FilmbabeOptions::getInstance().priorcovarfile.value()); lambda_Beta_0_global << lambdatmp; if(FilmbabeOptions::getInstance().verbose.value()) OUT(lambda_Beta_0_global); lambda_Beta_0_global = lambda_Beta_0_global.i(); if(lambda_Beta_0_global.Nrows() != m_Beta_0_global.Nrows() || nbfs != m_Beta_0_global.Nrows()) throw Exception("Invalid FLOBS constraints"); } else { m_Beta_0_global.ReSize(nbfs); m_Beta_0_global = 0; lambda_Beta_0_global.ReSize(nbfs); lambda_Beta_0_global = 0; for(int b=1; b<=nbfs; b++) { m_Beta_0_global(b) = 0.0001; lambda_Beta_0_global(b,b) = 1; } } } void Filmbabe_Vb_Flobs::setup() { Tracer_Plus trace("Filmbabe_Vb_Flobs::setup"); OUT("Setup"); process_flobsregressors(); niters = FilmbabeOptions::getInstance().niters.value(); OUT(niters); OUT(num_superthreshold); QemReCquad.resize(nflobsevs); Re.resize(nflobsevs); Qe.resize(nflobsevs); m_Beta_0.resize(nflobsevs); lambda_Beta_0.resize(nflobsevs); // create squashed voxels vector voxels.reserve(num_superthreshold); for(int z = 0; z < data.zsize(); z++) for(int y = 0; y < data.ysize(); y++) for(int x = 0; x < data.xsize(); x++) if(mask(x,y,z)) { //if(MISCMATHS::var(data.voxelts(x,y,z)).AsScalar()>1e-10) voxels.push_back(Voxel(x,y,z)); } // setup D matrix if(FilmbabeOptions::getInstance().verbose.value()) OUT("Setup D"); // num neighbours ColumnVector num_neigbours(num_superthreshold); num_neigbours = 0; indices = 0; int index=1; for(int z = 0; z < data.zsize(); z++) for(int y = 0; y < data.ysize(); y++) for(int x = 0; x < data.xsize(); x++) { if(mask(x,y,z)) { int xi=0,yi=0,zi=0; for(unsigned int i = 0; i < connected_offsets.size(); i++) { xi = x+connected_offsets[i].x; yi = y+connected_offsets[i].y; zi = z+connected_offsets[i].z; if(mask(xi,yi,zi)) { num_neigbours(index) += localweights(x,y,z,connected_offsets[i].ind); } } indices(x,y,z) = index; index++; } } D.ReSize(num_superthreshold,num_superthreshold); OUT("Setup D2"); for(int z = 0; z < data.zsize(); z++) for(int y = 0; y < data.ysize(); y++) for(int x = 0; x < data.xsize(); x++) if(mask(x,y,z)) { int xi=0,yi=0,zi=0; for(unsigned int i = 0; i < connected_offsets.size(); i++) { xi = x+connected_offsets[i].x; yi = y+connected_offsets[i].y; zi = z+connected_offsets[i].z; if(mask(xi,yi,zi)) { D.insert(indices(x,y,z),indices(xi,yi,zi), -1.0/sqrt(num_neigbours(indices(x,y,z))*num_neigbours(indices(xi,yi,zi)))); D.insert(indices(xi,yi,zi), indices(x,y,z), -1.0/sqrt(num_neigbours(indices(x,y,z))*num_neigbours(indices(xi,yi,zi)))); } } D.insert(indices(x,y,z),indices(x,y,z),1); } if(FilmbabeOptions::getInstance().verbose.value()) OUT("Setup Y"); // Y is T*N, column = spatialmap, row = time-series. Y.ReSize(ntpts,num_superthreshold); Y = 0; for(int r=0; r < num_superthreshold; r++) { const Voxel& vox = voxels[r]; ColumnVector tmp = data.voxelts(vox.x,vox.y,vox.z); Y.Column(r+1) = tmp - mean(tmp).AsScalar(); gam_e(r+1) = 1.0/var(tmp).AsScalar(); } if(FilmbabeOptions::getInstance().verbose.value()) OUT("Initialise params"); for(int p=1; p<=ntar; p++) { if(FilmbabeOptions::getInstance().tarmrfprec.value()==-1) gam_A(p) = 1; else gam_A(p) = FilmbabeOptions::getInstance().tarmrfprec.value(); m_A[p-1].ReSize(num_superthreshold); m_A[p-1] = 0; } // gam_e = 0.9; // realevcoord gives index of flobs original ev e and basis fn b in beta vector realevcoord.ReSize(nflobsevs,nbfs); realevcoord = 0; if(FilmbabeOptions::getInstance().verbose.value()) OUT("Initialise FLOBS params"); int coord = 0; for(int e=1; e<=nflobsevs; e++) { m_Beta_0[e-1] = m_Beta_0_global; lambda_Beta_0[e-1] = lambda_Beta_0_global; for(int b=1; b<=nbfs; b++) { coord++; realevcoord(e,b) = coord; } } if(FilmbabeOptions::getInstance().verbose.value()) OUT("Initialise remaining params"); for(int i=1; i<=num_superthreshold; i++) { for(int p=1; p<=ntar; p++) m_A[p-1](i) = normrnd().AsScalar()*0.1; m_Beta[i-1].ReSize(nrealevs+nflobsevs); m_Beta[i-1] = 0; gam_Beta[i-1].ReSize(nflobsevs); gam_Beta[i-1] = 1; ilambda_Beta[i-1].ReSize(nrealevs+nflobsevs); ilambda_Beta[i-1] = 0; trace_ilambdaBeta[i-1].ReSize(nflobsevs); trace_ilambdaBeta[i-1] = 0; // initialise m_Beta using OLS estimates // ColumnVector betatmp = pinv(designmatrix)*Y.Column(i); // ColumnVector res = Y.Column(i) - designmatrix*betatmp; // gam_e(i) = 1.0/(res.t()*res/(ntpts-nrealevs)); // ilambda_Beta[i-1] = pinv(designmatrix) // m_Beta[i-1] = 1; for(int e=1; e<=nrealevs; e++) { m_Beta[i-1](e) = normrnd().AsScalar()*0.1; //m_Beta[i-1](e) = betatmp(e); } } for(int p=1; p<=ntar; p++) { ilambdaDA[p-1].ReSize(num_superthreshold,num_superthreshold); ilambdaA[p-1].ReSize(num_superthreshold,num_superthreshold); diag_ilambdaA[p-1].ReSize(num_superthreshold); diag_ilambdaA[p-1] = 0; } trace_ilambdaDA = 0; trace_ilambdaXXt = 0; // beta = {real flobs overall params; real non flobs params; real flobs "size" params} // beta has size nrealevs+nflobsevs // setup Q stuff // Q*beta = {real flobs overall params; real non flobs params} ==> i.e. Y=X*Q*beta+e // Q[e]*beta = {real flobs overall param for original flobev e} // Re[e]*beta = {real flobs "size" param for original flobev e} Q.ReSize(nrealevs,nrealevs+nflobsevs); Q = 0; for(int e=1; e<=nflobsevs; e++) { Qe[e-1].ReSize(nbfs,nrealevs+nflobsevs); Qe[e-1] = 0; Re[e-1].ReSize(nrealevs+nflobsevs); Re[e-1] = 0; Re[e-1](nrealevs+e) = 1; for(int b=1; b<=nbfs; b++) { Q(int(realevcoord(e,b)),int(realevcoord(e,b))) = 1; Qe[e-1](b,int(realevcoord(e,b))) = 1; } QemReCquad[e-1] = (Qe[e-1]-m_Beta_0[e-1]*Re[e-1]).t()*lambda_Beta_0[e-1]*(Qe[e-1]-m_Beta_0[e-1]*Re[e-1]); } for(int e=1; e<=nnonflobsevs; e++) { Q(nflobsevs*nbfs+e,nflobsevs*nbfs+e) = 1; } designmatrixQ.ReSize(nrealevs+nflobsevs,ntpts); designmatrixQ = 0; for(int t=1; t <= ntpts; t++) designmatrixQ.Column(t) = (designmatrix.Column(t).AsRow()*Q).AsColumn(); QtXXt = Q.t()*designmatrix*designmatrix.t(); if(FilmbabeOptions::getInstance().verbose.value()) { OUT(Q); OUT(Qe[0]); OUT(Re[0]); OUT(QemReCquad[0]); } OUT("Setup finished"); } void Filmbabe_Vb_Flobs::run() { Tracer_Plus trace("Filmbabe_Vb_Flobs::run"); int i = 1;; for(; i<=niters; i++) { OUT(i); update_Beta(); update_A(); if(FilmbabeOptions::getInstance().tarmrfprec.value()==-1) update_phiA(); update_phie(); for(int i=1; i<=num_superthreshold; i++) for(int e=1; e<=nflobsevs; e++) { gam_Beta[i-1](e) = 1.0/Sqr((Re[e-1]*m_Beta[i-1]).AsScalar()+ilambda_Beta[i-1](nrealevs+e,nrealevs+e)); if(gam_Beta[i-1](e)>1e10)gam_Beta[i-1](e)=1e10; if(gam_Beta[i-1](e)<1e-10)gam_Beta[i-1](e)=1e-10; //OUT(gam_Beta[i-1](e)); } } cout << "Iterations=" << i << endl; } void Filmbabe_Vb_Flobs::update_Beta() { Tracer_Plus trace("Filmbabe_Vb_Flobs::update_Beta"); if(FilmbabeOptions::getInstance().verbose.value()) OUT("Update Beta"); Matrix F_Beta(nrealevs+nflobsevs,nrealevs+nflobsevs); SymmetricMatrix F_Beta_sym(nrealevs+nflobsevs); ColumnVector E_Beta(nrealevs+nflobsevs); vector etmp(nflobsevs); for(int e=1; e<=nflobsevs; e++) { Matrix tmp = (Qe[e-1]-m_Beta_0[e-1]*Re[e-1]); etmp[e-1] << tmp.t()*lambda_Beta_0[e-1]*tmp; } for(int j = 1; j<=num_superthreshold; j++) { // cout << j << ","; // cout.flush(); F_Beta = 0; E_Beta = 0; for(int t=1; t <= ntpts; t++) { ColumnVector sumpx = designmatrixQ.Column(t); float sumpy = Y(t,j); for(int p=1; p<=ntar; p++) if(t>p) { //designmatrixQ.Column(t-p) is (designmatrix.Column(t-p).AsRow()*Q).AsColumn(); sumpx -= m_A[p-1](j)*designmatrixQ.Column(t-p); sumpy -= m_A[p-1](j)*Y(t-p,j); } F_Beta += sumpx*sumpx.t(); E_Beta += sumpx*sumpy; } F_Beta *= gam_e(j); E_Beta *= gam_e(j); for(int e=1; e<=nflobsevs; e++) { // Matrix tmp = (Qe[e-1]-m_Beta_0[e-1]*Re[e-1]); // F_Beta += tmp.t()*lambda_Beta_0[e-1]*tmp*gam_Beta[j-1](e); F_Beta += etmp[e-1]*gam_Beta[j-1](e); } F_Beta_sym << F_Beta; ilambda_Beta[j-1] = F_Beta_sym.i(); m_Beta[j-1] = ilambda_Beta[j-1]*E_Beta; trace_ilambdaXXt(j) = (Q*ilambda_Beta[j-1]*QtXXt).Trace(); // OUT(ilambda_Beta[j-1]); // for(int e=1; e<=neflobsvs; e++) // { // trace_ilambdaBeta[j-1](e) = (ilambda_Beta[j-1]*QemReCquad[e-1]).Trace(); // } } } void Filmbabe_Vb_Flobs::update_A() { Tracer_Plus trace("Filmbabe_Vb_Flobs::update_A"); SparseMatrix I; speye(num_superthreshold,I); if(FilmbabeOptions::getInstance().verbose.value()) OUT("Update A"); for(int p=1; p<=ntar; p++) { ColumnVector beta(num_superthreshold); beta = 0; SparseMatrix lambda_A = D; if(FilmbabeOptions::getInstance().verbose.value()) OUT("Compute lambda"); if(FilmbabeOptions::getInstance().verbose.value()) { OUT(p); OUT(gam_A(p)); } lambda_A.multiplyby(gam_A(p)); for(int r = 1; r<=num_superthreshold; r++) { for(int t=p+1; t <= ntpts; t++) { float sume = 0; for(int e=1; e<=nrealevs; e++) { sume += designmatrix(e,t-p)*m_Beta[r-1](e); } float wtp = Y(t-p,r)-sume; lambda_A.addto(r,r,gam_e(r)*Sqr(wtp)); float sumq=0.0; for(int q=1; q<=ntar; q++) if(q!=p && t>q) { sume = 0; for(int e=1; e<=nrealevs; e++) { sume += designmatrix(e,t-q)*m_Beta[r-1](e); } sumq += m_A[q-1](r)*(Y(t-q,r)-sume); } sume = 0; for(int e=1; e<=nrealevs; e++) { sume += designmatrix(e,t)*m_Beta[r-1](e); } beta(r) += gam_e(r)*wtp*(Y(t,r)-sumq-sume); } } if(FilmbabeOptions::getInstance().verbose.value()) OUT("Compute m_A"); solveforx(lambda_A, beta, m_A[p-1]); if(FilmbabeOptions::getInstance().verbose.value()) OUT(m_A[p-1](1)); if(FilmbabeOptions::getInstance().verbose.value()) OUT("Compute trace"); float trace_new = 0; if(FilmbabeOptions::getInstance().ntracesamps.value() > 0) { float trace_tol = 0.001; trace_new = solvefortracex(lambda_A, D, ilambdaDA[p-1], FilmbabeOptions::getInstance().ntracesamps.value(), trace_tol); } else { for(int r=1; r <= num_superthreshold; r++) { trace_new += 1.0/lambda_A(r,r)*D(r,r); } } trace_ilambdaDA(p) = trace_new; if(FilmbabeOptions::getInstance().verbose.value()) OUT(trace_ilambdaDA(p)); } } void Filmbabe_Vb_Flobs::update_phiA() { Tracer_Plus trace("Filmbabe_Vb_Flobs::update_phiA"); // q(phiA)~Ga(b_A,c_A); float c_A = num_superthreshold/2.0; if(FilmbabeOptions::getInstance().verbose.value()) OUT("Update phiA"); for(int p=1; p<=ntar; p++) { float b_A = 1.0/(0.5*(quadratic(m_A[p-1],D) + trace_ilambdaDA(p))); gam_A(p) = exp(log(b_A)+MISCMATHS::lgam(c_A+1)-MISCMATHS::lgam(c_A)); if(gam_A(p) > 1e6) gam_A(p) = 1e6; if(gam_A(p) < 1e-6) gam_A(p) = 1e-6; } if(ntar>0) gamAhist.push_back(gam_A(1)); } void Filmbabe_Vb_Flobs::update_phie() { Tracer_Plus trace("Filmbabe_Vb_Flobs::update_phie"); float c_e = (ntpts-1)/2.0; if(FilmbabeOptions::getInstance().verbose.value()) OUT("Update phie"); for(int r=1; r <= num_superthreshold; r++) { float sum = 0.0; float sum2 = 0.0; for(int t=1; t <= ntpts; t++) { float sumq=0.0; for(int q=1; q<=ntar; q++) if(t>q) { float sume = 0; for(int e=1; e<=nrealevs; e++) { sume += designmatrix(e,t-q)*m_Beta[r-1](e); } sumq += m_A[q-1](r)*(Y(t-q,r)-sume); //sum2 += diag_ilambdaA[q-1](r)*Sqr(Y(t-q,r)-sume); } float sume = 0; for(int e=1; e<=nrealevs; e++) { sume += designmatrix(e,t)*m_Beta[r-1](e); } sum += Sqr(Y(t,r)-sumq-sume); } sum += trace_ilambdaXXt(r); sum += sum2; // if(sum==0) // { // OUT(sum); // const Voxel& vox = voxels[r-1]; // ColumnVector tmp = data.voxelts(vox.x,vox.y,vox.z); // write_ascii_matrix(tmp,"tmp"); // OUT(vox.x); // OUT(vox.y); // OUT(vox.z); // OUT(mask(vox.x,vox.y,vox.z)); // } float b_e = 1.0/(0.5*(sum)); gam_e(r) = exp(log(b_e)+MISCMATHS::lgam(c_e+1)-MISCMATHS::lgam(c_e)); } if(FilmbabeOptions::getInstance().verbose.value()) { OUT(gam_e(1)); OUT(gam_e(num_superthreshold)); } } void Filmbabe_Vb_Flobs::save() { Tracer_Plus trace("Filmbabe_Vb_Flobs::save"); for(int p=1; p<=ntar; p++) { volume A_mean(xsize,ysize,zsize); A_mean = 0.0; for(int z = 0; z < data.zsize(); z++) for(int y = 0; y < data.ysize(); y++) for(int x = 0; x < data.xsize(); x++) if(mask(x,y,z)) { A_mean(x,y,z) = m_A[p-1](indices(x,y,z)); } copybasicproperties(data[0],A_mean); save_volume(A_mean, LogSingleton::getInstance().appendDir("A_mean_"+num2str(p))); } for(int e=1; e<=nrealevs; e++) { volume Beta_mean(xsize,ysize,zsize); Beta_mean = 0.0; for(int z = 0; z < data.zsize(); z++) for(int y = 0; y < data.ysize(); y++) for(int x = 0; x < data.xsize(); x++) if(mask(x,y,z)) { Beta_mean(x,y,z) = m_Beta[indices(x,y,z)-1](e); } copybasicproperties(data[0],Beta_mean); save_volume(Beta_mean, LogSingleton::getInstance().appendDir("pe"+num2str(e))); } for(int e=1; e<=nflobsevs; e++) { volume R_mean(xsize,ysize,zsize); R_mean = 0.0; for(int z = 0; z < data.zsize(); z++) for(int y = 0; y < data.ysize(); y++) for(int x = 0; x < data.xsize(); x++) if(mask(x,y,z)) { R_mean(x,y,z) = m_Beta[indices(x,y,z)-1](nrealevs+e); } copybasicproperties(data[0],R_mean); save_volume(R_mean, LogSingleton::getInstance().appendDir("R_mean_e"+num2str(e))); } volume4D all_Beta_cov(xsize,ysize,zsize,(nrealevs+nflobsevs)*(nrealevs+nflobsevs)); all_Beta_cov = 0.0; volume4D Beta_cov(xsize,ysize,zsize,nrealevs*nrealevs); Beta_cov = 0.0; volume4D R_cov(xsize,ysize,zsize,nflobsevs*nflobsevs); R_cov = 0.0; volume sigmasq(xsize,ysize,zsize); sigmasq=0.0; for(int z = 0; z < data.zsize(); z++) for(int y = 0; y < data.ysize(); y++) for(int x = 0; x < data.xsize(); x++) if(mask(x,y,z)) { sigmasq(x,y,z) = 1; for(int e=1; e<=nrealevs+nflobsevs; e++) { for(int e2=1; e2<=nrealevs+nflobsevs; e2++) { all_Beta_cov(x,y,z,e+(e2-1)*(nrealevs+nflobsevs)-1) = ilambda_Beta[indices(x,y,z)-1](e,e2); } } for(int e=1; e<=nrealevs; e++) { for(int e2=1; e2<=nrealevs; e2++) { Beta_cov(x,y,z,e+(e2-1)*nrealevs-1) = ilambda_Beta[indices(x,y,z)-1](e,e2); } } for(int e=1; e<=nflobsevs; e++) { for(int e2=1; e2<=nflobsevs; e2++) { R_cov(x,y,z,e+(e2-1)*nflobsevs-1) = ilambda_Beta[indices(x,y,z)-1](nrealevs+e,nrealevs+e2); } } } copybasicproperties(data[0],all_Beta_cov[0]); save_volume4D(all_Beta_cov, LogSingleton::getInstance().appendDir("all_Beta_cov")); copybasicproperties(data[0],Beta_cov[0]); save_volume4D(Beta_cov, LogSingleton::getInstance().appendDir("corrections")); copybasicproperties(data[0],R_cov[0]); save_volume4D(R_cov, LogSingleton::getInstance().appendDir("R_cov")); copybasicproperties(data[0],sigmasq); save_volume(sigmasq, LogSingleton::getInstance().appendDir("sigmasquareds")); Matrix a(1,1); a =1000; write_ascii_matrix(a,LogSingleton::getInstance().appendDir("dof")); if(gamAhist.size()>0) { miscplot newplot; newplot.add_xlabel("Iterations"); newplot.set_xysize(610,300); newplot.timeseries(vector2ColumnVector(gamAhist).t(), LogSingleton::getInstance().appendDir("gamAhist"), "AR(1) MRF Precision", 0,400,3,0,false); } write_vector(gamAhist, LogSingleton::getInstance().appendDir("gamAhist")); } }